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Abstract

We investigate the anticompetitive effects of pre-auction negotiations in selling and
procurement situations. Assuming (in the selling case) that the seller and an “incumbent”
buyer can move before valuations are learnt, we show that they have a joint incentive to
arrange for themselves the option of entering into exclusive negotiations after uncertainty
is resolved. In equilibrium, an auction takes place with an endogenous probability that
depends on the bargaining process. In that auction, the beliefs are asymmetric even when
the potential buyers are ex ante symmetric.
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1 Introduction

In 2014, the French National Rugby League launched an invitation to tender for the television
broadcasting rights of “Top 14” matches.1 Shortly before before the submission deadline, the
League interrupted the tendering process and granted exclusivity for the next five seasons to the
incumbent right holder, Canal Plus. A major competitor, BeIN Sports, complained that it had
thus been deprived of the opportunity to submit a bid in a competitive procedure, and suggested
that the deal privately agreed between the rugby League and Canal Plus was anticompetitive.
The French competition authority decided to suspend the contested agreement and requested
the League to “proceed with a new assignment of broadcasting rights using a transparent and
non-discriminatory procedure.”

The seller of an indivisible good can organize the sale in many different ways. She can
advertise an invitation to tender and sell it to the largest bidder. But she could also decide to
have bilateral negotiations with some or all buyers before an eventual auction. Examples range
from TV rights for a sport event (Football World Cup, Olympics,. . . ) to selling a business.2

Building on the works of Vickrey (1961), Vickrey (1962) and others, Myerson (1981) answers the
question by characterizing the optimal mechanism (see Krishna (2002) 5.2 or Milgrom (2004)
4.4) from the point of view of the seller.3 In the case where buyers are symmetric this optimal
mechanism is a simple Vickrey’s auction with a reserve price.

The economist’ advice to the seller is thus simple: organize a Myerson’s optimal auction.
The seller should not bother wasting her time negotiating with any buyers. This idea that
auctions do best is reinforced by Bulow and Klemperer (1996) who prove that the maximum
revenue (i.e. using a Myerson’s optimal mechanism with reserve prices) with n (symmetric)
bidders is less than the revenue from an English auction with n+ 1 (symmetric) bidders. This
result is striking because a Vickrey’s auction is less demanding in terms of information. Indeed,
to implement the optimal mechanism (in particular to find the reserve price) the seller should
have more information about the distribution of the buyers’ valuations than is required in a
second price auction.4 In the authors’ words: “Therefore, under our assumptions, the seller
should not accept any high “lock-up” bid that a buyer may be willing to offer in return for not
holding an auction with an additional buyer.”5

1The Top 14 rugby union brings together the fourteen best teams in France.
2This is also typically the case for public procurement where the buyer (a government or a public firm) asks

for bids from several sellers.
3This under several assumptions. Among them: (i) risk neutrality, (ii) independence of buyers’ private signals

about the item’s value, (iii) lack of collusion among buyers, (iv) no budget constraint. This optimal mechanism
has a flavor of a second price auction with reserve prices: it allocates the item to the bidder who reports the
highest virtual valuation.

4See also Krishna (2002) pages 73-75 or Milgrom (2004) 4.4.2 or Kirkegaard (2006).
5They also give the following real world example: “For example, in late 1993 Paramount agreed to sell itself

to Viacom, knowing that QVC was interested in bidding for Paramount. Paramount and Viacom agreed to
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The economist adviser should not keep it secret that the optimal auction characterized by
Myerson requires one (or several if bidders are asymmetric) reserve price. That is a commitment
from the seller not to sell if the maximum bid is below the reserve price.6 This commitment can
be difficult to make in practice. In the absence of a reserve price, however, the idea of setting
an auction is even better. Indeed, with symmetric independent private-values the revenue
equivalence theorem bites: all standard auctions7 give the same expected revenue to the seller
and they are also efficient (maximizing welfare).

Yet, in the business world, we observe many instances where a seller (of an indivisible good)
does not use an auction. In fact, Aktas, de Bodt, and Roll (2010) study information from SEC
filings between January 1,1994 and December 31, 2007. Among 1,774 transactions, they observe
847 one-on-one negotiations.8 They find, however, that latent competition increases the bid
premium offered in negotiated deals.

Recently, the FIFA (The Fédération Internationale de Football Association) sold 2026 World
Cup television rights (for the USA) to Fox (who already had the rights for 2018 and 2022)
without organizing a tender of offers.

We aim to see whether a buyer and a seller with antagonistic interests can find an agreement
before an auction takes place, more specifically whether that have a common incentive to
enter into exclusive pre-auction negotiations. Various papers have recently studied this type of
situation. The literature started with Hua (2007) who . . . Choi (2009), Hua (2012).

Both a model and an experiment can be found in Grosskopf and Roth (2009).
From an empirical point of view, see Bajari, McMillan, and Tadelis (2009)
Our analysis applies for both selling or procurement. In the first context long-term relation-

ship contract renewals repeated between a content right owner and broadcasters. or between a
large food retailers and suppliers or public body and contractors contractual provisions that

we exclude resale in most of the analysis.
We study the anticompetitive effects of such negotiations in the spirit of Aghion and Bolton

(1987): we show that is inefficient exclusion and that the incentives to collude come from rent-
shift. One major difference is that there is an informational asymmetry between the colluding

terms that gave Viacom options to buy 24 million shares of Paramount and a $100 million break-up fee in the
event that any other company were to purchase Paramount. The boards argued that in return for effectively
excluding other bidders, Paramount had been able to negotiate a higher price than it could have expected in
an open auction. QVC contested the terms of the deal, contending that holding an auction would have been
the appropriate way to maximize shareholder value. The Delaware courts subsequently agreed with QVC. Our
analysis supports that decision.”

6See McAfee and Vincent (1997) for a model where the seller cannot commit organizing another auction
if the good is not sold. They find that when the time between auctions goes to zero, the expected revenue
converges to the one of a static auction with no reserve price.

7That is an auction which allocates the good to the highest bidder.
8some older references from takeovers
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parties. Another one is that there is the natural outside option of running an auction. The
focus is on the possibility of vertical collusion between the seller and one particular buyer.

We consider a seller facing potential buyers with symmetric valuations. The analysis applies
in a symmetric way to a procurement context with one buyer facing potential suppliers with
symmetric production costs. For clarity, we stick hereafter to the sale context.

Kirkegaard and Overgaard (2008) propose a model in which pre-auction offers (i.e. take it
or leave it offers) can be profitable. They assume asymmetric bidders and that the seller is able
to identify bidders’types. Hence the seller can approach bidders sequentially (from the highest
type to the lowest) with an offer. If all offers are rejected, an auction starts. They study this
game when the auction is a second price auction and when it is a first price one. Related on this
literature on asymmetric auctions, a major difference is that in the present study the buyers
are symmetric ex ante. Despite this symmetry, in equilibrium an asymmetric auction takes
place with positive probability; the distribution of the types who participate in the auction is
thus endogenous.

The analysis put forward a strong distinction between first-price and second-price auctions.
The intuition with a first-price auction is as follows. In the first-price asymmetric auction, the
weak buyer overbids and the strong buyer underbids. But as a final result the strong buyer bids
too high and we show there is rent shifting. This does not happen in a second-price auction.
This is a default of the first-price auction.

