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Abstract

The complexity of real world image categorization and
scene analysis requires compositional strategies for object
representation. This contribution establishes a composi-
tional hierarchy by first performing a perceptual bottom-up
grouping of edge pixels to generate salient contour curves.
A subsequent recursive top-down grouping yields a hierar-
chy of compositions. All entities in the compositional hier-
archy are incorporated in a Bayesian network that couples
them together by means of a shape model. The probabilistic
model underlying top-down grouping as well as the shape
model is learned automatically from a set of training im-
ages for the given categories. As a consequence, composi-
tionality simplifies the learning of complex category models
by building them from simple, frequently used compositions.
The architecture is evaluated on the highly challenging Cal-
tech 101 database1 which exhibits large intra-category vari-
ations. The proposed compositional approach shows com-
petitive retrieval rates in the range of53 .0 ± 0 .49%.

1. Introduction

Object categorization, which has received increasing at-
tention over the last years, aims at recognizing visual ob-
jects of some general class in scenes. Categorization is
widely considered as a subtask of the long standing, ma-
jor goal of computer vision to automatically detect and rec-
ognize objects in unconstraint scenes. Large intra-category
variations of appearances and instantiations of the same ob-
ject category turn representing and learning category mod-
els into a difficult challenge. Learning algorithms have to
capture common characteristics of a category while simul-
taneously providing invariance with respect to variations or
absence of features.

∗This work was supported in part by the Swiss national fund under
contract no. 200021-107636.

1www.vision.caltech.edu/ImageDatasets/Caltech101/Caltech101.html

Learning Compositional Hierarchies: This contribution
proposes a system that learns to group parts of a scene into
a hierarchy of category-specific compositions, and binds
them together using a probabilistic shape model to cate-
gorize scenes. The parts used for this top-down grouping
are in turn agglomerations of atomic local features that are
grouped using a bottom-up, perceptual organization strat-
egy.

The principle ofcompositionality[10] lays the founda-
tion for the approach presented in this contribution: As ob-
servable in cognition in general and especially in human
vision (see [3]), complex entities are perceived as compo-
sitions of comparably few, simple, and widely usable parts.
Objects are then represented based on their components and
the relations between them. In contrast to modeling the con-
stellation of parts directly (e.g. [8]), the compositionality
approach learns intermediate groupings of parts—possibly
even forming a hierarchy of recursive compositions [18].
As a result compositions bridge the semantic gap between
low level image features and high level scene categoriza-
tions [19, 20] by establishing an intermediate hidden layer
representation. The fundamental concept is then to find a
trade-off between two extremes: On the one hand objects
have high intra-category variations so that learning repre-
sentations for whole objects directly becomes infeasible.
On the other hand local part descriptors fail to capture re-
liable information on the overall object category. There-
fore compositions represent category-distinctive subregions
of an object, which show minor intra-category variations
compared to the whole object and turn learning them into a
feasible problem.

Learning a compositional hierarchy is divided into two
subproblems. Firstly, image parts are grouped in a data-
driven, bottom-up manner. Secondly, these intermediate
compositions are then grouped in a top-down fashion de-
pendent on the specific category models. The underlying
rationale for the two stage approach is that grouping in the
first stage is basically driven by similarity of parts and by
the minimum description length principle. As this approach
is mainly controlled by local observations in an image, it
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has a high tendency to group constituents with similar lo-
cal statistics. Therefore, such a grouping process can enrich
the descriptiveness of the shape of compositions (their spa-
tial structure). However, compositions are likely to have
homogeneous feature distributions which provide no addi-
tional information compared to their parts, since the de-
scriptors of the constituent image regions tend to be fairly
similar. In contrast to this similarity driven structure ex-
traction, a top-down grouping process forms agglomera-
tions of constituents based on their distinctiveness for a cat-
egory. Such groupings constitute characteristic combina-
tions of dissimilar object parts to cover the heterogeneity
of real world objects. The final challenge is then to auto-
matically learn top-down grouping models for great num-
bers of categories without any explicit information about the
compositional structure of objects in the training data. This
problem is tackled by first approximating category depen-
dent co-occurrence statistics on the training data and using
them to form a hierarchy of potential grouping candidates.
Using this compositional hierarchy the grouping model is
then being refined. In other words, we start with simple and
robust category statistics which are then used to guide the
system during its investigation of increasingly complicated
compositions that are in turn utilized to refine the statistics.

