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Elliptic modular polynomials

Let ` ≥ 1 be a prime. The elliptic modular polynomial of level `

Φ` ∈ Z[X ,Y ]

is an equation for the modular curve X0(`).
If k is a field of char. 6= `, and if E and E ′ are elliptic curves over k , then

Φ`(j(E ), j(E ′)) = 0 ⇐⇒ E and E ′ are `-isogenous over k.

Algorithmic applications

• Detect `-isogenies = navigate `-isogeny graphs.

• Compute `-isogenies without prior knowledge of the kernel: SEA.

Better complexities than computing the full `-torsion of E .
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Size bounds for elliptic modular polynomials

The height h(F ) of F ∈ Q(X1, . . . ,Xn) is log(max|c |), where c runs
through the nonzero coefficients in an irreducible form of F .

Size bounds for Φ`

• Φ` has degree `+ 1 in both variables X and Y .

• h(Φ`) ∼ 6` log ` [Cohen ’84].

Storing Φ` costs O(`3 log `) space. Large databases [Sutherland].
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Plan

1. Higher-dimensional modular equations

2. Size bounds for modular equations

3. Evaluating modular equations for abelian surfaces

4 / 23



Higher-dimensional modular
equations
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PEL Shimura varieties

Moduli spaces for complex abelian varieties of fixed dimension g with a
certain PEL structure: Polarization, Endomorphisms, Level.

Choose:

• two connected components S and T of a PEL Shimura variety,
defined over a number field L;

• coordinates = modular functions: j1, . . . , jn defined over L.
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Higher-dimensional modular equations

Modular equations describe Hecke correspondences H on S × T : locus of
abelian varieties linked by isogenies of a certain type.

• degree d(H) = number of isogenies described by H;

• isogeny degree l(H).

Analytic formulæ defining modular equations:
Products of d(H) factors involving invariants of isogenous abelian
varieties.

Concretely:

ΨH,m ∈ L(J1, . . . , Jn)[Y ] for 1 ≤ m ≤ n.

Roots of ΨH,1 are the values of j1 at isogenous abelian varieties.
Then ΨH,2 gives j2, etc: lexicographic Gröbner basis.
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Example 1: Siegel spaces

Ag = Sp2g (Z)\Hg classifies p.p.a.v.’s of dimension g ; def. over Q.

Case g = 2: Igusa invariants j1, j2, j3 define a birational map A2 → P3.

Siegel modular equations for abelian surfaces

Ψ`,m ∈ Q(J1, J2, J3)[Y ] for 1 ≤ m ≤ 3.

They encode `-isogenies between p.p. abelian surfaces, of degree `2.
[Dupont ’06; Bröker, Lauter ’09; Milio ’15].
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Example 2: Hilbert surfaces [1]

F fixed real quadratic field. Then

Γ(1)F = SL(ZF ⊕ Z∨F ) ⊂ SL2(F )

acts on H2
1. The Hilbert surface A2,F = Γ(1)F\H2

1 classifies p.p. abelian
surfaces A with RM by ZF : i.e. ZF ↪→ End(A)†.
There is an involution σ of A2,F given by Galois conjugation.

The case F = Q(
√
5)

Gundlach invariants g1, g2 define a birational map A2,F/〈σ〉 → P2.
In general, use Igusa invariants.
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Example 2: Hilbert surfaces [2]

Hilbert modular equations for abelian surfaces
Let β ∈ ZF be a totally positive split prime, and ` = NF/Q(β).

For F = Q(
√
5):

Ψβ,m ∈ Q(g1, g2)[Y ] for 1 ≤ m ≤ 2.

They encode β- and σ(β)-isogenies, both of degree ` [Martindale ’20;
Milio, Robert ’20].
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State of the art

We know how to:

• Compute modular equations of small levels, and examples of
isogenous p.p. abelian surfaces.

• Generalize Atkin’s method for point counting [Ballentine, Guillevic,
Lorenzo-García, Martindale, Massierer, Smith, Top ’16].

• Compute isogenies without prior knowledge of their kernels [K.,
Page, Robert 202?]. SEA for abelian surfaces?

Complexity bounds? Better than using the full `-torsion?
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Size bounds for modular
equations
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Main result

As before: H Hecke correspondence, degree d(H), isogeny degree l(H).

Theorem (K. 202?)

