This week began with the announcement of Android 9 Pie and, as usual, the subsequent upstreaming of code to the Android Open Source Project (AOSP). But the release of Android 9 isn’t the only important Android news!
Tucked away in the announcement to the Android Building mailing list was this note:
“I also wanted to take a moment to introduce myself as the new Tech Lead / Manager for AOSP. My name is Jeff Bailey, and I’ve been involved in the Open Source community for more than two decades. Since I joined the Android team a few months ago, I’ve been learning how we do things and getting an understanding of how we could work better with the community. I’d love to hear from you: @JeffBaileyAOSP on Twitter or [email protected]. Be well!”
As Jeff notes in his introduction, he has a history in free and open source software (FOSS). He’s been an avid user, contributor, and maintainer since before the Open Source Definition was inked!
Jeff co-founded Savannah, where GNU software is developed and distributed, spent 15 years working on Debian, and has been an Ubuntu core developer. Further, he spent some time on the Google Open Source team and was involved in open sourcing Android back in 2008.
Open source projects, even those which originate inside of companies, are powered by the community of users and contributors that surround them. And those communities thrive when they have stewards who are steeped in the traditions of free and open source software. We’re excited for AOSP as Jeff takes the reins. He brings both technical and cultural skills to the table, and he’s been involved with the project since the beginning!
Suffice it to say, AOSP is in good hands. We welcome Jeff to his new role and, as he said in his introduction, he’d love to hear from the community: you can reach Jeff on Twitter and via email.
By Josh Simmons, Google Open Source
Magnificent mentors of Google Summer of Code 2018
Thursday, August 2, 2018
Mentors are the heart and soul of the Google Summer of Code (GSoC) program and have been for the last 14 years. Without their hard work and dedication, there would be no Google Summer of Code. These volunteers spend 4+ months guiding their students to create the best quality project possible while welcoming them into their communities – answering questions and providing help at all hours of the day, including weekends and holidays.
Thank you mentors and organization administrators!
Each year we pore over heaps of data to extract some interesting statistics about the GSoC mentors. Here’s a quick synopsis of our 2018 crew:
Another fun fact about our 2018 mentors: they range in age from 15-80 years old!
Thank you to all of our mentors, organization administrators, and all of the “unofficial” mentors that help in the various open source organization’s communities. Google Summer of Code is a community effort and we appreciate each and every one of you.
Cheers to yet another great year!
By Stephanie Taylor, Google Open Source
* Most of these 26 young GSoC mentors started their journey in Google Code-in, our contest for 13-17 year olds that introduces young students to open source software development.
Thank you mentors and organization administrators!
Each year we pore over heaps of data to extract some interesting statistics about the GSoC mentors. Here’s a quick synopsis of our 2018 crew:
- Registered mentors: 2,819
- Mentors with assigned student projects: 1,996
- Mentors who have participated in GSoC for 10 or more years: 46
- Mentors who have been a part of GSoC for 5 years or more: 272
- Mentors that are former GSoC students: 627
- Mentors that have also been involved in the Google Code-in program: 474
- Percentage of new mentors: 36.5%
If you want to see the stats for all 75 countries check out this list.
Another fun fact about our 2018 mentors: they range in age from 15-80 years old!
- Average mentor age: 34
- Median mentor age: 33
- Mentors under 18 years old: 26*
Thank you to all of our mentors, organization administrators, and all of the “unofficial” mentors that help in the various open source organization’s communities. Google Summer of Code is a community effort and we appreciate each and every one of you.
Cheers to yet another great year!
By Stephanie Taylor, Google Open Source
* Most of these 26 young GSoC mentors started their journey in Google Code-in, our contest for 13-17 year olds that introduces young students to open source software development.
Announcing Cirq: an open source framework for NISQ algorithms
Wednesday, August 1, 2018
Cross-posted from the Google AI Blog
Over the past few years, quantum computing has experienced a growth not only in the construction of quantum hardware, but also in the development of quantum algorithms. With the availability of Noisy Intermediate Scale Quantum (NISQ) computers (devices with ~50 - 100 qubits and high fidelity quantum gates), the development of algorithms to understand the power of these machines is of increasing importance. However, a common problem when designing a quantum algorithm on a NISQ processor is how to take full advantage of these limited quantum devices—using resources to solve the hardest part of the problem rather than on overheads from poor mappings between the algorithm and hardware. Furthermore some quantum processors have complex geometric constraints and other nuances, and ignoring these will either result in faulty quantum computation, or a computation that is modified and sub-optimal.*
Today at the First International Workshop on Quantum Software and Quantum Machine Learning (QSML), the Google AI Quantum team announced the public alpha of Cirq, an open source framework for NISQ computers. Cirq is focused on near-term questions and helping researchers understand whether NISQ quantum computers are capable of solving computational problems of practical importance. Cirq is licensed under Apache 2, and is free to be modified or embedded in any commercial or open source package.
Once installed, Cirq enables researchers to write quantum algorithms for specific quantum processors. Cirq gives users fine tuned control over quantum circuits, specifying gate behavior using native gates, placing these gates appropriately on the device, and scheduling the timing of these gates within the constraints of the quantum hardware. Data structures are optimized for writing and compiling these quantum circuits to allow users to get the most out of NISQ architectures. Cirq supports running these algorithms locally on a simulator, and is designed to easily integrate with future quantum hardware or larger simulators via the cloud.
