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Abstract. The two-class clustering problem is formulated as an inte-
ger convex optimisation problem which determines the maximum of the
Earth Movers Distance (EMD) between two classes, constructing a bipar-
tite graph with minimum flow and maximum inter-class EMD between
two sets. Subsequently including the nearest neighbours of the start point
in feature space and calculating the EMD for this labellings quickly con-
verges to a robust optimum. A histogram of grey values with the num-
ber of bins b as the only parameter is used as feature, which makes run
time complexity independent of the number of pixels. After convergence
in O(b) steps, spatial correlations can be taken into account by total
variational smoothing. Testing the algorithm on real world images from
commonly used databases reveals that it is competitive to state-of-the-
art methods, while it deterministically yields hard assignments without
requiring any a priori knowledge of the input data or similarity matrices
to be calculated.

1 Introduction

The mathematical concept of a distance between two probability distributions,
which later became known as the Wasserstein metric, was formulated by L.N.
Vaserstein in 1969 [1]. Twenty years later, the special case of the first Wasser-
stein metric was applied in image processing for the first time, when [2] used
it for their multiple resolution analysis of images. Today, this distance measure,
also called Earth Mover’s Distance (EMD), mainly serves as a similarity measure
for point sets in feature space in a vast number of different applications. In [3],
for instance, the EMD of two colour or texture histograms of different images
is defined as a measure of similarity between those images for content-based
image retrieval. [4] focus on an efficient large scale EMD implementation for
shape recognition and interest point matching, which is also based on a robust
histogram comparison.

Contrary to all known applications of EMD so far, Efficiently Clustering Earth
Mover’s Distance (ECEMD) uses EMD to directly separate the feature space
into two sets/ classes of points by finding the class assignment configuration
for which the EMD between those classes is at maximum. There is no need to
calculate large scale similarity matrices and no further (complex) algorithm for
clustering is required. Using histograms as feature spaces, all pixels of the image
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are taken into account, i.e. subsampling of the image or restrictions of the dis-
tance to take into account only a limited number of neighbours, as for large scale
similarity matrices, are not necessary. Similar to [5], the algorithm can also be
extended to subsequently segment an image into k regions of interest, extracting
one class after the other out of the background set.

Section 2 introduces the mathematical problem formulation as a convex optimi-
sation problem, the related choice of feature space and discusses the theoretical
advantages this definition implicates. Section 3 then covers all implementational
aspects, starting from the algorithm that solves the clustering problem to the
best initialisation that guarantees robust and fast convergence. In Section 4, the
algorithm is applied to selected example images from online databases and the
segmentation results are compared to the ground truth, to a standard segment-
ing approach [6] and a clustering approach that uses similarity measures [5].
Finally, Section 5 summarises the strengths and limits of the method presented
here and gives an outlook of future research to improve the algorithm.

2 Problem Formulation and Related Work

Let n be the number of points xi (i ∈ {1, ..., n}) in feature space and denote the
class labels ci = −1 or ci = +1 for back- and foreground assignment, respectively.
Given a weight wi for each xi, assumed to be a pile of earth of height wi at point
xi, it is denoted by wFi if xi is in the foreground F and wBi if xi is in the
background. The optimal class assignments to F and B are chosen such that
the EMD between these classes is maximal. The EMD itself can be understood
as finding the minimum work required to transport all piles from one class to
the other, respecting that the entire amount of earth has to be moved and that
each xi can only acquire or transport a pile up to its own wi. This leads to the
optimisation problem of (1) and (2). The first constraint assures that the work,
also called flow, fij between each point xi ∈ F and xj ∈ B is unidirectional, the
second and third that the flow from/ to one point xi ∈ F ,B does not exceed the
weight wF,B

i of this point. The fourth forces all weights of one class to be moved.

max
c1,...,cn

{EMD (F ,B)} = max
c1,...,cn
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f
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(2)

The distance dij between the pairs of xi, xj of the opposite classes in the objective
function can be calculated as the Euclidean distance

dij = ||xi − xj ||22 ∀xi : ci = 1, ∀xj : cj = −1. (3)
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As can be read off the indices of the sums, m points have been assumed to belong
to the foreground class and n−m points to be background for 1 ≤ m < n, m to
be determined by the class assignments.

