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Isogenies

Fix a base field k , a number field.

Definition

An isogeny between two abelian varieties is φ : A↠ B such that #kerφ <∞.

Isogenies are obtained by taking quotients by finite rationals subgroups. Being

isogenous is an equivalence relation, as we have φ∨ : B∨ → A∨.

We are interested in the isogeny class of A over k.
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Isogeny classes

Two abelian varieties in the same isogeny class share many properties, including

• L-function

• Mordell–Weil rank

• Endomorphism algebra End(A)⊗Q.

Theorem (Faltings)

The isogeny class of A over k is finite.

Can construct (finite, connected) isogeny graphs:

• Vertices are abelian varieties in an isogeny class,

• Edges are irreducible isogenies, e.g. labeled by degree.

Question

What are the possible isogeny graphs?

3/26



Elliptic curves over the rationals: the LMFDB

We can explore isogeny graphs of elliptic curves over Q at www.LMFDB.org.

• Ignoring degrees, we find 10 different graphs:

Size 1 2 3 4 6 8

Examples 37.a 26.b 11.a 27.a, 20.a, 17.a 14.a, 21.a 15.a, 30.a

• All edge labels, i.e. degrees of irreducible isogenies, are prime.

• Not all primes ℓ appear as isogeny degrees: only

ℓ ∈ {2, . . . , 19, 37, 43, 67, 163}.
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www.LMFDB.org
https://www.lmfdb.org/EllipticCurve/Q/37/a/
https://www.lmfdb.org/EllipticCurve/Q/26/b/
https://www.lmfdb.org/EllipticCurve/Q/11/a/
https://www.lmfdb.org/EllipticCurve/Q/27/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/
https://www.lmfdb.org/EllipticCurve/Q/17/a/
https://www.lmfdb.org/EllipticCurve/Q/14/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/


Elliptic curves over the rationals: theorems

Lemma

Any isogeny φ : E → E ′ can be factored as E
[n]−→ E

φ1−→ E1
φ2−→ · · · φn−→ En = E ′,

where deg(φi ) = ℓi are primes.

Theorem (Mazur)

If φ : E → E ′ defined over Q has prime degree ℓ, then ℓ ∈ {2, . . . , 19, 37, 43, 67, 163}.

Theorem (Kenku)

Any isogeny class of elliptic curves over Q has size at most 8.

Chiloyan – Lozano-Robledo 2021

Complete classification of possible labeled isogeny graphs.

The LMFDB contains examples for all of these graphs.
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Higher dimensions?

No such complete picture away from elliptic curves over Q.

One approach is to collect data:

Algorithmic problem

Given an abelian variety A over a number field k , compute its isogeny class.

Eventually restrict to the simplest higher-dimensional case:

• Abelian surfaces

• endowed with principal polarizations

• over k = Q
• that are typical, i.e. End(Aal) = Z.

These are all Jacobians of genus 2 curves over Q.

www.LMFDB.org contains genus 2 curves with small discriminants, grouped by

(heuristic) isogeny class of their Jacobians, but these isogeny classes are not complete. 6/26

www.LMFDB.org


Algorithmic approach

Algorithmic problem

Given an abelian variety A over a number field k , compute its isogeny class.

For an elliptic curve E/Q:

1. Search for ℓ-isogenies E → E ′ for each ℓ in Mazur’s list. This is a finite problem.

2. Reapply on E ′ as needed.

In general:

1. Reduce to finitely many isogeny types. (E.g., “prime degree” for elliptic curves)

2. Compute a finite number of possible degrees. We now face a finite problem.

3. Search for all isogenies of a given type and degree.

4. Reapply as needed.
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Classification of isogenies

φ : A→ B isogeny between principally polarized abelian varieties.

A B

A∨ B∨

φ

φ∨

λB∼∼ λA
⇝ µ = λ−1

A ◦ φ
∨ ◦ λB ◦ φ ∈ End(A).

Recall that End(A) has a positive Rosati involution † defined by µ† = λ−1
A ◦ µ

∨ ◦ λA.

