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Abstract. The complexity of visual representations is substantially lim-
ited by the compositional nature of our visual world which, therefore,
renders learning structured object models feasible. During recognition,
such structured models might however be disadvantageous, especially un-
der the high computational demands of video. This contribution presents
a compositional approach to video analysis that demonstrates the value
of compositionality for both, learning of structured object models and
recognition in near real-time. We unite category-level, multi-class object
recognition, segmentation, and tracking in the same probabilistic graphi-
cal model. A model selection strategy is pursued to facilitate recognition
and tracking of multiple objects that appear simultaneously in a video.
Object models are learned from videos with heavy clutter and camera
motion where only an overall category label for a training video is pro-
vided, but no hand-segmentation or localization of objects is required.
For evaluation purposes a video categorization database is assembled and
experiments convincingly demonstrate the suitability of the approach.

1 The Rational for Compositionality

Combined tracking, segmentation, and recognition of objects in videos is one of
the long standing challenges of computer vision. When approaching real world
scenarios with large intra-category variations, with weak supervision during
training, and with real-time constraints during prediction, this problem becomes
particularly difficult. By establishing a compositional representation, the com-
plexity of object models can be reduced significantly and learning such models
from limited training data becomes feasible. However, a structured represen-
tation might entail disadvantages during recognition, especially given the high
computational demands of video. We present a compositional approach to video
analysis that performs near real-time and demonstrates how the key concept of
compositionality can actually be exploited for both, rendering learning tractable
and making recognition computationally feasible.

Our compositional video analysis system unites category-level, multi-class ob-
ject recognition, segmentation, and tracking in the same probabilistic graphical
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model. Moreover, this Bayesian network combines compositions together with
object shape. Learning object models requires only a category label for the
most prominent object in a complete video sequence, thereby even tolerating
distracting clutter and other objects in the background. Category specific com-
positions of local features are automatically learned so that irrelevant image
regions can be identified and discarded without supervision. As a result tedious
hand-segmentations, object localizations, or initializations of a tracker become
superfluous. Since there has been only very little work on category-level segmen-
tation and recognition in video we have started assembling a video categorization
database for evaluation purposes that consists of four object categories (bicy-
cle, car, pedestrian, and streetcar). Videos have been recorded in their natural
outdoor environment and show significant scale variation, large intra-category
variability, camera panning, and background clutter.

Compositionality (e.g. [11]), which serves as a foundation for this contribution,
is a general principle in cognition and can be especially observed in human vision
[3]. Perception exhibits a strong tendency to represent complex entities by means
of comparably few, simple, and widely usable parts together with relations be-
tween them. Rather than modeling an object directly based on a constellation of
its parts (e.g. [9]), the compositional approach learns intermediate groupings of
parts. As a consequence, compositions bridge the semantic gap between low level
features and high level object recognition by modeling category-distinctive sub-
regions of an object, which show small intra-category variations compared to the
whole object. The robustness of compositions to image changes can be exploited
for tracking and grouping them over consecutive video frames. This temporal
grouping of compositions improves the compositional image representation and
enhances object segmentation and recognition. To be able to simultaneously
recognize multiple objects in a video, we have incorporated a model selection
strategy that automatically estimates the correct model complexity based on a
stability analysis.

2 Related Work

Category-level recognition, segmentation, and tracking of objects in videos is
related to a number of subtasks. First, motion information can be exploited
by selecting relevant features for tracking (e.g. [22]) and establishing correspon-
dences between frames, e.g. using the method of Lucas and Kanade [15]. Second,
most methods for recognition describe objects based on local descriptors such as
SIFT features [14] or flow histograms [7], and template-based appearance patches
(e.g. [1,13]). Combining local features in an object model can then proceed along
several lines. A simple approach is to compute descriptors on a regular grid and
concatenate all cells to obtain a joint model [7]. More complex representations of
the spatial object structure are constellation models [9], hough voting strategies
[13], many-to-many feature correspondences [8], image parsing graphs [24], and
compositional models [18]. Viola and Jones have proposed a real-time recog-
nition system for faces that is based on a cascade of classifiers [25]. Another
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Fig. 1. Sketch of the processing pipeline for tracking, segmentation, and category-level
object recognition in video

object class that many vision systems have been specifically developed for are
pedestrians, e.g. [26,10]. Tracking algorithms have been studied for instance in
[4] as well as [23], where the latter also presents a query-by-example approach to
recognition that searches for regions which are similar to a user selected one. In
contrast to tracking of a user specified region [5,2], Goldberger and Greenspann
[12] propose a method for using segmentations of previous video frames to obtain
a segmentation for the next.