Also related to the literature on negotiations versus auctions Bulow and Klemperer (1996)
Aktas, de Bodt, and Roll (2010). A difference is that we need a transfer ex ante to maximize
joint surplus (as opposed to the maximization of solely the seller’s profit). Difference in the
timing: negotiation then auction

The article is organized as follows. We consider first a general signaling game that models
exclusive pre-auction negotiations and gives rise to multiple equilibria. Then we use Cho and
Kreps (1987)’s refinement criterion to rule out some of these equilibria. Next, we consider the
equilibrium that maximizes the joint profit of the colluding parties. We explain the exclusionary
and rent-shifting effects of each of the considered vertical agreements. Finally we examine a
couple of extensions.
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2 Model

A seller S sells an indivisible good to n+1 potential buyers B0, · · · , Bn. The seller and buyer B0

have the opportunity to sign a contract before valuations are known, for instance because they
have an ongoing business relationship to provide related products or services. Accordingly, we
call B0 the preferred buyer, and B1, · · · , Bn the competing buyers. In our baseline model, the
game proceeds as follows:

1. S sells the preferred buyer B0 a purchase option with strike price b̄;

2. The buyers B0, · · · , Bn privately learn their valuations;

3. B0 decides whether or not to exercise the option;

4. If the option is not exercised, a first-price auction with no reservation price takes place.

We assume that participation in the auction is costless, and consequently all buyers, includ-
ing the preferred one, participate if the game gets to that point. The buyers’ valuations are
independent and identically distributed random variables. We denote by F their cumulative
distribution function and assume that F admits a positive density f on [0, 1].

How the competing buyers behave at the auction stage depend on what they know and
understand of the preceding stages. Ex ante contracting may be held secretly and take place
long before the time of the auction. Accordingly, a number of informational settings are possible.
In a first scenario, the competing buyers are unaware of the existence of a preferred buyer and
behave as if no action has taken place prior to the auction. For brevity, we say in this case that
the competitors are “naive”. In a second scenario, the existence of the ex ante contract as well
as the value of the strike price are known to all players. In a third scenario, the competitors
are aware of the existence of a purchase option but do not observe the strike price.

In each of these settings, the competing buyers determine their bids based on their beliefs
about the distribution of the preferred buyer’s valuations v0 in the auction. For all possible
competitors’ beliefs, there exists a valuation threshold such that the auction takes place in
equilibrium if and only if the preferred buyer’s valuation is below the threshold.

Lemma 1. For any strike price b̄, there exists a unique valuation v̄ such that the preferred
buyer exercises the option if and only if his valuation v0 is above v̄. Conversely, for any cutoff
valuation v̄ in [0, 1], there exists a unique strike price b̄ that induces the preferred buyer to
exercise the auction if and only if v0 ≥ v̄.

The preferred buyer with valuation v0 = v̄ is indifferent between exercising the option and
participating in the auction. In the former case, he earns profit v̄− b̄ for sure. In the latter, he
gets expected profit (v̄ − b0(v̄))P̄0, where b0(v̄) and P̄0 denote his bid and the probability that
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he wins the auction. The bid b0(v̄), the probability P̄0, and the expected profit (v̄ − b0(v̄))P̄0

depend on the competitors’ beliefs about the distribution of the preferred buyer’s valuation
when the auction takes place. The specific relationship between b̄ and v̄ depends on those
beliefs. But regardless of those beliefs, the relationship is increasing and the auction occurs
when the preferred buyer’s valuation for the good is low.

When v̄ = 1, the seller always resorts to competition to allocate the good, with all buyers
participating in the symmetric first-price auction. On the contrary, when v̄ = 0, the seller and
the preferred buyer operate under full exclusivity: competing buyers have no chance to purchase
the good. Finally, when v̄ lies in the interior of the support of the valuation distribution, we say
that partial exclusivity prevails. The difference 1− v̄ is a measure of the degree of exclusivity.

3 Naive competitors

We assume in this section that the competing buyers, should an auction take place, behave as
if all bidders B0, · · · , Bn were symmetric. Their behavior is thus described by the standard
bidding function in the symmetric auction with (n+ 1) players:

b∗n+1(v) =
1

Gn(v)

∫ v

0
xgn(x)dx = v − 1

Gn(v)

∫ v

0
Gn(x)dx, (1)

where Gn(v) = F (v)n and gn(v) = nf(v)F (v)n−1 denote the cdf and pdf of the highest of n
independent draws from F . The preferred buyer uses the bidding function b∗n+1 as well because
this is the best reply to his competitors’ strategy.

Given the strike price b̄ and the competitors’ belief that the support of v0 is the whole
interval [0, 1], there exists a unique threshold v̄ such that the auction takes place if and only
if v0 is below v̄. When v0 ≥ v̄, the preferred buyer exercises the option, deals with the seller
regardless of the competitors’ valuations, and earns profit v0 − b̄n. When v0 ≤ v̄, the auction
takes place, the preferred buyer bids b0 = b∗n+1(v0) and wins the auction with probability
Gn(v0). The indifference condition that determines the marginal type v0 = v̄ is therefore
v̄ − b̄ =

(
v̄ − b∗n+1(v̄)

)
Gn(v̄). If v̄ < 1, the above equation, combined with (1), yields b̄ =

v̄ −
∫ v̄

0 Gn(x)dx < b∗n+1(v̄). Because the preferred buyer wins the auction with probability less
than one, his bid has to be higher than the strike price to guarantee indifference.

At the ex ante contracting stage, the seller and preferred buyer choose the level of the
strike price b̄ that maximizes their joint expected profit, which they share using the price of the
purchase option. As seen above, choosing the strike price is equivalent to choosing the marginal
valuation v̄ that makes the preferred buyer indifferent between exercising the purchase option
and participating in the auction. Figures 1a an 1b show the corresponding allocation in the
space (v0,m), where m = max(v1, · · · , vn) is the highest valuation for the good among the
competing buyers.
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Figure 1a: Partial exclusivity with b∗(1) < v̄ < 1 Figure 1b: Partial exclusivity with v̄ < b∗(1)

In the full competition regime, the first-price auction occurs with probability one, and
the item is sold to buyer B0 if and only if v0 ≥ m = max(v1, · · · , vn). The allocation is
the same under full competition (v̄ = 1) as under partial exclusivity (0 < v̄ < 1) except in
the region v̄ ≤ v0 ≤ m ≤ 1 represented by the triangle ABC. In this region, under the
partial exclusivity agreement, the coalition formed by the seller and the preferred buyer deals
internally, earning joint profit v0, while at least one competing buyer values the good more
than the preferred buyer. Figures 1a shows the case where v̄ is greater than the highest bid in
the symmetric auction: b∗(1) < v̄ < 1. In this case, the coalition finds it optimal to forego the
winning bid b∗(m) because the surplus from internal trade is larger than the revenue from the
auction: v > b∗(1) ≥ b∗(m) in the triangle ABC. As a result, partial exclusivity dominates full
competition.

When there is one competing buyer (n = 1), the coalition earns the same profit under full
exclusivity and under full competition because the bid placed by the competitor b∗(v1) coincides
with the expectation of v0 in the region v0 ≤ v1 where the competitor wins the auction. For
n > 1, the profit is strictly higher under full competition than under full exclusivity because the
winning bid b∗(m) increases with n. Partial exclusivity therefore dominates the two extreme
regimes regardless of the number of competitors.

Proposition 1. When the competing bidders are naive, partial exclusivity (0 < v̄ < 1) is
optimal for the seller-preferred buyer coalition.