Theorem (Mumford)

There is a bijection{
φ : A→ B

}
←→

{
(µ,K ) :

µ ∈ End(A)†, µ > 0

K ⊆ A[µ] maximal isotropic

}
φ 7−→

(
λ−1
A ◦ φ

∨ ◦ λB ◦ φ, kerφ
)
.
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Irreducible isogeny types

Assume now that End(A)† = Z. (True in particular if A is typical).

Any φ : A→ B satisfies: ker(φ) is maximal isotropic in A[n] for some n ∈ Z≥1.

Up to decomposing φ, can assume n = ℓe is a prime power.

Lemma

Assume e ≥ 3. If K ⊂ A[ℓe ] is maximal isotropic, then ℓK ∩ A[ℓe−2] is maximal

isotropic in A[ℓe−2].

Thus, any isogeny φ : A→ B can always be factored as

A = A0
φ1−→ A1

φ2−→ A2
φ3−→ · · · φn−→ An = B,

where ker(φi ) is maximal isotropic in Ai−1[ℓi ] or Ai−1[ℓ
2
i ], for ℓi prime.
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Irreducible isogeny types for abelian surfaces

Further assume that A is an abelian surface (with p.p., and End(A)† = Z). Then the

other p.p. abelian surfaces in the isogeny class of A can be enumerated by looking at

isogenies φ of the following types:

1. 1-step: K := ker(φ) is a maximal isotropic subgroup of A[ℓ], so K ≃ (Z/ℓZ)2,

2. 2-step: K is a maximal isotropic subgroup of A[ℓ2] and K ≃ (Z/ℓZ)2 × Z/ℓ2Z.

Degree ℓ2 and ℓ4 respectively.

Over Qal, every 2-step isogeny decomposes as a sequence of two 1-step isogenies, in

ℓ+ 1 different ways (permuted by Galois).
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Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

Elliptic curves /Q Typical p.p. abelian surfaces /Q
Isogeny types Prime degree 1-step or 2-step ✓

Possible degrees Mazur’s theorem ?

Search for isogenies
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Serre’s open image theorem

Theorem (Mazur)

If φ : E → E ′ defined over Q has prime degree ℓ, then ℓ ∈ {2, . . . , 19, 37, 43, 67, 163}.

No uniform result à la Mazur is known for abelian surfaces. However:

Serre’s open image theorem

If A is a typical abelian surface, then its Galois representation has open image

in GSp4(Ẑ). Thus, A[ℓ] has nontrivial rational subgroups only for finitely many ℓ’s.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo,

Zywina give bounds on such ℓ’s (depending on A), but are impractical.
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Dieulefait’s algorithm

Results of Lombardo, Zywina give bounds on ℓ as in Serre’s open image theorem

(depending on A), but are impractical.

Instead we use:

Algorithm (Dieulefait)1

Input: Conductor of A and a finite list of L-polynomials

Output: Finite superset of primes ℓ with reducible mod-ℓ Galois representation.

Example where the only possibilities are isogenies of degree 312:

C : y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45.

1See also Banwait–Brumer–Kim–Klagsbrun–Mayle–Srinivasan–Vogt (2023).

13/26



Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

Elliptic curves /Q Typical p.p. abelian surfaces /Q
Isogeny types Prime degree 1-step or 2-step ✓

Possible degrees Mazur’s theorem Dieulefait’s algorithm ✓
Search for isogenies ? ??
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Modular polynomials

Elliptic curves: usually search for ℓ-isogenies using algebraic equations for the cover of

modular curves X0(ℓ)→ X (1).

E.g., the modular polynomials Φℓ(x , y) ∈ Z[x , y ] defined by

Φℓ(j , j
′) = 0⇐⇒ ∃φ : Ej −→ Ej ′ such that kerφ ≃ Z/ℓZ.

Size grows as Õ(ℓ3), big but manageable (28MB for ℓ = 163).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical.

More variables: Φℓ(x1, x2, x3, y) ∈ Q(x1, x2, x3)[y ].