3 Compositional Approach to Video Analysis

The following gives an overview of our compositional approach to video analysis
(illustrated in Figure 1) before presenting the details in later sections. A novel
video is analyzed sequentially in a frame-by-frame manner, while the underly-
ing statistical model is propagating information over consecutive frames. Once a
new frame is available, optical flow is estimated at interest points. These points
and their motion pattern constitute the atomic parts of the composition sys-
tem. Since interest points and their optical flow cannot be computed reliably,
tracking individual points through a whole image sequence becomes error-prone.
Therefore, we establish compositions of parts which are represented by proba-
bility distributions over their constituent parts. As a result, compositions are
invariant with respect to individual missing parts and can be tracked reliably
through a video by considering the optical flow distribution of all their con-
stituents. The correspondence of compositions in consecutive frames is used to
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a) b) c)

Fig. 2. a) Detected interest points. b) Estimated optical flow at interest points. c)
Locations xt

j of established compositions h̃t
j . Brightness encodes the index of the closest

codebook vector. See text for details.

group a composition over time. Subsequently, multiple segmentations are estab-
lished. Therefore, compositions are clustered into different numbers of segments.
To find an appropriate segmentation we incorporate a model selection strategy
that analyzes the stability of the proposed segmentations over the preceding
frames. The model with highest stability is then selected and combined with
models from previous video frames to segment the current frame. Recognition of
objects in the individual segments is then based on an extension of the compo-
sitional shape model from [18] which couples all compositions belonging to the
same segment in a Bayesian network. The object category label is then obtained
using probabilistic inference based on this model. In conclusion, tracking ob-
ject constituents, segmenting objects from another, and recognizing the object
category are all captured by the same statistical model, namely the graphical
model illustrated in Figure 4. In this model, object representations of consecutive
frames are linked together by a Markov backbone that connects segmentations of
subsequent frames. Learning the underlying structured object model for a cate-
gory proceeds in an unsupervised manner without requiring hand-segmentations
or localization of objects in training videos.

3.1 Atomic Compositional Constituents

Based on the method of Shi and Tomasi [22] interest points are detected in every
video frame, see Figure 2 a). Interest points from a preceding frame are then
tracked into the next one using the Lucas-Kanade tracking algorithm [15]. This
registration of points in consecutive frames yields an estimate of the optical flow
dt

i at interest point i in frame t, i.e. the displacement vector, see Figure 2 b).
The interest points constitute the atomic parts of the composition system.

Codebook-Based Representation of Atomic Parts: Compositions can have
different numbers of constituents and are, therefore, represented by a distribution
over a codebook of atomic parts. Let et

i denote a feature vector that represents
an atomic part i in frame t. The codebook that is used for representing compo-
sitions is then obtained by performing k -means clustering on all feature vectors
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et
i from the training data. This vector quantization yields a common codebook

of atomic parts for all object categories. To robustify the representation, each
feature is described by a Gibbs distribution [27] over the codebook rather than
by its nearest prototype: Let dν(et

i) denote the squared euclidean distance of a
measured feature et

i to a centroid aν . The local descriptor is then represented
by the following distribution of its cluster assignment random variable Fi,

P (Fi = ν|et
i) := Z(et

i)
−1 exp

(−dν(et
i)

)
,

Z(et
i) :=

∑
ν

exp
(−dν(et

i)
)
. (1)

Local Descriptors: We use two different kinds of local features to represent
local parts. The first type simply represents the optical flow at an interest point,
whereas the second is based on localized feature histograms [17] of a small sur-
rounding region. As optical flow has to be estimated for tracking in any case,
this representation has the advantage that no extra feature detector needs to
be computed at each interest point and, therefore, saves computation time. For
each interest point i in frame t we use its optical flow dt

i, giving a 2-dimensional
feature vector et

i = dt
i.