In this contribution the first problem of bottom-up group-
ing is addressed byperceptual organization[15]. There-
fore, edge contours are grouped on the basis ofGestalt laws
to yield salient contour curves which are then represented
by localized feature histograms [19]. Top-down grouping
is then conducted by forming compositions that are most
likely, given the previously learned category models. This
process is applied recursively to construct a hierarchy of
compositions.

2. Related Work

Typically, the problem of object categorization has been
addressed by representing a scene with local descriptors
and modeling their configuration in a flexible/adaptive way,
e.g. [9, 13, 8, 6, 1, 19, 2]. A common choice of local im-
age features are template-basedappearance patches(e.g.
[1, 8, 6, 13]) and histogram-based descriptors such asSIFT
features [16]. Geometric blurby Berg et al. [2] and lo-
calized feature histograms[19] fall in the latter category.
Moreover, Serreet al. [22] have proposed features that are
neuro-physiologically motivated.

A simple and robust way to model the configuration of
descriptors arebag of featuresmethods such as [5] that es-
tablish a histogram over all image features. By this feature
extraction step, however, the spatial structure of a scene is
discarded. At the other end of the modeling spectrum are
constellation models, e.g. [24, 8, 6, 12], which code spatial
relations according to the original approach of Fischler and
Elschlager [9]. In contrast to such joint models of all image

parts (which are limited in the number of parts for complex-
ity reasons), [1, 13, 19, 20] aim at utilizing greater numbers
of image constituents. The compositional approach that has
been taken in [20] differs from our method in that it only
learns a single layer of part agglomerations using a spa-
tially fixed grouping strategy. In contrast to this, the present
work proposes a framework that automatically learns to
build hierarchies of compositions for a large number of cat-
egories. Therefore, it also substantially differs from super-
vised methods to model configurations of parts, such as [7].
Another way to construct abstraction hierarchies has been
pursued in [14] using many-to-many correspondences be-
tween blobs. Moreover, bottom-up and top-down groupings
have been applied in [4] to refine figure-ground segmenta-
tion of objects from a single class and in [23] to recognize
text and faces in images. Finally, an approach that is based
on establishing coherent spatial mappings between a probe
image and all training images has been taken in [2].

3. Approach

Subsequently, we give an overview over our approach
by first considering recognition. The involved processing
steps are then covered in detail by later sections. Given a
novel image, Canny edge detection is performed. The re-
sulting edge pixels are grouped using a purely bottom-up,
perceptual grouping strategy that yields nearly closed arcs
or fairly straight curves. Each of these edge curves is then
represented by a bag of features. These features (we use the
localized feature histograms from [19]) are computed for
patches on a regular grid and the bag is then formed by his-
togramming over all patches that lie on the curve. In a sec-
ond stage top-down grouping is performed recursively. This
step yields agglomerations of curves with increased dis-
criminative power compared to their original constituents.
Assume for the moment that groupings which are distinc-
tive for categories have already been learned automatically
from the training data. The objective of top-down grouping
is then to form a hierarchy of compositions by recursively
combining those pairs of constituents whose composition
has highest category posterior. Finally, all the groupings are
coupled together by means of a shape model.