The problem defined in (1) and (2) aims at constructing a bipartite graph with
minimal flow between the nodes of the fore- and background set, such that the
fore- and background set have maximum distance. It belongs to the category
of EXPTIME problems as the global optimum can be determined by 2n times
solving the linear minimisation problem for all possible permutations of class
assignments of the weighted points in feature space to the fore- and background.

The idea is similar to maximum margin clustering, which can be formulated as
the convex integer optimisation problem introduced in [7]. Yet, while the latter
is often relaxed to a semi-definite program for applications or uses random class
assignments as [8], the algorithm presented here does not require a relaxation to
soft cluster assignments and deterministically converges to a robust optimum.

Contrary to k-means or spectral clustering approaches, all linked by a general
optimisation problem by [9], which minimise the intra-class variance, the ap-
proach presented here focuses on maximising the inter -class variance.

Since histograms of intensity values have often been used successfully in combi-
nation with the EMD, these are also adapted here to show how the algorithm
works in principle. To do so, the grey values of the image (without loss of gener-
ality assumed to be in the interval [0, 1]) are divided into n (equally distributed)
bins, whose center coordinates are given by xi, i = 1, ..., n. Then, the weights wFi
and wBj are determined as the normalised number of entries in the bins of the
foreground set and the background set. It is important to note that the weights
are normalised with respect to the total number of pixels in the histogram and
not with respect to the number of pixels in the fore- or background class, as
usually applied for calculating the EMD as a similarity feature. The overall nor-
malisation used here takes account for the weight of each xi in the context of the
image and not in the context of the cluster it is currently assigned to. Specifying
the objects of interest further, data-adapted features of a different kind are also
applicable.

Having determined an optimal cluster configuration that mainly relies on prox-
imity of vectors in feature space, continuous graph cuts as described in [10] can
be applied to the resulting segmented image in order to account for spatial corre-
lations in image space as well. This yields a denoised final segmentation, so that
the boundaries between fore- and background are minimised by assembling con-
tiguous regions, depending on the weight parameter λ that controls the degree
of smoothing. Then,

inf
c̃∈[0,1]n

{
〈(c1, ..., cn)T

, c̃〉+ λ · TV(c̃)
}

(4)

yields the final integer class labelling vector c̃ (c̃i = 0 for background and c̃i = 1
for foreground) of all feature vectors xi.
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3 Implementation

The implementational difficulty lies in solving the maximum problem in (1),
i.e. finding the class assignments, which is an NP-hard combinatorial problem,
while calculating the EMD for a given class labelling is solving a linear program.
Without a priori information about the object of interest, the algorithm can
start with assigning a single arbitrary feature vector to the foreground, dividing
the set of feature vectors into F consisting of only one point and B containing
n− 1 points. For these class assignments the EMD is calculated. After that, the
nearest neighbours of the feature vector in F that are stored in a previously
calculated array are subsequently added to F until the EMD of the new cluster
configuration becomes smaller than the previous one or all vectors are assigned
to be in F . This procedure can be summarised in Algorithm 1.

Algorithm 1 Algorithmic implementation of ECEMD
1 program (out: F ,B) = ECEMD (in: x1, ..., xn)
2 F ← {x1}; initialise one vector in F
3 B ← {x2, ..., xn}; rest of vectors in B
4 kNN(x1)← [1NN(x1), 2NN(x1), ..., (n− 1)NN(x1)]; calculate neighbours
5 EMDlast ← 0; initialise EMD-variable
6 EMDnext ← EMD(F ,B); calculate first EMD
7 k ← 1; initialise loop to include nearest neighbours in F
8 while (B NOT {}) OR (EMDnext < EMDlast) do
9 F ← F ∪ {kNN(x1)}; append next nearest neighbour to F

10 B ← B/ {kNN(x1)}; truncate this nearest neighbour from B
11 EMDlast ← EMDnext; store last EMD solution
12 EMDnext ← EMD(F ,B); calculate next EMD solution
13 k ← k + 1;
14 end while
15 return F ,B;

To assure fast and robust convergence in the histogram feature space considered
here, the first foreground vector is best defined to be the bin with the smallest or
the largest bin coordinate. For the one-dimensional case, using the first or last
bin is the best choice, since this results in the desired intensity value separation
with convergence after including those of the bins to the foreground that lead
to an almost equally weighted cluster distribution. In the (multi-dimensional)
general case, however, the initialisation can be either done by the user or by a
more problem-adapted initialisation, making the approach semi-supervised.