Size grows as Õ(ℓ15) (K. 2022), already ≫ 29GB for ℓ = 7.

We use complex-analytic methods instead.
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Moduli space of elliptic curves

Let E/C be an elliptic curve. Moduli space: SL2(Z)\H1.

Can choose τ ∈ H1 and an equation E : y2 = x3 − 27c4x − 54c6 such that

E (C) ≃ C/(Z+ τZ),
dx

2y
7→ 2πi dz .

Then c4, c6 are modular forms:

c4 = E4(τ), c6 = E6(τ), hence j(E ) = j(τ) = 1728
E4(τ)

E4(τ)3 − E6(τ)2
.

Theorem

The graded C-algebra of modular forms on H1 for SL2(Z) is C[E4,E6].

Moreover E4, E6 have integral, primitive Fourier expansions.

Hence c4, c6 are indeed “the right invariants” to consider. 16/26



Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form C2/(Z2 + τZ2) with τ ∈ H2.

Moduli space: Sp4(Z)\H2.

Theorem (Igusa)

The graded C-algebra of (scalar-valued) Siegel modular forms of even weight on H2

for Sp4(Z) is C[M4,M6,M10,M12], where the Mi are algebraically independent.

Normalized such that the Mj have primitive, integral Fourier expansions and M10, M12

are cusp forms.

Explicit relations with the Igusa–Clebsch invariants I2, I4, I6, I10 of a genus 2 curve:

M4 = 2−2I4, M6 = 2−3(I2I4 − 3I6),

M10 = −2−12I10, M12 = 2−15I2I10.

The Mj ’s are “the right invariants” on the moduli space of p.p. abelian surfaces.
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Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic side.

• Elliptic curves: the complex tori ℓ-isogenous to C/(Z+ τZ) are given by

C/(Z+ 1
ℓητZ)

where η ∈ SL2(Z) are coset representatives for Γ0(ℓ)\SL2(Z).
Note: 1

ℓητ = γτ where γ =
(
1 0
0 ℓ

)
η ∈ GL2(Q)+.

• Abelian surfaces: explicit sets S1(ℓ), S2(ℓ) ⊂ GSp4(Q)+ such that for i = 1, 2,{
ab. surfaces i-step ℓ-isogenous to C2/(Z2 + τZ2)

}
=

{
C2/

(
Z2 + γτZ2

)}
γ∈Si (ℓ)

.

Cf. explicit formulas for Hecke operators T (ℓ),T1(ℓ
2).

Algorithmic problem

Decide when γτ ∈ H2 is attached to an abelian surface defined over Q.
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Construction of algebraic integers

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier coefficients, then

12k f ∈ Z[M4,M6,M10,M12].

Theorem

Let τ ∈ H2 such that there exists λ ∈ C× with λjMj(τ) ∈ Z for j ∈ {4, 6, 10, 12}.
If f is a Siegel modular form of even weight k with integral Fourier coefficients, then∏

γ∈Si (ℓ)

(
X −

(
12λℓ3 det(cγτ + dγ)

−1
)k
f (γτ)

)
∈ Z[X ].

Thus, for each j ∈ {4, 6, 10, 12}, the complex numbers

N(j , γ) :=
(
12λℓ3 det(cγτ + dγ)

−1
)j
Mj(γτ) for γ ∈ Si (ℓ), i = 1 or 2,

form a Galois-stable set of algebraic integers. 19/26



Algorithm and certification

Input: Invariants m4,m6,m10,m12 ∈ Z of a genus 2 curve, a prime ℓ, and i ∈ {1, 2}.

Output: Invariants of all i-step ℓ-isogenous abelian surfaces.

1. Compute complex balls that provably contain:

• τ ∈ H2

• λ ∈ C× such that λjMj(τ) = mj for j ∈ {4, 6, 10, 12}
• N(j , γ), for each j ∈ {4, 6, 10, 12} and γ ∈ Si (ℓ).