The rationale underlying these two grouping stages is the
following. Bottom-up grouping condenses the information
present in an image by forming few salient curves. The
underlying perceptual criteria of simplicity and homogene-
ity however hardly capture heterogeneous compositions that
are truly category specific. The main objective of this pro-
cessing is therefore to condense relevant information in few
entities which in turn increases computational feasibility.
In contrast to this, top-down grouping is guided by the fa-
miliarity of compositions. Heterogeneous agglomerations
of constituents that are characteristic for categories have a
high saliency according to this principle. The final chal-
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a) b)

c) d)

Figure 1. Perceptual bottop-up grouping. a) Original image. b)
Connected edge curves from Canny edge detection depicted in the
same color. c) Potential high curvature break points. d) Splines
fitted to salient curves and illustration of the corresponding image
regions.

lenge is then to automatically learn and represent models for
top-down grouping in the case of large numbers of object
classes without extensive user supervision. In other words,
how can the system learn which compositions are relevant
for a category without being told about the compositional
structure of objects? We tackle this problem by first estimat-
ing category dependent co-occurrence statistics of bottom-
up grouped curves in training images of given categories.
Using this distribution the curves are then grouped in a re-
cursive manner, thereby giving rise to a hierarchy of com-
positions. This hierarchy is finally used to update the previ-
ously estimated category dependent statistics with probabil-
ities of higher level groupings and to learn the global shape
model. The complexity of the underlying category model is
adjusted on the training data using cross-validation.

3.1. Perceptual Bottom-Up Grouping

The primary objective of bottom-up grouping is to find a
comprehensive image representation based on salient edge
curves that is yet compact. Processing of an image starts

a) b)

c) d)

Figure 2. Perceptual bottop-up grouping. a) Original image. b)
Connected Canny edge curves. c) Potential high curvature break
points. d) Splines fitted to salient curves and visualization of the
underlying image regions.

by performing Canny edge detection and finding connected
edge curves as illustrated in Figure 1 b). This step, how-
ever, yields curves of any degree of complexity. To find
salient edge curves we therefore continue by first breaking
contours into fairly simple parts before grouping them again
in a perceptually controlled manner.

The complexity of a curve grouping is examined with re-
spect to the followingGestalt lawsof perceptual organiza-
tion [15]: good continuation(preferring curves with smooth
continuity),proximity (avoiding large gaps), andconvexity
(short curves circumscribing large areas). The underlying
idea is to look for curves that remain stable and prominent
over different realizations of an object category despite the
large intra-category variations. Roughly speaking we are in-
terested in smooth elongated curves (no convexity, but max-
imal smoothness) or nearly circular arcs (maximal convex-
ity). These two cases constitute the extrema of a criterion
function ζ(γ) for curvesγ. Let A(γ) denote the area cir-
cumscribed by the curve andl(γ) be its length then

ζ(γ) :=
A(γ)

A(circle with perimeterl(γ))
(1)

=4π
A(γ)
l2(γ)

. (2)

For straight lines,ζ is zero and for circles it is one. There-

0-7695-2646-2/06 $20.00 (c) 2006 IEEE



g
m

g
n

a
m

a
n

Figure 3. Measuring the smoothness of a grouping that merges
curvesγm andγn.

fore it is suitable to maximize the criterion function

ζ̃(γ) :=
∣∣ζ(γ)− 1

2

∣∣ . (3)

Breaking contours into simple parts is then carried out
as follows: Curves with almost maximal criterion function
ζ̃ are kept unaltered as they are already nearly straight or
circular. Otherwise they are split at the point of highest
curvature as shown in Figure 1 c). The resulting two seg-
ments are then in turn processed recursively. As the result-
ing curvelets will be merged subsequently, a splitting into
too short segments is not critical.

A cubic B-spline is fitted to each of the curvelets to re-
move small wiggles. The spline curves are then ranked in
a queue according tõζ. For the curveγm with maximal ζ̃
its pairwise groupings with all other curvesγn are evaluated
by fitting a spline to each resulting compositionγg and com-
puting ζ̃(γg). To enforce smoothness of the grouping those
compositions will be removed for which at least one of the
anglesαm andαn between the tangent of a curve and the
connection between the two curves is greater than90◦ as il-
lustrated in Figure 3. To follow the principle of proximity, a
grouping is also discarded if the gap between the two curves
is longer thanmin{l(γm), l(γn)}, the length of the shortest
of the two constituent curves. Finally, compositionsγg are
removed if they do not improve the criterion functionζ̃ in
comparison to their constituents. To summarize, composi-
tion candidatesγg formed fromγm andγn will be discarded
in the following cases

discardγg⇔


min{αm, αn}> 90◦ ∨

gap(γm, γn)> min{l(γm), l(γn)}∨
ζ̃(γg)< min{ζ̃(γm), ζ̃(γn)}

(4)