Using this k-nearest-neighbour approach takes into account the similarities in
feature space but only requires O(n) distance calculations and amount of mem-
ory contrary to algorithms applying pairwise similarity matrices.

Extending the idea of EMD-clustering to the multi-class case, iteratively ex-
tracting classes out of the feature space again yields hard cluster assignments.
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Since the total variational smoothing is also able to handle several classes, the
clustering result can still be plugged into (4) for spatial correlation.

4 Experimental Results

For the sake of brevity, the advantages and limits of the algorithm can only be
highlighted by a few examples and comparisons. Tuning of the method itself to
be optimally adapted to a specific application is left to further work.

Bin number. First, the effect of varying the number of histogram bins is inves-
tigated. In order to do so, the algorithm is applied to the image of size 64 × 64
shown in Fig. 1 (left) to divide its contents into two classes while the number of
bins is varied from 4 to 32.

Fig. 1. Left: image Right: Dependence of the segmentation results of this image on the
number of bins in feature space: red markers: correctly assigned percentage of pixels to
the foreground, blue markers correctly assigned percentage of pixels to the background

Comparing the segmentation results with the ground truth, it can be observed
that the number of correctly assigned fore- and background pixels is over 93%
and varies only in the range of 1% with increasing number of bins. Counting the
number of bins that are assigned to be fore- and background, it is interesting to
note that the algorithm converges to almost equal numbers of fore- and back-
ground bins.

Total variational smoothing. Using the same image for a fixed number of
bins (16 in this case), total variational smoothing is applied after convergence
and the dependence of the number of correctly assigned pixels to the smoothing
parameter λ is investigated as summarised in Fig. 2, where λ is varied from 0 to
10. The graphs for the correctly assigned percentage of pixels show an increase
in coincidence with the ground truth up to λ = 5, then the percentage decreases.
This tendency can be explained by oversmoothing, observing the segmentations
shown in Fig. 3
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Fig. 2. Left: image Right: Dependence of the segmentation results of this image on
the weight parameter λ of subsequent total variational smoothing: red markers: cor-
rectly assigned percentage of pixels to the foreground, blue markers correctly assigned
percentage of pixels to the background

Fig. 3. From left to right: segmentation without total variational smoothing, with
λ = 0.5 (visually closest to ground truth), with λ = 5 and with λ = 10

Fig. 4. Left: image Right: Dependence of the globally optimal segmentation results
of this image on the number of bins in feature space: red markers: correctly assigned
percentage of pixels to the foreground, blue markers correctly assigned percentage of
pixels to the background

Combinatorial solution. Taking into account that the algorithm follows a
greedy strategy, the local optimum of the result should be compared to the global
optimum of the model defined by (1) and (2). By means of this, it is possible to
evaluate the segmentation strength of the model in order to determine, whether
the ansatz is appropriate in the first place. Furthermore, comparing the result
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obtained by the greedy algorithm to the global optimum, the approximation gap
to the NP-hard problem can be computed. Hence, for a small number of bins,
a comparison of the globally optimal solution to the ground truth is performed.
The number of bins is limited due to the exponential run time complexity of
finding the combinatorial optimum of (1) under the constraints of (2).
As can be observed from the right hand side of Fig. 4, the results lie in the
same range as the results obtained by the greedy algorithm. Quantifying the
gap between the global optimum and the local one found by the algorithm,
the deviations are less than 1.5%, where the correct foreground assignments are
higher in the case of the greedy algorithm. On the average, the greedy and com-
binatorial algorithm assign 94.4% of all pixels correctly in the range of 4 to 16
bins. From this can be concluded that the model as well as the algorithm are
reasonably chosen in the sense that they yield segmentations close to the ground
truth.

Comparision to competitive algorithms. For the comparison of the Effi-
ciently Clustering EMD to the ground truth and competitive approaches by
means of example images from online databases shown below, the number of
bins is set to 16 and λ = 0.5. The comparisons are made for the images shown
in Tab. 1, calculating the relative confusion matrices

C =
(

true FG false FG
false BG true BG

)
. (5)

In the implementation of [5] the images were subsampled in order to handle the
large amount of data in the similarity matrices, so that only up to 5% of the
image pixels determined the segmentation and a simple Gaussian distance of the
RGB colour vectors was chosen as similarity measure between those points.