Reducing v̄ from v̄ = 1 to v̄ = b∗(1), thereby increasing the degree of exclusivity in the
relationship, unambiguously raises the coalition’s profit because it expands the ABC area
where the gain from internal trade dominates the highest bid received in the auction. Further
reducing v̄ has subtler effects, see Figure 1b: along the left boundary of the triangle (segment
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AB), the highest bid b∗(m) is greater than v̄ for large values of m but lower than v̄ for small
values of m. We show in the appendix that the optimal degree of exclusivity v̄ is such that the
mean value of the difference b∗(m)− v on the boundary AB is zero:∫ 1

v̄n

[
b∗n+1(m)− v̄n

]
gn(m)dm = 0, (2)

where g is the density function of m = max(v1, · · · , vn). We also show that when both F and
1−F are log-concave the above equation has a unique interior solution, which determines the
degree of exclusivity in equilibrium. It follows that the coalition’s profit has a unique interior
global maximum and a local minimum at v̄ = 1.

Figure 2 shows the coalition’s profit when the buyer valuations are uniformly distributed.
When there is one single competitor, the maximal profit is obtained for v̄ = 1/3, which corre-
sponds to the strike price b̄ = 5/18.9 Table 2 line (e) shows the equilibrium profits of all players
as well as the total welfare for the optimal value of v̄. Compared to the first-price auction
without reservation price, the coalition’s profit increases by about 7.4%; the competing buyer’s
profit is more than halved and his probability of getting the good is almost halved, hence a
strong exclusion effect. The welfare loss is about 7.4%.

Figure 2: Coalition’s profit under partial exclusivity (n competing buyers, uniform distribution)

Proposition 2. Suppose that F and 1 − F are log-concave. The optimal degree of exclusivity
decreases with the number of competitors. If F̃ stochastically dominates F according to the
likelihood ratio order, there is less exclusivity for the valuation distribution F̃ than for the
valuation distribution F .

9As noticed above, the strike price is greater than the valuation placed by the indifferent preferred buyer
should he participate in the auction, namely b∗(v̄) = 1/6.
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The comparative statics are proved in the appendix by using the characterization (2) of
the optimal degree of exclusivity. When the number of competing buyers is higher or when
valuations for the good are higher in the sense of the likelihood ratio order, the highest bid
placed in the auction is higher, which makes resorting to the auction more attractive for the
coalition. Moreover, the distribution of the competitors’ highest valuation along the boundary
AB places more weight on larger valuations, which further contributes to push v̄ upwards, i.e.,
to decrease the optimal degree of exclusivity.

4 Sophisticated competitors

From now on, we assume that the contract signed ex ante by the seller and the preferred buyer
is public. All players know the value of the strike price b̄. The competing buyers understand
that the valuations for the good are not symmetrically distributed among the bidders should
the auction take place. The preferred buyer’s valuation is drawn from the right-truncated
distribution F/F (v̄) with support [0, v̄], which we denote by F0. In the terminology of Maskin
and Riley (2000), the preferred buyer is a “weak bidder” and the competing buyers are “strong
bidders” in the asymmetric auction.

Figure 3: Partial exclusivity with sophisticated buyers

We start with the case where there is only one competing buyer. Figure 3 shows the
equilibrium allocation with partial exclusivity 0 < v̄ < 1. In the exclusivity region v ≥ v̄, the
preferred buyer exercises the purchase option. For v ≤ v̄, the asymmetric auction takes place.
We denote by b0 and b1 the bidding functions and by φ0 and φ1 the inverse bidding functions
of the two bidders. The bidding functions b0 and b1 have the same support, with upper bound
b0(v̄) = b1(1). The bold line with equation v0 = φ0(b1(v1)) separates the regions where each
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player wins the auction.
The preferred buyer with type v0 = v̄ is indifferent between participating in the auction and

exercising the purchase option. In the first case, he wins the auction with probability one and
hence earns v̄− b0(v̄); in the latter case, he earns v0− b̄. The indifference condition is therefore
b̄ = b0(v̄). Hence, contrary to the naive competitor case, the strike price and the maximal bid
placed by the preferred buyer in the auction coincide. The preferred buyer strongly prefers
participating in the auction rather than exercising the purchase option when his valuation is
below b̄. When his valuation is above that threshold, he is indifferent and we assume that he
exercises the option.

Proposition 3. Suppose there is one competing buyer and the competitor is sophisticated. Then
the joint profit of the seller and the preferred buyer is strictly higher under partial exclusivity
(0 < v̄ < 1) than under full exclusivity (v̄ = 0) or full competition (v̄ = 1).

As already noticed, the coalition’s profit is the same under full exclusivity and full compe-
tition when there is only one competing buyer. This is because the bid b∗(v1) placed by the
competitor in the symmetric auction coincides with the expectation of the preferred buyer’s
valuation v0 in the region where the competitor wins the auction. It is therefore enough to com-
pare the partial exclusivity and full exclusivity regimes. To this aim, we show in the appendix
that for any v1 the bid b1(v1) placed by the competitor in the asymmetric auction is higher
than the expectation of v0 in the region where the competitor wins the asymmetric auction,
namely 0 ≤ v0 ≤ φ0(b1(v1)). Specifically, we show that b1(v1) is equal to the expectation of v0

on a larger set of values for v0. (This larger set corresponds to the region where the competitor
would win if the preferred buyer were to bid less aggressively than he actually does, see the
proof in the Appendix for details.)

We conclude from the above analysis that even though the competing buyer rationally
lowers his bid knowing that he faces a weak bidder, it remains more profitable for the coalition
to run the auction when the preferred buyer’s valuation is low than to maintain a completely
exclusive relationship. For instance, when the buyer valuations are uniformly distributed on
[0, 1], the maximum bid in the asymmetric auction is b̄ = v̄/(1 + v̄) and the inverse bidding
functions are given by

φ0(b) =
2b

1 + z
(
b/b̄
)2 and φ1(b) =

2b

1− z
(
b/b̄
)2 , (3)

with z = 1 − 2b̄, see Maskin and Riley (2000). The bidding functions are represented on
Figure 3, PANEL A, à faire. Numerical computations show that the coalition’s profit has a
unique maximum, which is obtained for v̄ approximately equal to .505. The corresponding
strike price is b̄ = v̄/(1 + v̄) = .34. Thus, the degree of exclusivity is lower than in the naive
competitor case (recall that v̄ = 1/3 in that case). Table 2 line (f) shows the equilibrium

9



profits of all players as well as the total welfare for the optimal value of v̄. Compared to the
first-price auction, the coalition’s profit gain from the agreement is 2.75%, instead of 7.4%
when the competitor is naive. The welfare loss is only 3.75%. Because the competing buyer
understands that he should reduce his bid in the auction, his expected profit is 25% lower than
in the first-price auction, instead of more than 50% when he is naive. In sum, compared to the
naive competitor case, the exclusion effect and the competitive harm are still present, but less
pronounced.

The above results heavily rely on the presence of a single competing buyer. When there
is more than one competitor, resorting to competition is more attractive for the coalition
because the revenue earned from the auction is likely to be higher. Yet, as stated in the
proposition below, partial exclusivity continues to prevail, at least with uniformly distributed
buyer valuations.

Proposition 4. When the valuations are uniformly distributed, partial exclusivity (0 < v̄ < 1)
is optimal for the seller-preferred buyer coalition regardless of the number of competitors.

As already noticed, the coalition prefers full competition (v̄ = 1) to full exclusivity (v̄ = 0)
when there are two or more competing buyers. It is therefore enough to compare the full
competition and partial exclusivity regimes. We do so by slightly perturbing the full competition
regime, i.e., by slightly reducing v̄ below one. Such a perturbation leads the sophisticated
competing buyers to slightly reduce their bids and the preferred buyer to slightly raise his bid
compared to the symmetric auction. Each of these two forces push the probability that the
coalition deals internally upwards.