The groupingγg with maximal ζ̃ is chosen among the re-
maining candidates and it is added to the queue while both
of its constituents are removed. If the set of candidates is
empty, onlyγm will be removed. This curve merging con-
tinues with the currently best curve in the queue until there
is only one left. In the subsequent stages of the architec-
ture, all created groupings and those curves that could not
be merged with another curve are processed further.

3.2. Forming Robust Descriptors for Salient Curves

Each contour that is generated by above bottom-up
grouping has to be represented in such a way that curves

of varying length and number of constituent curves are pos-
sible. Therefore we use a slight variation of bags over local-
ized feature histograms proposed in [19]. On a regular grid
(spacing of 5 pixels) quadratic patches with a side length
of 20 pixels are extracted. Each patch is divided up into
four equally sized subpatches with locations fixed relative
to the patch center. In each of these subwindows marginal
histograms over edge orientation and edge strength are com-
puted (allocating four bins to each of them). Furthermore,
an eight bin color histogram over all subpatches is extracted.
All these histograms are then combined in a common fea-
ture vectorei.

By performing ak-means clustering on all feature vec-
tors detected in the training data ak = 200 dimensional
codebook is obtained. To robustify the representation each
feature is not merely described by its nearest prototype but
by a Gibbs distribution over the codebook: Letdν(ei) de-
note the squared euclidean distance of a measured featureei

to a centroidaν . The local descriptor is then represented by
the following distribution of its cluster assignment random
variableFi,

P (Fi = ν|ei) := Z(ei)−1 exp (−dν(ei)) , (5)

Z(ei) :=
∑

ν

exp (−dν(ei)) . (6)

For each pixel on a curve generated in Section 3.1 the
closest feature patchei is selected. All these patches are
collected and duplicates are removed (see Figure 1 d)) be-
fore forming a bag of features as in [20]. Therefore, a curve
is represented as a mixture over the distributions (5) of its
parts. LetΓj = {e1, . . . , em} denote the grouping of parts
represented by featurese1, . . . , em. The curve is then rep-
resented by the vector valued random variableGj which is
a bag of features, i.e. its valuegj is a distribution over the
k-dimensional codebook from above

gj ∝
m∑

i=1

(
P (Fi = 1|ei), . . . , P (Fi = k|ei)

)T

. (7)

This mixture model has the favorable property of robustness
with respect to variations in the individual parts.

3.3. Unsupervised Learning of Top-Down Grouping

In order to be able to group parts of a novel image in a
top-down manner, the system first has to learn to do so from
the training data. This step is carried out automatically with
just the training images and their corresponding category la-
bel, but without any further supervision. How can the sys-
tem then learn what to group without being instructed about
the compositional nature of objects? The key idea is to esti-
mate co-occurrence statistics of constituents and to produce
groupings based on this information. These groupings are
then used to update the compositional statistics.
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Salient Base Compositions: Processing of a training im-
age starts by selecting a subset of the curves generated
in Section 3.1. Therefore, interest point detection is per-
formed (using the scale invariant Harris interest point de-
tector from [17]) and all those patches extracted in Section
3.2 are marked which cover at least a single interest point
(IP). The idea is then to find the most salient curvesγ using
the score function

ξ(γ) := l(γ) · # patches with IP onγ
# patches onγ

. (8)

From the set of all grouped curves we choose the 7 with
maximal scoreξ(γ). From the remainder, at most 4 curves
with minimal ζ(γ) (curves that are most circular) are se-
lected; all other curves are discarded. To cover regions not
represented by curves,3 seed points are chosen from the
set of all interest points. All patches with interest points
that are not farther than 50 pixels from such a seed point
are combined to yield3 additional groupings. The selected
curves and additional groupings are collected in the setΓC0

and form atomic base compositions for the subsequent top-
down grouping. They are, however, groupings themselves
and each is represented by a bag of featuresgj as described
in Section 3.2.