As the results show, the Efficiently Clustering EMD yields better recognition
rates than the standard approaches in those cases where the simple intensity
value histogram features are appropriate to separate fore- from background.
Furthermore, total variational smoothing does only lead to improvements in
recognition of about 1%, as already found out in Fig. 2 (right).
In the special case of the tiger (fourth image of Tab. 1), the gain in recognition
applying total variational smoothing is much higher, as ECEMD assigns the or-
ange pixels of the tiger to foreground and the dark stripes to background, so that
spatial correlation completes the striped coat to one contiguous region. Visually
comparing the outcome of ECEMD with total variation to the competitive seg-
mentations, as shown in Fig. 5, the former comes closest to the ground truth
(left), detailed confusion matrices of each algorithm can be found in Tab. 1.
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Table 1. Example images and comparison results to ground truth in form of relative
confusion matrices for own approaches and competitive methods, images can be found
in Appendix A

Image datails own own + TV [5] [6]

holes
100× 100
own creation

„
0.99 0.16
0.01 0.84

« „
1.00 0.05
0.00 0.95

« „
1.00 0.31
0.00 0.69

« „
0.94 0.03
0.06 0.97

«
horse part
256× 256
Weizmann DB

„
0.96 0.07
0.04 0.93

« „
0.96 0.07
0.04 0.93

« „
0.97 0.33
0.03 0.67

« „
0.85 0.20
0.15 0.80

«
horse
717× 525
Weizmann DB

„
0.99 0.24
0.01 0.76

« „
0.99 0.24
0.01 0.76

« „
0.99 0.53
0.01 0.47

« „
0.64 0.53
0.36 0.47

«
tiger
481× 321
Berkeley Segm. DB

„
0.63 0.03
0.37 0.97

« „
0.85 0.05
0.15 0.95

« „
0.82 0.33
0.18 0.67

« „
0.74 0.43
0.26 0.57

«
llama
513× 371
GrabCut DB

„
0.14 0.02
0.86 0.98

« „
0.27 0.03
0.73 0.97

« „
0.77 0.52
0.23 0.48

« „
0.93 0.45
0.07 0.55

«
man
321× 481
Berkeley Segm. DB

„
0.77 0.00
0.23 1.00

« „
0.77 0.00
0.23 1.00

« „
0.56 0.00
0.44 1.00

« „
0.60 0.08
0.40 0.92

«
horses
481× 321
Berkeley Segm. DB

„
0.88 0.24
0.12 0.76

« „
0.89 0.24
0.11 0.76

« „
0.99 0.37
0.01 0.63

« „
0.72 0.68
0.27 0.32

«
swimmer
481× 321
Berkeley Segm. DB

„
0.82 0.30
0.18 0.70

« „
0.82 0.30
0.28 0.70

« „
0.82 0.29
0.18 0.71

« „
0.64 0.59
0.35 0.41

«
birds
481× 321
Berkeley Segm. DB

„
0.95 0.43
0.05 0.57

« „
0.96 0.43
0.04 0.57

« „
0.92 0.35
0.08 0.65

« „
0.18 0.76
0.82 0.24

«
astronauts
481× 321
Berkeley Segm. DB

„
0.85 0.07
0.15 0.93

« „
0.86 0.07
0.14 0.93

« „
0.90 0.48
0.10 0.52

« „
0.88 0.01
0.12 0.99

«
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Fig. 5. From left to right: ground truth, ECEMD with total variational smoothing,
segmentation by [5], segmentation by [6]

Multi-class segmentation. Multi-class segmentation can be implemented sim-
ilar to [5] by iterative application of the algorithm. At first, one foreground class
is extracted, then, the next class is segmented out of the remaining background
points until the number of predefined classes is reached. This algorithm leads
to results shown in Fig. 6. Comparing the original image with the segmentation
results, good coincidence can be observed, noting that the binning only depends
on intensity values. As especially the third and fourth image show, however,
total variational denoising or texture based features could further improve the
results.