The second local descriptor is formed by extracting quadratic image patches
with a side length of 20 pixels at interest points. Each patch is divided up into
four equally sized subpatches with locations fixed relative to the patch center.
In each of these subwindows marginal histograms over edge orientation and edge
strength are computed (allocating four bins to each of them). Furthermore, an
eight bin color histogram over all subpatches is extracted. All these histograms
are then combined in a common feature vector et

i.
A separate codebook is established for both types of features (optical flow

features are quantized with a 10 dimensional codebook, the localized feature
histograms are represented by a 60 dimensional codebook). Tracking of compo-
sitions and object segmentation is then based on the optical flow alone. Only the
final inference of the object category based on the compositions in a foreground
segment uses the complex, second descriptor type.

3.2 Compositions of Parts

In the initial frame of a video (t = 0), a random subset of all detected interest
points is selected. Each of these points is then grouped with the atomic parts in
its local neighborhood (radius of 25 pixel) yielding compositions of atomic parts. A
composition in frame t is then represented by a mixture distribution (with uniform
mixture weights) over the densities (1) of its constituent parts (cf. [18]). Let Γ t

j =
{et

1, . . . , e
t
m} denote the grouping of parts represented by features et

1, . . . , e
t
m. The

multivariate random variable Gt
j does then represent the composition consisting

of these parts. A realization gt
j ∈ [0, 1]k of this random variable is a multivariate

distribution over the k-dimensional codebook of atomic parts

gt
j ∝

m∑
i=1

(
P (Fi = 1|et

i), . . . , P (Fi = k|et
i)

)T

. (2)
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a) b) c)

Fig. 3. Using compositions to obtain reliable segmentations despite strong camera pan-
ning. a) Estimated optical flow at interest points. b) Compositions h̃t

j . c) Segmentation.

Finally, each of the k dimensions is independently standardized to zero mean
and unit variance across the whole training set, giving z-scores. This mixture
model has the favorable property of robustness with respect to variations in
the individual parts. As we are having two types of features et

i we obtain two
representations of a composition j: gt

j is the representation based on localized
feature histograms, whereas g̃t

j builds on optical flow.
Compositions are tracked throughout a video based on the average flow es-

timated at their constituent parts. Given the position xt
j of a composition in

frame t and the optical flow vectors of its parts dt
i, its predicted position in the

next frame is

xt+1
j = xt

j +
1
m

m∑
i=1

dt
i. (3)

In the next frame t + 1 the assignment of parts to compositions is updated
since new interest points are computed. Therefore, all parts et+1

i in the local
neighborhood of a composition gt+1

j are assigned to this composition.

3.3 Temporal Grouping of Compositions

Whereas the preceding grouping was a spatial one (based on proximity) the
following will present a grouping of compositions over time. By grouping com-
positions over consecutive frames, compositions of compositions can be formed
that are more robust with respect to measurement errors in individual frames
such as incorrect flow estimates. A temporal grouping of the j-th composition
over consecutive frames yields the higher-order composition ht

j which is repre-
sented by the distribution

ht
j ∝

{
ηgt

j + (1 − η)ht−1
j , if t > 1 ,

gt
j , else .

(4)
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Fig. 4. Graphical model that unites category-level object recognition, segmentation,
and tracking in the same statistical framework. Shaded notes denote evidence. The
graph shows the dependencies between the three processes for frame t as well as the
connection with the preceding frame. The involved random variables are the following:
compositions represented with localized feature histograms, Gt

j , and with optical flow,
G̃t

j . Temporal groupings of compositions: Ht
j and H̃t

j . Location of j-th composition: Xt
j .

Assignment of compositions to segments: Qt
j . Combining multiple segmentations over

consecutive frames: Q̂t
j . Segment priors: γt,ν . Segment prototypes: θt,ν . Classification

of object in segment ν: Ct,ν . Localization of the object: Xt,ν .

