
Google Season of Docs 2023

MicroPython Case Study

Organization: MicroPython

Organization Description: MicroPython provides a way to run Python 3.x code on a
microcontroller or small embedded system

Organization Docs project title: Implement stubfile-based API documentation for
MicroPython

Authors: Damien George, Matt Trentini, Jim Mussared

Problem Statement
This project attempted to address several different problems with the MicroPython
documentation, but the two primary areas were:

● To make it easier to write, maintain, and ensure consistency and accuracy of
developer-focused API documentation. As MicroPython is a developer tool, this API
documentation is the main area of our documentation for most users. A particular
goal was also to make this documentation easier to access through other methods
(e.g. IDE auto-completion) via stub-files.

● To improve the overall hierarchy and structure of the documentation to reduce
duplication, make it easier to find information. The documentation has grown
organically over the past decade, and it can be difficult to find the right information.

Proposal Abstract
1. Adapt two techniques used by the PyBricks project (PyBricks is a project to integrate

MicroPython into Lego products, e.g. MindStorms, and they have excellent
documentation tailored to their specific needs):

○ Inline annotations in API documentation to indicate supported platforms.
○ Move existing rST API docs to inline API docs in stub files, loaded

automatically into Sphinx. This is also significantly easier to write and
maintain than the existing rST-based approach.

2. Audit the existing platform-specific documentation and extract common tutorials and
guides into new general-purpose guides that apply to all ports that support the
relevant feature. e.g. all boards that support WiFi should be able to share the same
“connecting to an access point” guide.

○ In general, move as much platform-specific documentation into the main
documentation, and de-duplicate this information in the process

3. Capture comments from the core team that have been made in various community
forums (GitHub Discussions, Issues, PRs, Discord) into proto-guides. There is a

https://docs.google.com/document/d/1JtwBneelTCVpFIw4ER0POs_-jksD96I00qqanieELMQ


tremendous amount of very detailed explanation of technical details available in such
forums. It is better to have partial guides (clearly marked as such) than to have no
guide at all, and this also provides a good starting point for further contributions.
Some areas in particular:

○ Using MicroPython in real products (i.e. additional steps and information
above what a hobby project would need)

○ Using MicroPython with existing IoT infrastructure
○ Working with packages and package management
○ Customising MicroPython for project-specific requirements

4. Restructure the overall hierarchy of the documentation:
○ Separate tutorial- and guide-like content from the existing API documentation,

and combine it with de-duplicated platform-specific content into a new
“Guides and Tutorials” section, with a focus on specific, common tasks and
workflows. This requires mostly reorganising and updating existing content to
make it more discoverable and useful, rather than writing new content from
scratch.

○ Re-organise the existing “Internals” and “Language and implementation”
sections into a hierarchy of topic- and audience-specific guides. There is a lot
of existing content that can be reused and recycled here, but new content
needs to be written too. One specific target of this goal is to establish a
common template and style for these guides, making it easier for other
contributors to extend and add content.

5. Add documentation about how to effectively contribute to the documentation. This
exists for code contributions, but a documentation-specific contributors guide would
be helpful, especially for new contributors.

Project Description

Creating the proposal
The MicroPython project has participated in Google Season of Docs twice before (2020,
2021), so the process was familiar.

The five areas of work proposed are based on ideas that are well-known to the project and
have been on our TODO-list for a long time. The stub-file area was prioritised because
improving IDE auto-completion is a frequently-requested feature, and also because the
difficulty of authoring Sphinx/reStructuredText documentation is a barrier to new contributors.

Budget
The budget was largely decided by considering the total time available for the project, the
time that could be committed by the tech writer, and a reasonable hourly rate. It was
anticipated that the tech writer would spend between 120-160 hours on this project in total,
in a flexible schedule between April and November. We deliberately prepared a priority order
of work to be done with the expectation that this would not all be completed in the time
available.



The project also receives funding through GitHub Sponsors, and this will be helpful to
finance continued work on the documentation. In particular, any remaining incomplete tasks
at the end of the Google Season of Docs 2023 timeframe will hopefully be able to be funded
by available GitHub Sponsors funds. This source of income may also be able to subsidise
ongoing improvements to the documentation in the future.

Participants
The mentors for this season were Damien George (MicroPython creator and core developer)
and Matt Trentini (MicroPython community member and contributor), who have both been
mentors in the previous two years of Google Season of Docs that MicroPython was part of.

The tech writer for this year was Jim Mussared. He was already a regular contributor to the
project (code, issue triage, forums) and also made occasional documentation contributions.
Having prior experience with and knowledge about the project made him a very good
candidate for the tech writer. Working with an existing contributor simplified the experience
considerably because there were no on-boarding or process overhead issues, and the time
commitment required by the project mentors was minimal.

Timeline
April-May 2023
Groundwork for making Sphinx consume stub files as part of the documentation generation
process. This involved prototyping and working on Sphinx extensions.

May-June 2023
Importing generated stub files using the micropython-stubber project. Start adding
annotations (e.g. supported ports, version-added, etc), as well as type annotations, and
formatting of function arguments and return types.

