opensource.google.com

Menu

OpenCensus’s journey ahead: enhanced feature set

Wednesday, May 30, 2018

This is the second half of a series of blog posts about what’s coming next for OpenCensus. The OpenCensus Roadmap is composed of two pillars: increased language, framework, and platform coverage, and the addition of more powerful features.

In this blog post we’re going to discuss the second pillar: new functionality that makes OpenCensus more powerful. This includes dramatically improved sampling capabilities and new types of telemetry that we’re looking to capture.

More Power

Intelligent Sampling

In addition to expanding the list of languages and frameworks that OpenCensus supports out of the box, we’ll also be increasing the usefulness of existing functionality.

Services instrumented with OpenCensus currently randomly (at a configurable rate) sample new requests (without context, usually received directly from clients). While this does provide an effective view into application latency, developers are mostly interested in traces of particularly slow requests or requests that also capture a useful event, such as an exception.

We’re adding support for OpenCensus to make deferred sampling decisions - that is, to sample requests after they’ve propagated through several systems, while still preserving the full critical path of the trace. Though the feature is just starting development, we’re focusing on making sampling more intelligent - for example, by triggering traces based on accumulated latency, errors, and debugging events. Expect to hear more about this soon.

New Telemetry, Including Logs and Errors

As we mentioned in our last blog post, our ambition is for OpenCensus to become a ubiquitous observability framework, meaning that collecting traces and stats alone won’t be enough. Correlating traces and tags with logs and errors represents an obvious next step, and we’re currently working through what this might look like. Longer term, this list could grow to include profiles and other signals.

The topic of what signals will come next is worth of its own blog post, and you can expect us to start talking about this more in the coming months.

Server-provided Traces and Metrics

Distributed applications can obtain observability into their own performance by instrumenting themselves with OpenCensus, however visibility into the performance of external services or APIs that they call into is still limited. For example, imagine a web service that calls into Google Cloud Platform’s Cloud Bigtable service: the application developer would have visibility into their client side traces but would not be able to tell how much time Cloud BigTable took to respond vs time taken by network. We’re working on adding server side traces and metrics - essentially a way for service providers to summarize server side traces and metrics.

Cluster wide Z pages

Today, OpenCensus provides a stand-alone application called z-pages that includes an embedded web server and displays configuration parameters and trace information in real-time, as captured from any OpenCensus libraries running on the same host. By accessing a z-page, developers can configure sampling rate for the local instance, or view traces, tags, and stats as they’re being processed in real-time.

Longer-term, we wish to extend this functionality to enable cluster wide z-pages, which could provide the same functionality as the current z-pages experience, aggregated over all of the instances of a particular service. We’re still discussing different implementation options, and if we can tie this into other aggregation-related workstreams that we’re already pursuing.

Wrapping up

Does the strategy and roadmap above resonate with what you’d want to get from OpenCensus library? We’d love to hear your ideas and what you’d like to see prioritized.

As we mentioned in our last post, none of this is possible without the support and participation from the community. Check out our repo and start contributing. No contribution or idea is too small. Join other developers and users on the OpenCensus Gitter channel. We’d love to hear from you.

By Pritam Shah and Morgan McLean, Census team

Introducing Git protocol version 2

Friday, May 18, 2018

Git Logo by Jason Long, CC BY 3.0.
Today we announce Git protocol version 2, a major update of Git's wire protocol (how clones, fetches and pushes are communicated between clients and servers). This update removes one of the most inefficient parts of the Git protocol and fixes an extensibility bottleneck, unblocking the path to more wire protocol improvements in the future.

The protocol version 2 spec can be found here. The main improvements are:
The main motivation for the new protocol was to enable server side filtering of references (branches and tags). Prior to protocol v2, servers responded to all fetch commands with an initial reference advertisement, listing all references in the repository. This complete listing is sent even when a client only cares about updating a single branch, e.g.: `git fetch origin master`. For repositories that contain 100s of thousands of references (the Chromium repository has over 500k branches and tags) the server could end up sending 10s of megabytes of data that get ignored. This typically dominates both time and bandwidth during a fetch, especially when you are updating a branch that's only a few commits behind the remote, or even when you are only checking if you are up-to-date, resulting in a no-op fetch.

We recently rolled out support for protocol version 2 at Google and have seen a performance improvement of 3x for no-op fetches of a single branch on repositories containing 500k references. Protocol v2 has also enabled a reduction of 8x of the overhead bytes (non-packfile) sent from googlesource.com servers. A majority of this improvement is due to filtering references advertised by the server to the refs the client has expressed interest in.

Getting over the hurdles

The Git project has tried on a number of occasions over the years to either limit the initial ref advertisement or move to a new protocol altogether but continued to run into two problems: (1) the initial request is rigid and does not include a field that could be used to request that new servers modify their response without breaking compatibility with existing servers and (2) error handling is not well enough defined to allow safely using a new protocol that existing servers do not understand with a quick fallback to the old protocol. To migrate to a new protocol version, we needed to find a side channel which existing servers would ignore but could be used to safely communicate with newer servers.