The increased probability of an internal deal is associated with a positive effect on the
coalition’s profit because at the margin it earns v0 = m instead of the winning bid nm/(n+ 1),
where m = max(v1, · · · , vn) is the highest valuation among the competitors. On the other
hand, when the competitors win the auction, the collected revenue is reduced because their
bids are lower. We show in the appendix that the second force mentioned above (the preferred
buyer slightly raising his bid) is enough to offset the negative revenue effect. Hence the total
net effect of introducing some exclusivity in the coalition’s relationship is positive. Whether
the result holds for more general valuation distributions than the uniform distribution is left
as an open problem.

5 Unobservable strike price

We now assume that the competing buyers know that a purchase option has been granted ex
ante, but do not know the value of the strike price. Sophisticated competitors therefore have
to form a belief about the distribution of the preferred buyer’s valuations when the auction
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takes place. By Lemma 1, it is known to all players that the preferred buyer participates
in the auction if and only if his valuation is below a certain threshold. In other words, the
distribution of v0 given that the auction takes place is necessarily a right-truncation of the
original distribution F . As a result, the competitors’ belief can by summarized by an expected
cut-off valuation v̄e.

Suppose first there is only one competitor and the competitor expects that the preferred
buyer participates in the auction when v0 is lower than or equal to v̄e. The competitor therefore
bids as in the asymmetric auction where the weak bidder has his valuation drawn from the right-
truncated distribution F/F (v̄e) on [0, v̄e]. Let b̄e = b0(v̄e) = b1(1) < v̄e be the upper bound of
the common distribution of the two players’ bids in this auction. As explained in Section 4, if the
coalition ex ante agrees on the strike price b̄e, the preferred buyer strongly prefers participating
in the auction rather than exercising the purchase option when his valuation is below v̄e. When
his valuation is above that threshold, he is indifferent and we assume that he uses the option.

Suppose now that the coalition agrees instead on a strike price b̄ that is slightly below b̄e.
Then the preferred buyer participates in the auction when his valuation is below v̄, where v̄
is slightly below v̄e. The only change in the allocation occurs for v̄ ≤ v0 ≤ v̄e and values
v1 high enough for the competitor to win the auction at the candidate equilibrium: in this
region, represented by the DEF area on Figure ???, the coalition deals internally after the
deviation, thus earning v̄e instead of b̄e < v̄e. The coalition therefore has an incentive to
slightly increase the degree of exclusivity compared to what was expected by the competitor.
A standard unraveling argument shows that the only possible equilibrium is v̄e = v̄ = 0, full
exclusivity.

FIGURE SHOWING THE UNRAVELLING PROCESS

Proposition 5. Suppose the competing buyers are sophisticated, know the existence of the
purchase option but ignore the value of the strike price b̄.

Then there is a unique Bayesian equilibrium, which is characterized by the exclusivity thresh-
old v̄en. When there is one competitor, full exclusivity prevails (v̄en = 0). When there are two
competitors or more, partial exclusivity prevails, and we have

v̄n−1 ≤ v̄en ≤ b∗n(1),

where v̄n−1 is the optimal exclusivity threshold in the presence of n− 1 naive competitors.

The unraveling argument exposed above heavily relies on the fact that the distributions
of bids have the same support for the preferred and competing buyers, and more specifically
on the implication that the highest bid placed by the competitor is lower than v̄. This is not
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necessarily true, however, when there are two (or more) competitors. Indeed the strong bidders
behave at least as aggressively as if the weak bidder were absent. As a result, when the number
of competitors is high and v̄ is low, their highest bids may be at levels that the weak bidder is
unable to reach. In this case, when the competitors’ valuations are high, they actually behave
as in the absence of the weak bidder, using the bidding function b∗n. In particular, the highest
bid placed by the competitors is b∗n(1). When v̄e is below that value, the unraveling argument,
such as exposed above, does no longer apply: resorting competition becomes more attractive
to the coalition.

In equilibrium, the expected and actual degrees of exclusion coincide, v̄en = v̄n, and satisfy
the first-order condition: ∫ 1

φ∗n(b0(v̄en))
[b∗n(m)− v̄en] gn(m)dm = 0 (4)

for n ≥ 2.
Since B0 bids more aggressively than in the symmetric auction: b0(v) ≥ b∗n+1(v) ≥ b∗n(v),

we have φ∗n(b0(v̄en)) ≥ v̄en and from (4) we get

0 ≥
∫ 1

v̄en

[b∗n(m)− v̄en] gn(m)dm ≥
∫ 1

v̄en

[b∗n(m)− v̄en] gn−1(m)dm,

which yields v̄en > v̄n−1 by (2).

6 Priority right

Second, we relax the assumptions on the form of the ex ante contract. consider a variant of
the game where at stage 1 the seller does not sell the preferred buyer a purchase option, but
merely the right to make an offer at stage 3 before the auction takes place.

We consider the possibility that the seller and a particular buyer ex ante sign a contract
that allows them to enter into exclusive negotiations after the uncertainty is resolved. Exclusive
negotiations take place under asymmetric information and are modeled with a take-it-or-leave-
it offer from the informed party, namely the buyer. The negotiation therefore gives rise to a
signaling game.

1. S sells I the right to enter into exclusive negotiations after he has privately learnt his
valuation;

2. E and I privately learn their valuation;

3. Under exclusive negotiations, I makes a take-it-or-leave-it offer, p(vI);

4. If S rejects the offer, the good is sold in a first-price auction with no reservation price.

12



The other player, buyer E, is aware that exclusive negotiations have taken place prior to
the auction, but does not observe the content of these negotiations.

Proposition 6. For all v̄I ∈ [0, 1] and b̄ = v̄I/(1 + v̄I) ∈ [0, 1/2], the following configuration is
an equilibrium of the signaling game (stages 3 and 4):

• At the negotiation stage, the buyer offers p(vI) = b̄ if vI > v̄I and p(vI) = 0 otherwise;

• S accepts to sell at b̄ and rejects the zero price offer;

• When the offer is rejected, an asymmetric auction takes place with vE and vI being inde-
pendently distributed on [0, 1]× [0, v̄I ];

• If the seller receives an out-of-equilibrium offer, she believes that vI ≥ v̄I .

Proof. The asymmetric auction at step 4 has been studied by Maskin and Riley (2000). The two
players bid in the same range [0, b̄] and the equilibrium inverse bidding functions φE = (bE)−1

and φI = (bI)
−1 are given by

ΦE(b) =
2b

1− z
(
b/b̄
)2 and ΦI(b) =

2b

1 + z
(
b/b̄
)2 , (5)

with z = 1− 2b̄. Conditionally on vI , the probability that I wins the auction is

P (I wins | vI) = P (bE(vE) ≤ bI(vI)) = ΦE(bI(vI)),

which is increasing and convex in vI because the two functions ΦE and bI are increasing and
convex. The incumbent buyer’s expected gain is

UI(vI) = [vI − bI(vI)] ΦE(bI(vI)), (6)

which is increasing and convex in vI with slope U ′I(vI) = ΦE(bI(vI)). We extend the function
bI on the whole interval [0, 1] by setting bI(vI) = b̄ on [v̄I , 1]. A buyer of type vI > v̄I , should
he participate in the auction, would indeed bid b̄ and get the good with certainty.

Observing buyer I’s offer b̄, the seller believes that vI ≥ v̄I and is indifferent between
accepting and rejecting the offer. She obviously rejects the zero offer and would accept any
out-of-equilibrium offer above b̄. Finally if she received an offer lying between zero and b̄, she
would reject it under the out-of-equilibrium belief stated in the Proposition because she would
expect to earn b̄ at the auction.