1. The degree of modular equations is O(d(H)).

2. The height of modular equations is O(d(H) log l(H)).

Constants depend on the choice of invariants.
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Examples

Corollary

Degree Height # Variables Total size
Φ` O(`) O(` log `) 2 O(`3 log `)

Siegel O(`3) O(`3 log `) 4 O(`15 log `)

Hilbert OF (`) OF (` log `) 3 OF (`4 log `)

Recall: ` = NF/Q(β).

Remark

In the Siegel case, and in the Hilbert case for F = Q(
√
5): we can obtain

explicit constants.
Degree bounds are tight, height bounds are not.

14 / 23



Ideas of proof: degree bounds

We identify an explicit denominator of modular equations.

Example: Φ`

• The denominator of j is ∆. Coefficients of Φ`(j(τ),Y ) are of the
form f /g` where

g`(τ) =
∏

γ∈Γ0(`)\ SL2(Z)

(γ∗τ)−12∆( 1
`γτ).

• g` has weight wt(g`) = d(H) wt(∆) = 12(`+ 1).

• Write
f

g`
=

P(E4,E6)

Q(E4,E6)
; then deg(P), deg(Q) ∈ O(`).

• Replace E 2
6 → E 3

4 (1 + 1/j) and simplify. We obtain a rational
fraction in j of degree O(`).
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Ideas of proof: height bounds

Evaluation-interpolation strategy
In the case of Φ`: [Pazuki ’19]

1. Evaluations of modular equations at “small points” have
height O(d(H) log l(H)).

2. If a rational fraction F of degree d satisfies h(F (x)) ≤ H for a lot1

of points x , then h(F ) is roughly ≤ H + O(d log d) [K. 202?].

In Step 1, use the modular interpretation:

• The difference in Faltings heights is O(log l(H));

• The Faltings height is related to the the height of invariants, via
Theta heights [Pazuki ’12]

1depending on d and H.
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Complexity of modular equations

No asymptotic improvements on point counting or isogenies using
modular equations for abelian surfaces written in full.

But!
In practice, we only need evaluations of modular equations and their
derivatives at fixed points over a finite/number field.
These evaluations have a smaller total size: O(`6(h(j1, j2, j3) + log `)) in
the Siegel case.
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Evaluating modular equations
for abelian surfaces
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Complex approximations

Outline of the evaluation algorithm
Siegel case, over Q: let j1, j2, j3 ∈ Q of height H.

1. Find τ ∈ H2 with these Igusa invariants.

2. Enumerate isogenous period matrices and compute Igusa invariants
(via theta constants).

3. Compute evaluated modular equations analytically.

4. Recognize rational numbers.

Steps 1 and 2 can be heuristically done in quasi-linear time in the
required precision for fixed arguments [Dupont ’06].
Here the arguments depend on H, and so does the required precision.
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Precisions on the algorithm

• Make a heuristic on the computation of theta constants on a fixed
compact set of τ ’s. For other values, reduction to the fundamental
domain + duplication formulæ.

• Use the structure of Siegel modular forms over Z to recognize
integers instead of rational numbers.

• Analyze precision losses. Provably correct output.
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Results

Theorem (K., 202?, under heuristic)

1. We can evaluate Hilbert modular equations of level β for F = Q(
√
5)

at (g1, g2) ∈ Q2 of height at most H in time Õ(`H2 + `2H).

2. We can evaluate Siegel modular equations of level `
at (j1, j2, j3) ∈ Q3 of height at most H in time Õ(`3H2 + `6H).

Almost quasi-linear time. For general F , heuristic rational reconstruction.
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Consequences on point counting

Hilbert case
We can heuristically count points on p.p. abelian surfaces A/Fp with RM
by ZF in time ÕF (log4 p) on average.

• Same asymptotic complexity as SEA up to a constant factor.

• Improves on Schoof’s method in ÕF (log5 p) [Gaudry, Kohel,
Smith ’11].

Siegel case
If A is a p.p. abelian surface over Fp with small invariants (e.g. reduction
of a fixed abelian surface over a number field), then we can heuristically
count points on A in time Õ(log7 p).

• Improves on Schoof’s methof in Õ(log8 p)∗ [Gaudry, Harley ’00;
Gaudry, Schost ’12]

• No asymptotic improvement for a general A/Fp.
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Questions

Thank you for listening!

Any questions?
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