2. Keep the γ0’s such that N(j , γ0) contains an integer m′
j for each j ∈ {4, 6, 10, 12}.

The m′
j are putative invariants for the abelian surface attached to γ0τ .

3. Confirm that N(j , γ0) = m′
j by certifying the vanishing of∏
γ∈Si (ℓ)

(
N(j , γ)−m′

j

)
∈ Z.

We need to recompute N(j , γ0) (only!) to a much higher precision.
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Example, continued

Let ℓ = 31, i = 1 and

C : y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45.

Working at 300 bits of precision, there is only one γ0 such that the N(j , γ0) for

j ∈ {4, 6, 10, 12} contain integers:

N(4, γ0) = α2 · 318972640± 7.8× 10−47,

N(6, γ0) = α3 · 1225361851336± 5.5× 10−39,

N(10, γ0) = α5 · 10241530643525839± 1.6× 10−29,

N(12, γ0) = −α6 · 307105165233242232724± 4.6× 10−22

where α = 22 · 32 · 31.

We certify these equalities by working at 4 128 800 bits of precision. Use certified

quasi-linear time algorithms for the evaluation of modular forms (K. 2022).∗
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Reconstructing a genus 2 curve

Given (m′
4,m

′
6,m

′
10,m

′
12) = (318972640, 1225361851336, 10241530643525839, . . .),

find a corresponding curve C ′ such that Jac(C ) and Jac(C ′) are isogenous over Q.

Mestre’s algorithm yields

y2 = −1624248x6+5412412x5−6032781x4+876836x3−1229044x2−5289572x−1087304,

a quadratic twist by −83761 of the desired curve

C ′ : y2+xy = −x5+2573x4+92187x3+2161654285x2+406259311249x+93951289752862.

We reapply the algorithm to C ′, and we only find the original curve.

Comments:

• 113 minutes of CPU time for this example; 90% is to certify the results.

• Can independently create a certificate for the isogeny (6.5 hours and 3 MB).
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LMFDB data

Originally 63 107 typical genus 2 curves in 62 600 isogeny classes.

By computing isogeny classes, we found 21 923 new curves.

Size 1 2 3 4 5 6 7 8 9 10 12 16 18

Count 51 549 2 672 6 936 420 756 164 40 45 3 2 3 9 1

Observation

A 2-step 2-isogeny (of degree 16) always implies an existence of a second one.

This explains the 6913 △ and the 756 ▷◁ we found.

The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

• 349.a: 56 min, isogeny of degree 134.

• 353.a: 23 min, isogeny of degree 114.

• 976.a: 19 min, checking that no isogeny of degree 294 exists.
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https://www.lmfdb.org/Genus2Curve/Q/349/a/
https://www.lmfdb.org/Genus2Curve/Q/353/a/
https://www.lmfdb.org/Genus2Curve/Q/976/a/
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Upcoming to LMFDB

A new set of 5 235 806 curves due to Sutherland is soon to be added to the LMFDB.

Of these, 1 823 592 are typical, split amongst 1 538 149±ε isogeny classes.

We found 688 094 new curves (in 97 days). Counts per size:

1 2 3 4 5 6 7 8 ≥ 9

1 098 812 125 694 212 000 58 310 16 925 15 459 498 6 073 4 270

We discovered irreducible isogenies of degree

22 (= Richelot isogenies), 24, 32, 34, 52, 54, 72, 74, 114, 132, 134, 172, 312.

• Size 2: 75% have degree 22, 22% have degree 34, and then 32, 54, 52, 74, 72, . . .

• Size 3: 99.2% are △ of degree 24 isogenies.

• Size 4: 97.8% are >− of Richelot isogenies.

• Size 5: 99.8% are ▷◁ of degree 24 isogenies.

• Size 6: 75% + 15% are two graphs consisting of Richelot isogenies. 24/26



Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves outside our database, with

conductor 497051100 = 22 · 33 · 52 · 72 · 13 · 172:
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The end

https://arxiv.org/abs/2301.10118

Thank you.
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