Fig. 6. Top: original images Bottom: multi-class segmentation with three classes

Run time measurements. As the algorithm is implemented in MATLAB, the
MATLAB profiler can be used to determine the run time of the algorithm in a
last experiment. Scaling the size of the horse head image from its original size of
256× 256 pixels over 128× 128, 64× 64 and 32× 32 down to 16× 16 pixels and
measuring the overall run time of the algorithm (without variational smoothing
but with image loading and histogram creation), it is observed that the total
amount of actual CPU time used for calculations is always less than 2 seconds
and independent of the number of pixels on a MacBook Pro Model 3.1 (2.4 GHz
Intel Core 2 Duo, 4GB DDR2RAM). This result could have been expected be-
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forehand, since the algorithm operates only on the histogram with fixed number
of bins and already sorted bin coordinates.

The run time measurements in Fig. 7 on the left show the dependence on the
number of pixels of five different images processed by [5] compared to ECEMD
for the same images. It can be observed that ECEMD (without total variational
smoothing) is weakly dependent on the number of pixels, which originates from
the dependence of the histogram creation on the number of pixels. ECEMD,
processing all pixels, is faster than [5], taking into account that [5] only uses 5%
of all pixels for clustering and furthermore requires the calculation of a similarity
matrix of complexity O(n2), which takes 1200 seconds for 500 pixels and is not
included in the time measurements. But, even without the calculation of the
similarity matrix, [5] is slower for more than 3000 pixels.
Compared to [6], which has a linear time complexity dependent on the number
of pixels as shown in the right graph of Fig. 7, ECEMD including histogram
creation is faster than [6]. For small images, the run time is comparable, while
for increasing number of pixels, ECEMD is at least six times faster yielding
comparable segmentation results.

Fig. 7. Left: Run time comparison of ECEMD and [5] without creation of similarity
matrices Right: Run time comparison of ECEMD and [6]

5 Summary and Outlook

In summary, the ECEMD is formulated as an unsupervised convex integer pro-
gram that applies the Earth Mover’s Distance to directly separate fore- and
background, inspired by the principles of maximum margin clustering. The im-
plementation starts at one foreground point in feature space and calculates a
short series of linear programs that subsequently include the nearest neighbours
of the starting point into the foreground set until it deterministically converges
to an integer optimum that lies close to ground truth. If the chosen feature space
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was not distinctive enough to separate the classes correctly, spatial correlation
among the pixels can be taken into account afterwards, applying total variational
smoothing to enhance the result. As was shown in Section 4, the latter can only
improve the image by a significant amount in those cases when the feature space
is inappropriate to segment the data. But recognition rates that surpass those
of [5] and [6] and approximate the ground truth with more than 90% correctly
assigned pixels in cases where the feature space is suitably chosen, there is no
space for more than fine tuning.

Advantages of ECEMD certainly lie in the facts that the bin number of the
histogram is the only parameter to be put in, that no subsampling of the image
and no previous training step is required to process the data. Compared to other
approaches that use the EMD, the hard cluster assignments of ECEMD are fur-
thermore advantageous, as well as the short run time of the ECEMD which is
independent of the number of input pixels in its current implementation that
uses an intensity value histogram as feature space (see Section 3).

Yet, exact benchmark tests, for example the Berkeley Benchmark, still remain
to be evaluated for the algorithm in order to prove its qualitatively high segmen-
tation power on a large amount of various images. From the results of this test
could additionally be concluded whether the simple intensity feature suffices for
all kind of object categories or in how far category adapted features (e.g. texture,
edges, colour) can improve these results. A benchmark test also offers the op-
portunity to find a common platform to compare ECEMD to other approaches
like k-means or maximum margin clustering to investigate in which cases the
maximisation of inter-class-variance of ECEMD excels over these ansatzes.

In the future, improvements to the algorithm itself can be made in form of user
interaction defining the starting point of the algorithm as one image pixel, patch
or region that is contained in the object of interest. To achieve this, the algorithm
could be included in a user-in-painting framework as developed for GrabCut [11]
or Ilastik [12].

As far as parallelisation is concerned, it is possible to use the experimental obser-
vation that ECEMD usually converges to clusters with equal numbers of bins,
so that the EMD calculation of the different cluster partitions could be run
in parallel and after termination, the results are compared to find the optimal
assignments.
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A Images

Table 2. Images used for experimental evaluation

holes horse part horse tiger llama

man birds horses swimmer astronauts