We are also announcing the release of OpenFermion-Cirq, an example of a Cirq based application enabling near-term algorithms. OpenFermion is a platform for developing quantum algorithms for chemistry problems, and OpenFermion-Cirq is an open source library which compiles quantum simulation algorithms to Cirq. The new library uses the latest advances in building low depth quantum algorithms for quantum chemistry problems to enable users to go from the details of a chemical problem to highly optimized quantum circuits customized to run on particular hardware. For example, this library can be used to easily build quantum variational algorithms for simulating properties of molecules and complex materials.
Quantum computing will require strong cross-industry and academic collaborations if it is going to realize its full potential. In building Cirq, we worked with early testers to gain feedback and insight into algorithm design for NISQ computers. Below are some examples of Cirq work resulting from these early adopters:
Today, the Google AI Quantum team is using Cirq to create circuits that run on Google’s Bristlecone processor. In the future, we plan to make this processor available in the cloud, and Cirq will be the interface in which users write programs for this processor. In the meantime, we hope Cirq will improve the productivity of NISQ algorithm developers and researchers everywhere. Please check out the GitHub repositories for Cirq and OpenFermion-Cirq — pull requests welcome!
By Alan Ho, Product Lead and Dave Bacon, Software Lead, Google AI Quantum Team
Acknowledgements
We would like to thank Craig Gidney for leading the development of Cirq, Ryan Babbush and Kevin Sung for building OpenFermion-Cirq and a whole host of code contributors to both frameworks.
* An analogous situation is how early classical programmers needed to run complex programs in very small memory spaces by paying careful attention to the lowest level details of the hardware.↩
Over the past few years, quantum computing has experienced a growth not only in the construction of quantum hardware, but also in the development of quantum algorithms. With the availability of Noisy Intermediate Scale Quantum (NISQ) computers (devices with ~50 - 100 qubits and high fidelity quantum gates), the development of algorithms to understand the power of these machines is of increasing importance. However, a common problem when designing a quantum algorithm on a NISQ processor is how to take full advantage of these limited quantum devices—using resources to solve the hardest part of the problem rather than on overheads from poor mappings between the algorithm and hardware. Furthermore some quantum processors have complex geometric constraints and other nuances, and ignoring these will either result in faulty quantum computation, or a computation that is modified and sub-optimal.*
Today at the First International Workshop on Quantum Software and Quantum Machine Learning (QSML), the Google AI Quantum team announced the public alpha of Cirq, an open source framework for NISQ computers. Cirq is focused on near-term questions and helping researchers understand whether NISQ quantum computers are capable of solving computational problems of practical importance. Cirq is licensed under Apache 2, and is free to be modified or embedded in any commercial or open source package.
Once installed, Cirq enables researchers to write quantum algorithms for specific quantum processors. Cirq gives users fine tuned control over quantum circuits, specifying gate behavior using native gates, placing these gates appropriately on the device, and scheduling the timing of these gates within the constraints of the quantum hardware. Data structures are optimized for writing and compiling these quantum circuits to allow users to get the most out of NISQ architectures. Cirq supports running these algorithms locally on a simulator, and is designed to easily integrate with future quantum hardware or larger simulators via the cloud.
We are also announcing the release of OpenFermion-Cirq, an example of a Cirq based application enabling near-term algorithms. OpenFermion is a platform for developing quantum algorithms for chemistry problems, and OpenFermion-Cirq is an open source library which compiles quantum simulation algorithms to Cirq. The new library uses the latest advances in building low depth quantum algorithms for quantum chemistry problems to enable users to go from the details of a chemical problem to highly optimized quantum circuits customized to run on particular hardware. For example, this library can be used to easily build quantum variational algorithms for simulating properties of molecules and complex materials.
Quantum computing will require strong cross-industry and academic collaborations if it is going to realize its full potential. In building Cirq, we worked with early testers to gain feedback and insight into algorithm design for NISQ computers. Below are some examples of Cirq work resulting from these early adopters:
- Zapata Computing: simulation of a quantum autoencoder (example code, video tutorial)
- QC Ware: QAOA implementation and integration into QC Ware’s AQUA platform (example code, video tutorial)
- Quantum Benchmark: integration of True-Q software tools for assessing and extending hardware capabilities (video tutorial)
- Heisenberg Quantum Simulations: simulating the Anderson Model
- Cambridge Quantum Computing: integration of proprietary quantum compiler t|ket> (video tutorial)
- NASA: architecture-aware compiler based on temporal-planning for QAOA (slides) and simulator of quantum computers (slides)
Today, the Google AI Quantum team is using Cirq to create circuits that run on Google’s Bristlecone processor. In the future, we plan to make this processor available in the cloud, and Cirq will be the interface in which users write programs for this processor. In the meantime, we hope Cirq will improve the productivity of NISQ algorithm developers and researchers everywhere. Please check out the GitHub repositories for Cirq and OpenFermion-Cirq — pull requests welcome!
By Alan Ho, Product Lead and Dave Bacon, Software Lead, Google AI Quantum Team
Acknowledgements
We would like to thank Craig Gidney for leading the development of Cirq, Ryan Babbush and Kevin Sung for building OpenFermion-Cirq and a whole host of code contributors to both frameworks.
* An analogous situation is how early classical programmers needed to run complex programs in very small memory spaces by paying careful attention to the lowest level details of the hardware.↩