Consider now the choice of buyer I’s take-it-or-leave-it offer at step 3. If his type is equal
or above v̄I , he is indifferent between any offer equal or below b̄ and does not want to make an
offer above that level. If his type is below v̄I , he is indifferent between any offer strictly below
b̄ (as all such offers are rejected) and does not want to offer b̄ (or a fortiori any price higher
than b̄) because UI(vI) > vI − b̄.
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7 Discussion

Corollary 1. When the distribution of valuation is uniform, the optimal cut-off is given by

v̄ =

(
n

n+ 1

)2

+

[
1−

(
n

n+ 1

)2
]

(v̄)n+1

Proof. Assume F (v) = v then G(v) = vn, g(v) = nvn−1, and b∗(v) = n
n+1v . Substituting these

expressions into the f.o.c. it writes

−v̄ (1− v̄n) +
n2

n+ 1

∫ 1

v̄
vndv = 0

or

v̄ − v̄n+1 =

(
n

n+ 1

)2 [
1− v̄n+1

]
and finally

v̄ =

(
n

n+ 1

)2

+

[
1−

(
n

n+ 1

)2
]

(v̄)n+1

7.1 Optimal mechanism

We have considered here a must-sell auction. Can we say something if we allow the good not
to be sold (auction with reservation price)?
Link with vertical integration? Same as allowing for resale? Take-it-or-leave-it offer to E at
price (1 + vI)/2?

Implementable by reselling or reservation price.
Before turning to our timing, a useful benchmark is the AB model slightly adapted to fit

with our environment.10 In AB there are three players. Ex ante, the seller S and the B0 can
both observe v0 but not the valuation of the other buyer B1. Then S and the B0 can use their
knowledge of the value v0 to extract rents from B1. They commit on two prices: p0(v0) and
p1(v0). Ex post, B1 observes its valuation v1 and if B1 agrees to pay the price, p1, he obtains
the good, otherwise the good is allocated to B0 for the price p0. The price p1 is used to extract
rents from B1 and the price p0 to share these rents between S and B0.

Given p1, B1 buys if and only if v1 > p1. Therefore the joint profit of S and B0 writes:

(1− F (p1)) p1 + F (p1)v0 = v0 + (1− F (p1)) (p1 − v0)

10The main difference, which is purely formal, is that in AB there a buyer and two sellers whereas here we
have a seller and two buyers.
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The pair S−B0 maximizes, thus, the monopoly profit of a firm facing a demand 1−F (p1) and
a constant marginal cost v0. That is, p1 is solution to

p1 = v0 +
1− F (p1)

f(p1)
(7)

The consequences are twofold. First, B1 pays more than in an auction (rent shifting).
Indeed, AB assumes that without an agreement between S and B0 the good is sold through
a second price auction (i.e. Bertrand competition in their procurement setting). In such an
auction, when v1 > v0, B1 obtains the good and pays v0. Otherwise the good is sold to B0 and
B1 pays zero. As p1(v0) is the monopoly price for a marginal cost of v0 it is larger than v0.
Second, whenever v0 < v1 but v1 < p1(v0), B1 does not buy when the AB contract is in place
(exclusion). This exclusion occurs with probability F (p1(v0))− F (v0).

This analysis extends to more buyers: B1, . . . , Bn, n ≥ 2. The valuations of the buyers
being iid and private values. Ex ante, the pair S − B0 commits on two prices p0(v0) and
p1(v0). Ex post, the buyers B1, . . . , Bn privately observe their valuations and participate in
a second price auction where p1(v0) is the public reserve price.11 In an auction (either first or
second price) with a reserve price the reserve price matters only when there is one bidder with
a valuation above it while all the others have a valuation below the reserve price. Hence, the
optimal reserve price does not depend on n and the joint profit of S and B0 is still maximized
by p1 given by (7).12

In our context, the natural auction mechanism is a first price auction. This is a first
departure from AB. However, substituting the second-price auction by a first-price auction in
AB model does not change their results. Indeed, it is easy to see that B1 would pay less in
an auction recall that in an auction with two bidders B1 bids b(v1) = E [v |v < v1 ] and wins
whenever v1 > v0. Exemple: F (.) uniform, then b(v1) = v1/2 < 1/2 < 1/2 + v0/2 = p1(v0). In
addition, B1 is (inefficiently) prevented from buying when v0 < v1 < (1 + v0)/2.

idea plan: prop-5 de Burguet-Perry (section 4) + lien avec AB
mais AG demande un "gros" pouvoir d’engagement...
literature part sur rofr mais aussi anti-concu...
idea autre benchmark: S et I negocient mais si echec, alors I est out (similar to naive case

?)

7.2 Right of first refusal

Comparison: ROFR perception effect –> change in bid can be in any direction. Or no change
in the uniform case.

11Comments in the following spirit: In an environment where the seller cannot credibly commit not to sell,
the ex-ante agreement between the seller and B0 makes the reserve price more credible.

12For technical details, see Krishna (2002) pages 24-26.

15



While for us, sophistication induces under reasonnable assumption induces underbidding
by competitors because they understand they face a weak bidder.

Walker (1999) is (probably) the article which started a flow of models on the ROFR. It
presents a (mostly descriptive) law and economics perspective on the subject and rather argue
against the ROFR.

Bikhchandani, Lippman, and Ryan (2005) put forward negative consequences for the seller
of granting a ROFR (affiliated values, N ≥ 2). Indeed, such a right increases the profit of the
favored buyer but they show that “usually” it decreases the joint profit of the seller and this
favored buyer. Therefore the favored buyer “usually” cannot compensate the seller. Arozamena
and Weinschelbaum (2006) similarly show that ROFR cannot be part of an optimal mechanism
(in the ipv model) (what do they show in Arozamena and Weinschelbaum (2009b)?). But it
does not mean it cannot increase the profit of the seller. Chouinard (2005) models the ROFR
in the context of a first-price auction (with a reserve price). He finds that the seller loses when
the ROFR is present. His result comes from the absence of ex-ante transfer between the right
holder and the seller.

Hua (2007) (and most the remaining of the literature) focuses on n = 2. He characterizes
the mechanism which maximizes the seller profit when the favored buyer has a limited budget.
Otherwise if the favored buyer had unlimited budget, the seller would ex ante sell the good to
the favored buyer who could resell it to the other buyer ex-post (see footnote 8). It is amusing
that the optimal (unconstrained) mechanism is relegated to a footnote!

The ROFR clause is further examined in Choi (2009) and Burguet and Perry (2009). In
both papers, the favored buyer has no budget constraint. Choi (2009) has two bidders but he
consider affiliated values. Contrary to Bikhchandani, Lippman, and Ryan (2005) he focuses
on first-price aution. He shows that the ROFR increases the joint profit of the seller and the
favored buyer. Burguet and Perry (2009) allows for N ≥ 2 in a setting similar to Choi. In both
papers, the equilibrium bids of the regular bidders can be hard to find (they are characterized
by a differential equation which might be not obvious). Finally, Burguet and Perry show how
the seller could extract the value of v1 in a mechanism and generate the maximum profit (using
a first-price auction with a reserve price adjusted for each value of v1).

Also Arozamena and Weinschelbaum (2009a) (corruption)
Grosskopf and Roth (2009) model the ROFR in the context of an Ultimatum game (and

a reverse Ultimatum game) and they run an experiment. See Brisset, Cochard, and Maréchal
(2015) for another experiment.