Approximating Grouping Probabilities Using Initial
Groupings of Base Compositions: For each pair of base
compositionsgi,gj a groupinggij is established. It is
represented by the mixture over its constituent feature his-
tograms from (7). The advantage of such a representation is
that all compositions are encoded in the same feature space,
independently of their level in the compositional hierarchy
and the number of atomic patches they cover. LetL denote
the set of all category labels andc ∈ L be the category la-
bel of the image under consideration. For the initial training
step all the groupingsgij which have been formed in all the
training images are combined. These samples are then used
to learn a first approximation of the category posterior of
groupingsgij

P (C = c|gij) . (9)

This distribution is learned by training probabilistic two-
class kernel classifiers on all the training samples. For
the two-class classification we choosenonlinear kernel dis-
criminant analysis(NKDA)[21] and perform a pairwise
coupling to solve the multi-class problem (see [11, 21]).
The rationale behind our choice is that a joint optimiza-
tion over all classes (one vs. all classifiers) is unnecessarily
hard and computationally much more costly than solving
the simpler pairwise subproblems. The combined proba-
bilistic classifier yields an estimate of the posterior (9) for
the respective image category.

gj

gi

GC{

gij
*

0

Figure 4. Sketch of the compositional hierarchy. The leafs consti-
tute the setΓC0 of base compositions formed by bottom-up group-
ing. As an example the first and last grouping in the hierarchy for
the given image of an elephant are illustrated.

Forming a Compositional Hierarchy: The goal is now
to recursively form top-down groupings guided by the pos-
terior (9) to obtain a hierarchy as illustrated in Figure 4.
Firstly a list ΓC of all grouping candidates is established
by inserting all base compositions fromΓC0 . Moreover, all
base compositionsgi,gj are grouped in a pairwise manner,
yielding compositionsgij . As discussed at the beginning of
Section 3, among allgij the grouping with maximal poste-
rior

g?
ij = argmax

gij :gi,gj∈ΓC

P (c|gij) (10)

is selected and added to the list of candidatesΓC and the
constituents are removed

ΓC ← ΓC ∪ {g?
ij} − {gi,gj} . (11)

Nowg?
ij is grouped in a pairwise manner with all remaining

elements ofΓC . Then recursive grouping continues again
with (10) to find the next best composition until there is only
one element inΓC . In conclusion a hierarchy of groupings
in the form of a binary tree is established as illustrated in
Figure 4. Base compositions constitute the leafs whereas
the last remaining element ofΓC forms the root.

Local Maxima of the Compositional Hierarchy: Sub-
sequently, a subset of all groupings in the hierarchy is to be
selected. For each leaf of the hierarchy (illustrated in Fig-
ure 4) the path to the root is followed and all locally optimal
groupings on this path are collected. A grouping is locally
optimal if its category posterior (9) is greater than that of its
predecessor and successor node which lie on the path to the
root. After removing duplicates this processing yields the
setΓL of all compositions with locally maximal posterior.

Finally, the category posterior in (9) is updated by train-
ing the classifiers with all locally optimal compositions
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Figure 5. Bayesian network that couples
compositionsGj using their locationsXj ,
the location of the object centerX, a bag of
featuresGI , and image categorizationC.
Shaded nodes denote evidence variables.
See text for details.

g ∈ ΓL established for all the training images. This up-
dated posterior guides top-down grouping in the recognition
phase.

3.4. Applying Top-Down Grouping to Recognition

In the recognition phase a novel probe image is pro-
cessed by bottom-up grouping and feature extraction as de-
scribed in Section 3.1 and Section 3.2, respectively. More-
over, salient base compositions are selected as in Section
3.3. Thereafter, the final estimate of the category posterior
(9) is used to form a hierarchy of compositions as in the
previous section. In contrast to training, the correct cate-
gory label of the image needed for eq. (10) is not given,
during recognition. Therefore, (10) is replaced by

g?
ij = argmax

gij :gi,gj∈ΓC

max
c∈L

P (c|gij) (12)

in the recognition phase. Similarly, the set of local maxima
ΓL can only be found when usingmaxc∈L P (c|g) as the
criterion to maximize.