There are three main transports that are used to speak Git’s wire-protocol (git://, ssh://, and https://), and the side channel that we use to request v2 needs to communicate in such a way that an older server would ignore any additional data sent and not crash. The http transport was the easiest as we can simply include an additional http header in the request (“Git-Protocol: version=2”). The ssh transport is a bit more difficult as it requires sending an environment variable (“GIT_PROTOCOL=version=2”) to be set on the remote end. This is more challenging because it requires server administrators to configure sshd to accept the new environment variable on their server. The most difficult transport is the anonymous Git transport (git://).

Initial requests made to a server using the anonymous Git transport are made in the form of a single packet-line which includes the requested service (git-upload-pack for fetches and git-receive-pack for pushes), and the repository followed by a NUL byte. Later virtualization support was added and a hostname parameter could be tacked on and  terminated by a NUL byte: `0033git-upload-pack /project.git\0host=myserver.com\0`. Ideally we’d be able to add a new parameter to be used to request v2 by adding it in the same manner as the hostname was added: `003dgit-upload-pack /project.git\0host=myserver.com\0version=2\0`. Unfortunately due to a bug introduced in 2006 we aren't able to place any extra arguments (separated by NULs) other than the host because otherwise the parsing of those arguments would enter an infinite loop. When this bug was fixed in 2009, a check was put in place to disallow extra arguments so that new clients wouldn't trigger this bug in older servers.

Fortunately, that check doesn't notice if we send additional request arguments hidden behind a second NUL byte, which was pointed out back in 2009.  This allows requests structured like: `003egit-upload-pack /project.git\0host=myserver.com\0\0version=2\0`. By placing version information behind a second NUL byte we can skirt around both the infinite loop bug and the explicit disallowal of extra arguments besides hostname. Only newer servers will know to look for additional information hidden behind two NUL bytes and older servers won’t croak.

Now, in every case, a client can issue a request to use v2, using a transport-specific side channel, and v2 servers can respond using the new protocol while older servers will ignore the side channel and just respond with a ref advertisement.

Try it for yourself

To try out protocol version 2 for yourself you'll need an up to date version of Git (support for v2 was recently merged to Git's master branch and is expected to be part of Git 2.18) and a v2 enabled server (repositories on googlesource.com and Cloud Source Repositories are v2 enabled). If you enable tracing and run a `fetch` command requesting a single branch, you can see the server sends a much smaller set of references when using protocol version 2:
git clone https://chromium.googlesource.com/chromium/src.git
cd src
export GIT_TRACE_PACKET=1

# Using protocol version 2
git -c protocol.version=2 fetch --no-tags origin master

# Using the original wire protocol
git -c protocol.version=0 fetch --no-tags origin master

By Brandon Williams, Git-core team

Updated December 5, 2018: Previously the example above used the more rarely used "git ls-remote" command. A recent change to improve the correctness of that command's output causes it to request more references. The updated example above demonstrates the improvement that protocol v2 brings using the "git fetch" command.

Google Summer of Code 2018 statistics part 1

Wednesday, May 9, 2018

Since 2005, Google Summer of Code (GSoC) has been bringing new developers into the open source community every year. This year we accepted 1,264 students from 62 countries into the 2018 GSoC program to work with a record 206 open source organizations this summer.

Students are currently participating in the Community Bonding phase of the program where they become familiar with the open source projects they will be working with. They also spend time learning the codebase and the community’s best practices so they can start their 12 week coding projects on May 14th.

Each year we like to share program statistics about the GSoC program and the accepted students and mentors involved in the program. Here are a few stats:
  • 88.2% of the accepted students are participating in their first GSoC
  • 74.4% of the students are first time applicants

Degrees

  • 76.18% of accepted students are undergraduates, 17.5% are masters students, and 6.3% are getting their PhDs.
  • 73% are Computer Science majors, 4.2% are mathematics majors, 17% are other engineering majors (electrical, mechanical, aerospace, etc.)
  • We have students in a variety of majors including neuroscience, linguistics, typography, and music technologies.

Countries

This year there are four students that are the first to be accepted into GSoC from their home countries of Kosovo (three students) and Senegal. A complete list of accepted students and their countries is below:
Country Students Country Students Country Students
Argentina 5 Hungary 7 Russian Federation 35
Australia 10 India 605 Senegal 1
Austria 14 Indonesia 3 Serbia 1
Bangladesh 3 Ireland 1 Singapore 8
Belarus 3 Israel 2 Slovak Republic 2
Belgium 3 Italy 24 South Africa 1
Brazil 19 Japan 7 South Korea 2
Bulgaria 2 Kosovo 3 Spain 21
Cameroon 14 Latvia 1 Sri Lanka 41
Canada 31 Lithuania 5 Sweden 6
China 52 Malaysia 2 Switzerland 5
Croatia 3 Mauritius 1 Taiwan 3
Czech Republic 4 Mexico 4 Trinidad and Tobago 1
Denmark 1 Morocco 2 Turkey 8
Ecuador 4 Nepal 1 Uganda 1
Egypt 12 Netherlands 6 Ukraine 6
Finland 3 Nigeria 6 United Kingdom 28
France 22 Pakistan 5 United States 104
Germany 53 Poland 3 Venezuela 1
Greece 16 Portugal 10 Vietnam 4
Hong Kong 3 Romania 10    
There were a record number of students submitting proposals for the program this year -- 5,199 students from 101 countries.

In our next GSoC statistics post we will delve deeper into the schools, gender breakdown, mentors, and registration numbers for the 2018 program.

By Stephanie Taylor, Google Open Source
.