Common assumptions: risk-neutrality, seller’s value is zero, no entry cost, (technical as-
sumptions on hazard rate), Welfare comparison depends on the chosen reference (e.g. auction
with or without a reserve price in the absence of an ex-ante agreement).

Payoffs comparisons in the case of the uniform distribution and n = 2.
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Table 1: Main assumptions in ROFR papers

Must sell nb of Buyers Information Auction ΠI + ΠS (vs no right) what else ?
BLR, 2005 yes n+ 1 APV 2nd price ↘ (mostly) or ↗
Chouinard, 2005 no 2 IPV 1st price ΠS ↘
Hua, 2007 no 2 IPV mechanism ↗
Choi, 2009 yes 2 APV 1st or 2nd ΠI + ΠS ↗
BP, 2009 yes & no n+ 1 IPV 1st & var ΠI + ΠS ↗
AW, 2009 yes n IPV 1st price ΠI + ΠS ↗

Table 2: Equilibrium allocations under various mechanisms

Π†0 Π†S Π0 + Π†S Π†1 W † Pr(B0 wins) Pr(B1 wins)
(a) 1st price 4 8 12 4 16 .5 .5
(b) 1st price with res. price .5 2 10 12 2 14 .325 .325
(c) Optimal mechanism n/a n/a 14 1 15 .75 .25
(d) Right of first refusal 7 6 13 2 15 .75 .25
(e) Purchase option (Naive)∗ 5.48 7.40 12.89 1.93 14.81 .72 .28
(f) Purchase option (Sophist.)∗ 5.54 6.8 12.33 3 15.4 .66 .34

1 There is one competing buyer (n = 1). Buyer valuations are uniformly distributed.
2 Π0, Π1, and ΠS are the preferred buyer’s, competing buyer’s, and seller’s ex post expected profits, without
accounting for ex ante transfers between S and B0.
3 Total welfare W is the sum Π0 + Π1 + ΠS .
4 (†) All figures in column are to be divided by 24.
5 (∗) All figures in line are approximated values.

Absolute FP auction FP auction + ROFR

The role of rent shifting The ex ante contract between the seller and I has the flavor of a
vertical integration. At first, it seems counter intuitive for S to deal exclusively with I instead
of going directly to an auction (and making I and E compete). Yet, by dealing together S and
I can increase their joint surplus. In a symmetric auction, I would win when vI > vE . When
I loses S deals with E and obtain only part of E surplus.

To illustrate, in a first price auction when vI < vE , E would pay E [v|v < vE ] (i.e. vE/2
with a uniform distribution). Now, if E [v|v < vE ] < vI < vE (i.e. vE/2 < vI < vE with a
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Figure 4: Time line

uniform distribution), S and I are better off in an exclusive deal than if S sells to the more
efficient buyer.

Notice that with a second price auction, the exclusive deal does not improve the joint
surplus of S and I as whenever vI < vE , E pays vI (in equilibrium when dominated strategy
are discarded) anyway. But when the selling mechanism is (akin to) a first price auction, then
an exclusive deal can improve the joint profit of S and I.

Ideally, the exclusive deal should apply when vI is large enough (i.e. E [v′|v′ < vE ] < vI)
and not apply when vI is low. As vE is not observe this ideal cutoff cannot be implemented.
Thus a tradeoff.

7.3 Contracting with many buyers

2 buyers at the negotiation stage
voire k parmi n !

Renegotiation proofness Dans le cas ou bbar observable par E

7.4 Second-price auction

If one competitor, n=1, in the baseline model, coalition payoff independent of b̄. If n > 1,
partial exclusivity is suboptimal.

same for ROFR
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APPENDIX

A Appendix

Proof of Lemma 1 If the auction takes place, the competing buyers’ bidding functions
b1, . . . , bn depend on their beliefs about the distribution of the preferred buyer’s valuations.
The competitors’ beliefs and bidding strategies are taken as given in equilibrium. (We describe
them later for each informational scenario that we consider.) The preferred buyer B0 with type
v0 earns expected profit

Π0(v0) = max
b

(v0 − b) Pr [b ≥ max(b1(v1), . . . , bn(vn))] .

By the envelope theorem, Π0 increases with v0, with the derivative Π′0(v0) being equal to the
probability that B0 wins the auction. Moreover, the expected profit Π0 is convex in v0 because
it is the upper bound of a family of affine functions. The probability that B0 wins the auction
is therefore nondecreasing in v0.

On the other hand, the gain from exercising the purchase option is v0 − b̄. The preferred
buyer prefers exercising the option rather than participating in the auction if and only if
v0 − b̄ ≥ Π0(v0). As Π′0 ≤ 1 on [0, 1], the function v0 − Π0(v0) is nondecreasing on this
interval, and therefore the inequality b̄ ≤ v0 − Π0(v0) holds if and only if v0 is greater than or
equal to a threshold that we denote by v̄. This threshold is nondecreasing in the strike price b̄.
By convention, we may set v̄ to one when the inequality never holds.

It may be the case that for large values of v0 the preferred buyer wins the auction with prob-
ability one and is indifferent between participating in the auction and exercising the purchase
option. (In such a situation, v0− b̄ and Π0(v0) coincide on an interval that contains v0 = 1). To
avoid uninteresting complications, we assume that in case of indifference, the preferred buyer
exercises the option.

Proof of Proposition 1 Under partial exclusivity (0 < v̄ < 1), the joint profit of the SB0

coalition is:

ΠS(v̄) + Π0(v̄) =

∫ 1

v̄
vf(v)dv +

∫ v̄

0
vG(v)f(v)dv +

∫ v̄

0

∫ 1

v
b∗(x)g(x)dx f(v)dv,

where the last term corresponds to the case where the auction takes place and is won by the
competing buyer with the highest valuation for the good. The first and second terms correspond
to the cases where the good is allocated to the preferred buyer and the coalition joint profit
is v. Under full competition (v̄ = 1), there is no exclusivity arrangement and the first term
disappears:

ΠS(1) + Π0(1) =

∫ 1

0
vG(v)f(v)dv +

∫ 1

0

∫ 1

v
b∗(x)g(x)dx f(v)dv.
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By difference, the terms v or b∗ cancel out except in the region v̄ ≤ v ≤ x ≤ 1 represented by
the triangle ABC on Figures 1a and 1b:

ΠS(v̄) + Π0(v̄)− [ΠS(1) + Π0(1)] =

∫ 1

v̄

∫ 1

v
[v − b∗(x)] g(x)dx f(v)dv. (A.1)

The above difference is positive when v̄ > b∗(1) as v − b∗(x) ≥ v̄ − b∗(1) in the triangle. It
follows that partial exclusivity, with b∗(1) < v̄ < 1, is preferred to full competition (v̄ = 1),
which itself, as explained in the main text, is weakly preferred to full exclusivity (v̄ = 0) by the
coalition.

Differentiating (A.1) with respect to v̄, we find that the first derivative of the joint profit is

Π′S(v̄) + Π′0(v̄) =

∫ 1

v̄
[b∗(m)− v̄] g(m)dm. (A.2)

The degree of exclusivity chosen by the coalition, which is known to be at the interior of the
support of the valuation distribution, therefore satisfies the first-order condition (2).

Proof of Proposition 2 We first show that if G and 1 − G are log-concave the coalition’s
profit is quasi-concave in v̄. The second derivative of the joint profit is given by:

Π′′S(v̄) + Π′′0(v̄) = g(v̄)

[
v̄ − b∗(v̄)− 1−G(v̄)

g(v̄)

]
.