The flow representation of compositions is computed according to the same re-
cursion formula, i.e. h̃t

j ∝ ηg̃t
j + (1 − η)h̃t−1

j , and the mixture weight is chosen
to be η = 1/2. The corresponding transition probability of the graphical model
in Figure 4 is defined as

p(ht
j |gt

j ,h
t−1
j ) := 1{ht

j∝Eq.(4)} ∈ {0, 1}. (5)

In Figure 2 c) the centers xt
j of compositions h̃t

j are displayed. As described in
Section 3.2, each composition is represented by a probability distribution over a
codebook of atomic parts. The brightness of the circle at xt

j encodes the index
of the codebook vector that has received most probability mass. In Figure 3,
strong camera panning results in unreliable optical flow estimates at interest
points. Compositions, however, can compensate for this difficulty and establish
the foundation for an accurate segmentation. In conclusion, the visualizations
show that compositions are actually valuable for a subsequent segmentation of
objects.
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a) b) c)

d) e) f)

Fig. 5. Multiple segmentation hypotheses established for two frames. a) and d) show
a 2 cluster solution. b) and e) 3 clusters. c) and f) 4 clusters. The segmentation with 3
clusters features the highest stability over the two frames and is, therefore, chosen by
model selection.

3.4 Obtaining Multiple Segmentation Hypotheses

Subsequently, several initial hypotheses for the locations and shapes of objects
that are present in a video frame are to be derived from the compositions. Since
there is no prior information regarding the number of objects that are present
in a scene, we have to address a difficult model selection problem. Therefore,
several segmentations with varying numbers of segments are established. Model
selection is then performed to retrieve the most reliable segmentation. Each seg-
mentation partitions compositions in the optical flow feature space, h̃t

j , into K
segments using histogram clustering (e.g. see [19]): Compositions defined by (4)
are represented as multivariate distributions over the k-dimensional part code-
book, h̃t

j = (h̃t
j,1, . . . , h̃

t
j,k) ∈ [0, 1]k with

∑k
l=1 h̃t

j,l = 1. The aim of clustering
is then to represent h̃t

j by a mixture of K clusters θt,1, . . . ,θt,K ∈ [0, 1]k with∑k
l=1 θt,ν

l = 1 and mixture weights or class priors γt,1, . . . , γt,K ∈ [0, 1],

p
(
h̃t

j

∣∣θt,1, . . . ,θt,K , γt,1, . . . , γt,K
)

=
K∑

ν=1

γt,ν p
(
h̃t

j

∣∣θt,ν
)
. (6)

The individual mixture components are approximated by multinomial dis-
tributions, i.e. for large N ∈ N the distribution of h̃t

j,l · N is multinomial with
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parameter θt,ν . Transforming the definition of the multinomial distribution
yields

p
(
h̃t

j

∣∣∣θt,ν
)

=
N !∏

l�h̃t
j,lN�!

∏
l

(θt,ν
l )h̃

t
j,lN (7)

=
N !∏

l�h̃t
j,lN�!

exp
(∑

l h̃
t
j,l log h̃t

j,l

)
exp

(∑
l h̃

t
j,l log h̃t

j,l

) exp
{∑

l

h̃t
j,l log(θt,ν

l )N
}

(8)

=
N !∏

l�h̃t
j,lN�!

∏
l

(h̃t
j,l)

h̃t
j,l · exp

{
−

∑
l

h̃t
j,l log

h̃t
j,l

(θt,ν
l )N

}
(9)

=
N !∏

l�h̃t
j,lN�!

∏
l

(h̃t
j,l)

h̃t
j,l · exp

{
−DKL

(
h̃t

j‖(θt,ν)N
)}

. (10)

Here DKL(·‖·) denotes the Kullback Leibler distance between compositions and
cluster prototypes while the prefactors are for normalization purposes.

The clusters θt,ν and the assignment Qt
j ∈ [1 : K] of compositions to clusters,

i.e. P (Qt
j = ν) := Prob{j-th composition assigned to cluster ν}, are computed

by iterating an expectation-maximization algorithm [16]. In the expectation-step,
assignment probabilities of compositions to segments are computed conditioned
on the current estimate of clusters,

P
(
Qt

j = ν
)

:=
γt,ν p

(
h̃t

j

∣∣θt,ν
)∑

ν γt,ν p
(
h̃t

j

∣∣θt,ν
) . (11)

In the maximization-step, class priors γt,ν and cluster prototypes θt,ν are up-
dated conditioned on the assignment probabilities

γt,ν :=

∑
j P (Qt

j = ν)∑
j,ν′ P (Qt

j = ν′)
, θt,ν

l :=

∑
j P (Qt

j = ν) h̃t
j,l∑

j P (Qt
j = ν)

. (12)

After convergence of the EM-algorithm, the cluster assignment probabilities
P (Qt

j = ν) of compositions represent the segmentation of a video frame into
K segments. Since background is surrounding objects, the segment that covers
most of the frame border is labeled as background, ν = BG. Figure 5 shows
segmentations with 2, 3, and 4 segments for two video frames. Interest points
in the different segments are displayed in distinct color (black is used for the
background segment).