3.5. Shape Model for Composition Binding

Subsequently, all compositionsgj ∈ ΓL of an image that
have been selected as local maxima in the compositional
hierarchy are coupled on the basis of a generalized version
of the shape model in [20]. Moreover, a compositiongI of
all partsei in the image, i.e. a bag of features descriptor for
the whole image, is employed for binding the compositions.
The underlying graphical model is depicted in Figure 5.

To determine the object locationx, the positionsxj of
all previously generated, locally optimal compositionsgj ∈
ΓL are considered for this estimate. The position of the
object center is then estimated by weighing the contribution
of each composition with the probability that it would be
observed

x =
∑

j

xj

∑
c∈L

p(gj |c,gI) P (c|gI) . (13)

The first distribution is estimated using Parzen windows and
the second one using NKDA. For training images, for which
the true category is available, the second sum reduces to the
true categoryc and the distribution over categories degen-
erates to a discrete Dirac distribution.

In the following, the graphical model depicted in Figure
5 is used to couple all compositionsgj , their locationsxj ,
the previously estimated object centerx, and the bag of fea-
tures descriptorgI to infer the image categoryc:

P
(
c
∣∣gI ,x, {gj ,xj}j=1:|ΓL|

)
(14)

=
p

(
{gj ,xj}j |c,gI ,x

)
P (c|gI ,x)

p ({gj ,xj}j |gI ,x)
(15)

= P (c|gI ,x)

×
∏

gj∈ΓL

P
(
c|gI ,x,gj ,xj

)
· p

(
gj ,xj |gI ,x

)
p (gj ,xj |gI ,x) · P (c|gI ,x)

(16)

=
[
P (c|gI)

]1−|ΓL| ∏
gj∈ΓL

P
(
c|Sj = x− xj ,gj ,gI

)
(17)

= exp
[
(1− |ΓL|) lnP (c|gI)

+
∑

gj∈ΓL

lnP
(
c|Sj = x− xj ,gj ,gI

)] (18)

Equation (17) relies on the assumption that categorization
is translation invariant. Moreover, the relative location of a
composition with respect to the object center is represented
by the shiftsj := x − xj . Here, we exploit the fact that
categorization is not depending on the actual position of the
object center but that it only depends on relative shifts. In-
troducing the logarithm in the last step enhances numerical
stability.

The first distribution in (18) has already been estimated
for (13). The latter distribution is again estimated using
NKDA from the training data. In conclusion, novel images
cannot only be assigned a category label, but also a confi-
dence value for this categorization.

4. Experiments

Our categorization model based on perceptual grouping
is evaluated on the challenging Caltech 101 database. The
dataset contains 101 object categories and a background
category, each with approximately 30 to 800 samples. Im-
ages range from line drawings to photos with clutter, but
they show only limited variations in pose. As categories are
having different numbers of samples (the easier ones have
larger numbers of images than the complicated ones), re-
trieval rates that are estimated over all test images tend to
be too optimistic. A common practice is therefore to aver-
age over the retrieval rates computed for each category sep-
arately. Using texton histograms a reasonable baseline per-
formance of 16% has been calculated by Berget al. for this
database in [2] (random classification by chance is below
1%). Moreover, they have proposed an approach based on
shape correspondence that yields a retrieval rate of 48%. In
[20], Ommer and Buhmann have learned a non-hierarchical
compositional model which performs at53.6± 0.88% for a
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single scale approach and57.8±0.79% for multiple scales.
Using a constellation model, Fei-Feiet al. [6] have reported
a performance of 16%. This generative model has been en-
hanced by means of a discriminative classifier [12] and a fu-
sion of multiple interest point detectors to yield a retrieval
rate of 40.1%. Finally, Serreet al. [22] have introduced
neuro-physiologically motivated features that achieve a per-
formance of 42%.