If F is log-concave, so is G = Fn, and so is
∫ v

0 G(x)dx by Theorem 1 in Bagnoli and Bergstrom
(2005). It then follows from (1) that v̄ − b∗(v̄) increases in v̄. Since, by assumption (1−G)/g

is decreasing, the bracketed term is increasing in v̄. Because that term is negative at v̄ = 0

and positive at v̄ = 1, the coalition’s profit is first concave then convex as v̄ rises from zero to
one. We already know that the coalition’s profit has an interior global maximum and a local
minimum at v̄ = 1. We can therefore conclude that the interior maximum is unique. The profit
derivative (A.2) is first positive then negative, with a unique zero in the interior of the support
of the valuation distribution, which characterizes the optimal degree of exclusivity.

We now compare the equilibria with n and n + 1 competitors. We denote by v̄n and
v̄n+1 the optimal degrees of exclusivity and by b∗n and b∗n+1 the bidding functions in the two
situations. We set Gn = Fn and Gn+1 = Fn+1. For any v̄, the left-truncated distribution
Gn+1/(1 − Gn+1(v̄)) on (v̄, 1) first-order stochastically dominates the truncated distribution
Gn/(1−Gn(v̄)) on the same interval.13 We have

0 =

∫ 1

v̄n

[b∗n(m)− v̄n]
dGn(m)

1−Gn(v̄n)
≤

∫ 1

v̄n

[
b∗n+1(m)− v̄n

] dGn(m)

1−Gn(v̄n)

≤
∫ 1

v̄n

[
b∗n+1(m)− v̄n

] dGn+1(m)

1−Gn+1(v̄n)
.

13Algebraic computations show that bn − an/(1 − an) decreases with n for 0 ≤ a ≤ b ≤ 1. Applying this
property with a = F (v̄) and b = F (v) for v̄ ≤ v ≤ 1 shows the desired property.
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The first equality is the first-order condition when there are n competing buyers. The first
inequality follows from b∗n+1 ≥ b∗n. The second inequality follows from the monotonicity of the
function b∗n+1 and the first-order stochastic ordering of the distributions Gn+1/(1−Gn+1(v̄n))

and Gn/(1 − Gn(v̄n)) on the interval (v̄n, 1). Because the problem is quasi-concave in v̄, we
conclude that v̄n+1 ≥ v̄n: the optimal degree of exclusivity decreases with the number of
competitors.

Finally, we consider two valuation distributions F and F̃ with density functions f and f̃ . We
assume that F̃ stochastically dominates F according to the likelihood ratio order: f̃(x)/f(x) ≤
f̃(y)/f(y) for x ≤ y. We also assume that F , 1− F , F̃ and 1− F̃ are log-concave. We denote
by v̄ and ˜̄v the optimal degrees of exclusivity and by b∗ and b̃∗ the bidding functions under the
distributions F and F̃ . Finally we set G = Fn and G̃ = F̃n.

We start with two observations. First, differentiating F̃ /F and using the likelihood ratio or-
dering property shows that the function F̃ /F is nondecreasing, hence F̃ (x)/F̃ (y) ≤ F (x)/F (y),
and therefore G̃(x)/G̃(y) ≤ G(x)/G(y) for all x ≤ y and all n ≥ 1. In other words, the distri-
bution G̃/G̃(y) first-order stochastically dominates the distribution G/G(y) on [0, y] for all y.
From (1), it follows that the bidding functions are ranked b̃∗ ≥ b∗.

Second, multiplying f̃(x)/f(x) ≤ f̃(y)/f(y) and F̃n−1(x)/Fn−1(x) ≤ F̃n−1(y)/Fn−1(y)

yields f̃(x)F̃n−1(x)/f(x)Fn−1(x) ≤ f̃(y)F̃n−1(y)/f(y)Fn−1(y). In other words, the distribu-
tion F̃n stochastically dominates the distribution Fn according to the likelihood ratio order.
From standard arguments (two successive integrations), this property implies that for any v̄
the left-truncated distribution (G̃(v) − G̃(v̄))/(1 − G̃(v̄)) first-order stochastically dominates
the distribution (G(v)−G(v̄))/(1−G(v̄)) on the interval (v̄, 1). Now we can write

0 =

∫ 1

v̄
[b∗(m)− v̄]

dG(m)

1−G(v̄)
≤
∫ 1

v̄

[
b̃∗(m)− v̄

] dG(m)

1−G(v̄)
≤
∫ 1

v̄

[
b̃∗(m)− v̄

] dG̃(m)

1− G̃(v̄)
.

The first equality is the definition of v̄. The first inequality follows from b∗ ≤ b̃∗. The sec-
ond inequality follows from the monotonicity of the function b̃∗ and the first-order stochastic
ordering of the distributions (G̃(v) − G̃(v̄))/(1 − G̃(v̄)) and (G(v) − G(v̄))/(1 − G(v̄)) on the
interval (v̄, 1). Because the problem is quasi-concave in v̄, we conclude that ˜̄v ≥ v̄: there is less
exclusivity under F̃ than under F .

Proof of Proposition 3 The two distributions F and F0 satisfy the Conditional Stochastic
Dominance (CSD) assumption presented in the above study,14 which is a stronger property
than first-order stochastic dominance.

Under partial exclusivity, 0 < v̄I < 1, the joint profit of the IS-pair is vI when vI ≥ v̄I .
Otherwise an asymmetric auction takes place, where the strong player, E, has his valuation

14In the notations of Maskin and Riley (2000) page 419, βs = βw = 0, αs = 1, αw = v̄, γ = v̄, λ = F (v̄).
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distributed according to F on the whole interval [0, 1] while the weak player, I, has his valuation
distributed according to the truncated distribution FI = F/F (v̄I) on the subinterval [0, v̄I ].

Let [0, b̄] be the support of both players’ bid distributions and φI(b) denote the inverse
bidding function of player I in this asymmetric auction. We therefore have: φI(b̄) = v̄I .

We also consider the (counterfactual) symmetric auction where bidder E is equally weak as
bidder I, i.e. his valuation vE is drawn from the truncated distribution FI . We denote by yI(b)
the inverse bidding function and by [0, µI ] the support of the bid distribution in this symmetric
auction (hence yI(µI) = v̄I). We know from Corollary 3.4 and Part (iii) of Proposition 3.5 in
Maskin and Riley (2000) that µI ≤ b̄ and φI(b) ≤ yI(b) for all b ≤ µI : as these authors put it,
“if a weak bidder faces a strong bidder rather than a weak bidder he will bid more aggressively
(closer to his valuation)”. By monotonicity of the conditional expectation E (v|v ≤ v̄), it follows
that for all b ≤ µI

1

F (φI(b))

∫ φI(b)

0
vIf(vI)dvI ≤

1

F (yI(b))

∫ yI(b)

0
vIf(vI)dvI = b, (A.3)

where the right equality uses again the definition of the bid in a symmetric auction. For
µI ≤ b ≤ b̄, the same inequality holds as

1

F (φI(b))

∫ φI(b)

0
vIf(vI)dvI ≤

1

F (v̄)

∫ v̄

0
vIf(vI)dvI = µI ≤ b. (A.4)

Now, pick any value of vE . When I wins the asymmetric auction, the IS-pair has the same
payoff as under exclusivity. The interesting case is when E wins the auction, which happens if
vI < φI(bE(vE)); in this case, the above inequality with b = bE(vE) shows that the expected
profit of the IS-pair, namely F (φI(bE(vE)))bE(vE), is higher than the expected value of vI for
vI ≤ φI(bE(vE)), which yields the desired results.