3.5 Model Selection to Identify Reliable Segmentation Hypotheses

As there is no prior information regarding the number of objects that are present
in a scene we pursue a model selection strategy to estimate the number of object
segments. Therefore, segmentations Qt

j(K) for different numbers K of segments
are established in each frame (currently we use K = 2, . . . , 5). Bipartite matching
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[6] is performed to make the current segmentation comparable with the one of
the previous frame, i.e. labels are permuted so that they fit best to the preceding
segment labeling. We then combine multiple segmentations of consecutive video
frames into a single, more robust one Q̂t

j(K), with

P
(
Q̂t

j(K) = ν
∣∣Qt

j(K), Q̂t−1
j (K)

)
(13)

∝
{

ηP
(
Qt

j(K) = ν
)
+(1 − η)P

(
Q̂t−1

j (K) = ν
∣∣Qt−1

j (K), Q̂t−2
j (K)

)
, if t > 1 ,

P
(
Qt

j(K) = ν
)
, else .

This dependency between segmentations of consecutive frames constitutes the
Markov backbone that is represented at the bottom of the graphical model in
Figure 4. It propagates segmentation hypotheses from previous frames into the
current one.

An inappropriate model complexity is likely to yield unstable segmentations
that change even when the input data varies only slightly. By observing the
fluctuations of segmentations over multiple frames we can estimate their stability
(cf. [20]) and select the most appropriate model complexity (see Figure 5 for an
illustration). The stability ζt(K) of a K cluster segmentation is measured by the
entropies H of the segment assignments

ζt(K) :=
∑

j

H(
Q̂t

j(K)
)

= −
∑

j

K∑
ν=1

P
(
Q̂t

j(K) = ν
)
log P

(
Q̂t

j(K) = ν
)
. (14)

The optimal number of segments is determined by selecting the K� that minimizes
this stability measure and we use the abbreviation P (q̂t

j):=P
(
Q̂t

j(K
�)= q̂t

j

)
.

The location of the ν-th segment center xt(ν) is estimated as the center of
mass of all compositions assigned to this segment (j ∈ At

ν)

xt,ν :=
1

|At
ν |

∑
j∈At

ν

xt
j , At

ν :=
{
j : ν = argmax

ν′
P

(
Q̂t

j(K) = ν′)}. (15)

3.6 Compositional Shape Model for Object Recognition

In every frame of a novel test video, the objects that are present in the individual
segments have to be recognized. Therefore, all compositions ht

j , j ∈ At
ν that are

assigned to a segment ν are coupled in the graphical model shown in Figure 4.
This statistical model is founded on the compositional shape model from [18].
The category ct,ν ∈ L of the object in segment ν can then be inferred from its
posterior distribution

P
(
ct,ν

∣∣xt,ν , {ht
j,x

t
j , q̂

t
j}j

)
=

p
({ht

j ,x
t
j , q̂

t
j}j∈At

ν
, {ht

j,x
t
j , q̂

t
j}j /∈At

ν

∣∣ct,ν ,xt,ν
)
P (ct,ν |xt,ν)

p
({ht

j ,x
t
j , q̂

t
j}j|xt,ν

) (16)
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by applying Bayes’ formula. Now the denominator can be skipped because it
is independent of ct,ν . Furthermore, the category of an object should be inde-
pendent of its absolute position in a frame and there should be no bias on any
category, i.e. all classes are a priori equally likely. Therefore, P (ct,ν |xt,ν) can be
discarded as well.