4.1. A Baseline Model without Compositionality

The presented approach establishes a hierarchy of com-
positions between the initial feature representation of a
scene and its final categorization. To estimate the gain of
compositionality, this hidden representational layer is ne-
glected, in the following. Therefore, images are categorized
by combining all the descriptors in the bag of features rep-
resentationgI described in Section 3.5. Evaluation is then
conducted by randomly collecting up to30 training images
per category and taking the remainder as test set. The re-
trieval rate and its error is estimated by performing 5-fold
cross-validation,i.e. the same algorithm is run on splits of
the data into five different training and test sets. For the
k = 200 dimensional codebook introduced in Section 3.2
this base model achieves a retrieval rate of41.3± 0.38%.

4.2. Evaluation of the Learning Approach to Form-
ing Compositional Hierarchies

In the following, the entire compositional approach is
evaluated under 2-fold cross-validation. It yields a com-
petitive retrieval rate of53.0± 0.49% (note that the cur-
rent approach does not use the multi-scale features of [20]).
Figure 6 a) shows the corresponding category confusion
table after a permutation of the category labels which is
described in Section 4.3. The observable gain in perfor-
mance over the baseline model from above emphasizes the
advantage of an intermediate compositional representation
layer in contrast do a direct categorization. A further in-
vestigation of the full model shows that the best perform-
ing categories are “car”, “motorbike”, and “pagoda”, the
worst ones are “panda”, “strawberry”, and “ant”. The most
prominent pairwise confusions are “water-lilly” vs. “lotus”,
“crocodile” vs. “crocodile head”, and “panda” vs. “soccer
ball”. These confusions are between pairs that are either
semantically very close or visually similar.

Finally, Figure 6 b) shows an evaluation of the sparseness
of the image representation induced by the grouped curves.
Therefore, the fraction of all local image features that are
used to describe the grouped curves in an image is measured
over all test images. On average, 7.7% of all local features
are used, yielding a fairly sparse representation.

4.3. Class Hierarchies for Analyzing Categorization

The categorization which has been established in Sec-
tion 4.2 induces a hierarchical structure among the cate-
gories which reveals the degree of relatedness of categories.
Therefore, the category confusion probabilities are used to
measure the mutual similarities between categories in the
database. The final goal is then to establish a hierarchy of
categories.

The probability that a test image of categoryctrue ∈ L is
classified by our architecture as belonging to classcpred∈ L
is given byP (cpred|ctrue). The complete category confusion
table is then represented by the matrix

M ctrue,cpred := P (cpred|ctrue) . (19)

The matrix is symmetrized by adding its transpose

M̃ := ηE−
(
M + MT − 2 diag[M ]

)
. (20)

HereE denotes the matrix of only ones,η is a constant and
diag[M ] is M with its off-diagonal entries set to zero. The
resulting matrixM̃ is used as a distance matrix between
categories for a subsequent hierarchical clustering of cate-
gories. For this step,Ward’s Methodwith its minimum vari-
ance concept is applied. As a result a hierarchical cluster
tree is obtained with categories at the leafs and sets of simi-
lar categories at inner nodes. Dissimilar categories are con-
nected by long paths over inner nodes near the root, whereas
similar ones are connected over shorts paths close to the
leafs. Figure 6 a) shows the hierarchical cluster tree. More-
over the category confusion table is presented after having
permuted both its rows and columns in the same way so that
they fit to the leafs of the adjacent hierarchy tree.

5. Discussion and Further Work

This contribution has combined a perceptual bottom-
up grouping stage with a top-down agglomeration strat-
egy to establish compositional hierarchies as intermediate
scene representations. The latter grouping process, which
is driven by object class models, is learned for a large
number of categories, automatically. The architecture has
been shown to be competitive compared to other current ap-
proaches on challenging test data for image categorization.

Among the many interesting future extensions of this
model the most promising ones are to incorporate multiple
scales (see also [20]) and to increase the representational
power of the shape model to capture local warpings and per-
spective transformations.
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