Proof of Proposition 4 We start by studying the following asymmetric perturbation of
the symmetric first-price auction with n + 1 bidders: n strong bidders have their valuations
uniformly distributed on [0, 1] and one weak bidder has his valuation uniformly distributed on
[0, v̄], with v̄ being equal or close to one. If v̄ = 1, the auction is symmetric, with all bidding
functions being given by b∗(v) = nv/(n + 1) and all inverse bidding functions being given by
φ∗(b) = (n+ 1)b/n.

We are interested in the asymmetric auction where v̄ is slightly below one. We denote by bs
and bw the bidding functions of the strong and weak bidders respectively, and by φs and φw the
corresponding inverse bidding functions. Because v̄ is close to one, the changes in the bidding
and inverse bidding functions relative to the symmetric auction are small. Compared to the
symmetric auction, the n strong bidders reduce their bids while the weak bidder increases his
bid, formally dbs(v) = bs(v)− b∗(v) < 0 and dbw(v) = bw(v)− b∗(v) > 0. Below we show that
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the first-order variations are inversely proportional to the number of the bidders: the reaction
of the weak bidder is n times as large as that of the n strong bidders.

Lemma A.1 (Asymmetric perturbation of a symmetric first-price auction). Suppose that v̄ is
slightly below one. In absolute value, the changes in the bidding and inverse bidding functions
relative to the symmetric auction satisfy:

dbw = −n dbs > 0 and dφw = −n dφs < 0. (A.5)

Proof. The first-order condition of the weak bidder’s problem are:

n
φ′s(b)

φs(b)
=

1

φw(b)− b
(A.6)

while that of the strong bidder is

(n− 1)
φ′s(b)

φs(b)
+
φ′w(b)

φw(b)
=

1

φs(b)− b
. (A.7)

For i = s, w, we consider the difference yi(b) = dφi(b) = φi(b)− (n+ 1)b/n which is small when
v̄ is close to one. We observe that: yi(0) = 0 for the two types of bidders. A first-order Taylor
expansion of φ′i/φi yields:

φ′i
φi

=
1

b

[
1 +

n

n+ 1

(
y′i −

yi
b

)]
.

Similarly a first-order Taylor expansion of 1/(φi − b) yields

1

φi − b
=
n

b

(
1− nyi

b

)
.

After simplification by n/b, we get from (A.6) that

y′s −
ys
b

= −(n+ 1)
yw
b
.

and from (A.7) that

n− 1

n+ 1

(
y′s −

ys
b

)
+

1

n+ 1

(
y′w −

yw
b

)
= −nys

b
.

Combining the latter two equations yields z′ = −nz/b where the function z is defined by
z(b) = ys(b) + yw(b)/n. As z(0) = 0, we find that z is identically zero, hence yw = −nys, the
desired result for the perturbation of the inverse bid functions. By definition of the bid and
inverse bid functions, we have that: φi(bi(v; v̄); v̄) = v. Differentiating with v̄ at v̄ = 1, we get
n+1
n dbi + dφi = 0, hence

dbi = −n dφi /(n+ 1), (A.8)

which yields the result for the perturbations of the bid functions.
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We are now able to prove Proposition 4. We suppose that F is uniform on [0, 1] and compare
full competition (v̄ = 1) with partial exclusivity, v̄ slightly lower to one.

Let m = max(v1, · · · , vn) be the maximal valuation of the competitors. Compared to full
competition (v̄ = 1), partial exclusivity has two effects. On the one hand, for any given value
of m, partial exclusivity induces a loss for the seller-preferred buyer coalition in the form of
a reduction in the bids placed by competitors. As the competitors win with probability close
to Pr(v0 ≤ m) = m, this negative effect on the coalition’s profit is

δ1 = mdbs(m) < 0.

On the other hand, as v̄ decreases, the probability that the coalition deals internally increases
for two reasons: first because that buyer increases his bid and second because the competitors
decrease their bids. For any value of m, the probability that the coalition deals internally is

Pr(B0 gets the good |m) = 1− Pr(bs(m; v̄) ≥ bw(v0; v̄)) = 1− φw(bs(m; v̄); v̄),

which, as mentioned above, is close to m when v̄ is close to one. This probability depends on v̄
both directly and indirectly through bs(m; v̄). Differentiating with respect to v̄ at v̄ = 1 yields

d.Pr(B0 gets the good |m) = −dφw −
n+ 1

n
dbs > 0,

with both dφw and dbs being negative.15 This second effect benefits the coalition because in
this region it now earns m instead of nm/(n + 1). Hence a positive effect on the coalition’s
profit

δ2 = −
{

dφw +
n+ 1

n
dbs

}
m

n+ 1
> 0. (A.9)

Applying Lemma A.1, we get that the first component of δ2 is

−dφw
m

n+ 1
= n dφs

m

n+ 1
= −m dbs = −δ1,

where the second equality above uses (A.8). It follows that the net effect δ1 + δ2 is positive,
the desired result.

Proof of Proposition 5 We first consider the asymmetric auction with one weak bidder and
n strong bidders, n ≥ 2. The strong bidders have i.i.d. valuations drawn from the distribution
F with support on [0, 1]. The weak bidder has his valuation drawn in the right-truncated
F/F (v̄) on [0, v̄]. We denote by bs = b1 = · · · = bn the common bidding function of the strong
bidders. The support of the distribution of bids placed by the weak bidder and the strong
bidders are respectively the interval [0, b0(v̄)] and the interval [0, bs(1)].

15To obtain the second term, we have used φw(b; 1) = (n+ 1)b/n.
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When there is one competitor (n = 1), the two intervals are the same, b0(v̄) = bs(1),
regardless of the value of v̄. As explained at the beginning of section 5, the above equality
implies that bs(1) < v̄, which gives the coalition an incentive to deviate towards a higher degree
of exclusivity (a lower threshold v̄) than expected by the competitors. Doing so, the coalition
deals internally in a slightly expanded region, where it earns v̄ instead of bs(1).

The identity of the supports of the weak and strong b

Lemma 2. Suppose there are at least two competing buyers, n ≥ 2. Then there exists a
threshold v̂n in (0, 1) such that

• if v̄ ≥ v̂n, the weak bidder’s and strong bidders’ maximal bids coincide: bs(1) = b0(v̄) ≥
b∗n(1);

• if v̄ < v̂n, the weak bidder’s maximal bid is lower than the strong bidders’ maximal bid:
b0(v̄) < bs(1) = b∗n(1). Strong bidders with valuations above φ∗n(b0(v̄)) use the bidding
function b∗n as if the weak bidder were absent.

The threshold v̂n is such that: b0(v̂n) = b∗n(1). We have b∗n+1(v̂n) < b0(v̂n) < v̂n because
the weak bidder bids more aggressively than in the symmetric auction with n + 1 bidders. It
follows that 0 < b∗n(1) < v̂n < φ∗n+1(b∗n(1)) < 1.

When v̄e is higher than v̂n, the distribution of bids have the same support for all players,
and as a result the highest bid placed by the competitors is strictly lower than the exclusivity
threshold: the unraveling reasoning exposed in the one competitor case (see the beginning
of section 5) applies: deviating to a slightly more exclusive agreement is profitable for the
coalition.

Suppose now v̄e ≥ v̂n. The probability that the indifferent preferred buyer v0 = v̄e at
the candidate equilibrium is Gn(φ∗n(b0(v̄e))) < 1. The indifference condition yields the strike
price b̄e:

v̄e − b̄e = Gn(φ∗n(b0(v̄e))) [v̄e − b0(v̄e)] .
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