. . . ∝ p
({ht

j ,x
t
j , q̂

t
j}j∈At

ν
, {ht

j,x
t
j , q̂

t
j}j /∈At

ν

∣∣ct,ν ,xt,ν
)
. (17)

Since the category of segment ν determines only compositions that have been
assigned to this segment (i.e. j ∈ At

ν), all other compositions are independent of
ct,ν and can be skipped. Moreover, an assignment to segment ν implies q̂t

j = ν.
Therefore q̂t

j can be dropped as well for j ∈ At
ν and we obtain

. . . ∝ p
({ht

j ,x
t
j}j∈At

ν
|ct,ν ,xt,ν

)
. (18)

Compositions are conditionally independent, conditioned on the object model
parameters ct,ν and xt,ν . Therefore, the likelihood factorizes and we can apply
Bayes’ formula again to obtain

. . . ∝
∏

j∈At
ν

P
(
ct,ν |xt,ν ,ht

j,x
t
j

) · p
(
ht

j ,x
t
j |xt,ν

)
P (ct,ν |xt,ν)

. (19)

The factor p
(
ht

j ,x
t
j |xt,ν

)
does not depend on the object category and can be

omitted. Moreover, the category of an object should be independent of its abso-
lute position in a frame and there should be no bias on any category. Therefore,
P (ct,ν |xt,ν) can again be left out and we obtain

. . . ∝
∏

j∈At
ν

P
(
ct,ν |ht

j , S
t,ν
j = xt,ν − xt

j

)
(20)

= exp
[ ∑

j∈At
ν

lnP
(
ct,ν |ht

j , S
t,ν
j = xt,ν − xt

j

)]
. (21)

Here the relative position of a composition with respect to the object center is
represented by the shift st,ν

j = xt,ν − xt
j . Nonlinear kernel discriminant analysis

(NKDA) [21]) is used to estimate the distribution in (21). Therefore, probabilis-
tic two-class kernel classifiers are trained on compositions extracted form the
training data. These classifiers are coupled in a pairwise manner to solve the
multi-class problem (see [21]). During recognition, an object can be recognized
efficiently by applying the classifier to all compositions ht

j and computing (21).

4 Evaluation

For still-image categorization large benchmark databases are available and the
compositional approach has been shown (see [18]) to yield competitive perfor-
mance compared to state-of-the-art methods in this setting. However, for the
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weakly supervised video analysis task that is pursued in this contribution there
are, to the best of our knowledge, no comparable benchmark datasets available.
Therefore, we have assembled a database for category-level object recognition
in video consisting of 24 videos per category (categories car, bicycle, pedes-
trian, and streetcar). As can be seen from the examples in the figures, videos
feature large intra-category variation (cf. Figure 6a and 7e), significant scale
and viewpoint variation (e.g. Figure 7a, g), camera panning (cf. Figure 3), and
background clutter. In the following, experiments are performed using 10-fold
cross-validation. For each cross-validation step a random sample of 16 videos
per category is drawn for training keeping the remainder for testing. Learning
proceeds then on a randomly selected subset of 15 frames per video, while test-
ing is performed on each frame. To avoid a bias towards categories with more
test frames we average the retrieval rates for each category separately before
averaging these scores over all frames. This evaluation approach has become the
standard evaluation procedure in image categorization (e.g. see [18]).

4.1 Evaluating the Building Blocks of the Composition System

The following experiments evaluate the gain of the individual building blocks
of the presented composition system for video analysis. In this first series of
experiments only the most prominent object in a frame is to be detected. All
key components are discarded in a first experiment before adding individual
components in later experiments. The comparison of retrieval rates underlines
the importance of each individual part of the compositional approach.

Baseline Performance of a Bag of Parts Approach: The compositional
approach establishes an intermediate representation that is based on composi-
tions of parts and the spatial structure of objects. In a first experiment this
hidden representation layer is neglected to evaluate the gain of compositionality.
A frame is then represented based on all detected localized histogram features
et

i by a bag of parts bt (cf. Section 3.1),

bt ∝
∑

i

(
P (Fi = 1|et

i), . . . , P (Fi = k|et
i)

)T

. (22)

To categorize a frame, the category with highest posterior P (ct|bt) is selected.
The posterior is again learned from the training data using NKDA. This ap-
proach yields a retrieval rate of 53.1 ± 5.5%.