June-July 2023
Start improving the content/wording of API documentation in the stub files. Audit structure of
existing docs. Investigate using a tab component to isolate port-specific differences
(generated via type annotation in the stub files)

July-September 2023
Replace the "MicroPython internals" and "MicroPython language & implementation" sections
with a more structured "Guides" section, start adding new guides and updating existing
content to fit this structure. Rename "MicroPython libraries" to "Library & API reference" and
update the top-level index to provide a more straightforward introduction.

September-October 2023
No progress, mostly due to work on MicroPython v1.21 release.

October-November 2023
Add top-level FAQ with useful entry points to the guides. Table-of-contents improvements so
that top-level classes are listed in the TOC making it easier to navigate to these



frequently-used classes. Improve the glossary. Ongoing work on stub files, API
documentation, annotations, guides.

Results
Of the five main areas of work described in the proposal, there was significant progress
made on #1 (stub files), #2 (audit) and #4 (restructure). No work was done on #3 (capturing
comments from forums), or #5 (contributors), however relating to #5, an extensive guide was
written to assist contributors (not just documentation writers) for effectively working with Git
and GitHub in the context of the MicroPython project.

The stub file work ran into some early technical limitations with the Sphinx documentation
generator that MicroPython uses. We had misunderstood some details of the approach used
by PyBricks, but our tech writer was able to find some workarounds by implementing Sphinx
extensions (which we have also shared with Pybricks). These are completely reasonable
limitations and not a criticism of Sphinx, rather they are quite specific to the task of
documenting MicroPython because we are essentially re-documenting Python language and
Python standard library features. This confuses Sphinx as it wants to use the Python version
of these APIs instead. Other extensions were to improve Sphinx's ability to handle
overloaded functions as well as a mechanism to extract annotations from the stub files.

Of the 43 modules in the API documentation, all have been converted to stub files and are at
varying stages of updates (type annotations, port/version annotations, rewording and
extending content, adding missing methods). Five modules have been fully completed.

The audit of the existing documentation structure identified a way to separate API
documentation from the guide/tutorial-style documentation in a way that doesn't require so
much port-specific content. The subsequent restructure work is still ongoing, but significant
progress has been made. This turned out to require a lot of effort to de-duplicate similar
content, as well as identifying subtle improvements to API documentation to highlight
port-specific differences. Having a new way to annotate the API documentation in the stub
files made it much easier to capture these differences.

Also, by doing this audit across the documentation we were able to identify areas that were
lacking and add placeholders to indicate where new contributions could be made.
Additionally, a number of consistency and style issues were identified and refactorings were
done to improve usage of Sphinx/rST features.

Metrics
Some long-term metrics are described in the proposal, however as this work is still ongoing it
will be some time before we can make any meaningful evaluations. We will continue to
monitor the documentation PRs (total docs PRs, distinct committers, % by non-core-team)
and forum questions that can be answered with a simple link to the docs, as described in the
proposal. These metrics can be reported in the follow-up surveys in 2024.



Analysis
Although the new documentation is not yet "live", we are very pleased with the progress
made in this project and are looking forward to the final result.

By working with an existing contributor, the Google Season of Docs work was able to be very
efficient, with little overhead imposed on the mentors. On the other hand, because Jim was
very involved with other aspects of the project (for example a number of features and testing
for the v1.21 release, as well as other unrelated documentation tasks), there were significant
other demands on his time, making it difficult to make as much progress on the
documentation work as we would have desired. However, as an active and ongoing
contributor, Jim will continue to work on the documentation tasks, and we plan to allocate
some of our GitHub Sponsorship funding for this.

Summary
MicroPython was once again very grateful for the opportunity to participate in Google
Season of Docs. This year's project has kick-started a much-needed overhaul of our
documentation that likely would not have happened without the Season of Docs project and
associated funding. Jim had very strong background knowledge of the project, the ability to
formulate precise wording to document the subtleties of the MicroPython APIs, and a good
plan to tackle the proposed documentation work. We are very happy with the progress that
he made and look forward to him continuing and completing the work.

Advice for other projects participating in Google Season of Docs:
● Season of Docs allowed us to support an existing contributor to this project. This

significantly improved the efficiency of mentoring and documentation, but one should
watch out for other/existing project commitments, that they don’t hinder the progress
on the documentation efforts. We would love to repeat this in the future with other
contributors to the project.

● Having a range of different tasks allowed a bit more variety in the project. Manually
converting existing documentation into stub files was tedious, so mixing it up with the
other tasks was beneficial.

● The set of five documentation tasks were ordered by priority, and we made it clear
that the goal was just to make as much progress as possible, not to complete all the
tasks. The tasks were chosen so that any progress towards them was valuable. This
allowed for more flexibility (on both the mentor and tech writer sides) and more
chance of success.

● GitHub Sponsorship funds allow us to have some budget to finish off the parts of the
documentation changes that were started but not completed as part of Google
Season of Docs. This allows us to maximise the benefit we get from the tech writer.

Acknowledgements
We are extremely grateful to Jos Verlinde and his micropython-stubber project. This project
includes a tool that parses the existing MicroPython documentation and applies some
heuristics to generate stub files. These stub files still required a considerable amount of

https://github.com/Josverl/micropython-stubber


manual rewriting and enhancement as well as type and other annotations but it was a great
starting point for building these files.