Compositional Segmentation and Recognition w/o Shape Model: This
experiment shows the benefit of combining segmentation with recognition in a
compositional model. Therefore, compositions are established as described in
Section 3.2 and Section 3.3. The prominent object in a video frame is then
segmented from background clutter by establishing a 2-class segmentation as
described in Section 3.4. Since only a single segmentation hypothesis is estab-
lished no model selection is required. All compositions that are not assigned to
the background, ν �= BG, are then taken into account to recognize the most
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prominent object. Therefore, these compositions are combined using a bag of
compositions descriptor b̃t ∝ ∑

j∈At
ν �=BG

ht
j . Frames are then categorized with-

out the compositional shape model by simply selecting the category with highest
posterior P (ct|b̃t). The combination of foreground segmentation with recogni-
tion based on compositions improves the retrieval rate to 64.5 ± 5.5%.

Segmentation, Recognition, and Compositional Shape Model: In con-
trast to the previous experiment we now use the full compositional shape model
of Section 3.6 to recognize the foreground object. As a result, the retrieval rate
is further increased to 74.3 ± 4.3%. The category confusion table is presented
in Table 1. Another setting is to categorize video sequences as a whole and not
individual frames. For this task the category hypothesis that is most consistent
with all frames of a video is chosen. Here the compositional model achieves a re-
trieval rate of 87.4 ± 5.8%. Obviously, this is an easier setting since information
from an ensemble of frames can be used simultaneously.

By agglomerating atomic parts of limited reliability in compositions that can
be tracked reliably, information has been condensed and the robustness of object
representations has been improved. The underlying statistical inference problem
can then be solved efficiently. As a result the compositional model segments,
tracks, and recognizes objects in videos of full PAL resolution (768× 576 pixel)
at the order of 1 fps on an ordinary desktop computer.

Table 1. Category confusion table (percentages) for the complete composition system

True classes → bicycle car pedestrian streetcar
bicycle 70.1 5.5 15.1 4.0
car 10.0 87.6 16.1 12.4
pedestrian 15.9 2.5 61.4 5.5
streetcar 4.0 4.4 7.4 78.2

4.2 Multi-object Recognition

In the following experiment multiple objects that appear simultaneously in a
video are to be recognized. Therefore, the model selection strategy of Section
3.5 is applied to find the correct number of objects. A frame is then correctly
classified if all the present objects have been found. Missing an object or detecting
an object that is not present counts as an error. Given this significantly harder
task our full compositional model classifies 68.1 ± 4.9% of all frames correctly.

4.3 Analyzing the Relevance of Compositions

To analyze what individual compositions contribute to object recognition the
category posterior

P
(
ct,ν

∣∣xt,ν ,ht
j ,x

t
j , q̂

t
j

)∣∣
ct,ν = True Category

(23)
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Fig. 6. Visualizing the contributions of compositions ht
j to object recognition. Dark

circles correspond to compositions with high posterior from (23). The gap between a)
and c) and between e) and g) is both times 60 frames. i) and k) have a gap of 10 frames.
Class labels are placed at the location of the segment center xt,ν (c:car, p:pedestrian).

is evaluated for each composition. In Figure 6 and 7 the category posterior
is then encoded i) in the darkness of a circle around the composition center
and ii) in the opaqueness of the underlying image region, i.e. alpha blending is
used for visualization. Moreover, Figure 6 shows the propagation of an object
segmentation over several frames.

5 Discussion

In this contribution we have presented a compositional approach that combines
category-level object recognition, segmentation, and tracking in the same graphi-
cal model without user supervision. The compositional representation of objects
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a) b) c) d)

e) f) g) h)

Fig. 7. Visualization of compositions. See Figure 6 for details.

is automatically learned during training. A model selection strategy has been
pursued to handle multiple, simultaneously appearing objects. By agglomerat-
ing ensembles of low-level features with limited reliability, compositions with
increased robustness have been established. As a result an intermediate object
representation has been formed that condenses object information in informative
compositions. Recognition has been formulated as an efficiently solvable, statis-
tical inference problem in the underlying Bayesian network. Therefore, compo-
sitionality not only improves the learning of object models but also enhances
recognition performance so that near real-time video analysis becomes feasible.
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