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Isogenies

Fix a base field k, a number field.

Definition

An isogeny between two abelian varieties is ¢ : A — B such that # ker ¢ < .
Isogenies are obtained by taking quotients by finite rationals subgroups. Being
isogenous is an equivalence relation, as we have ¢V : BY — AV,

We are interested in the isogeny class of A over k.
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Isogeny classes

Two abelian varieties in the same isogeny class share many properties, including
e [-function
o Mordell-Weil rank
e Endomorphism algebra End(A) ® Q.

Theorem (Faltings)

The isogeny class of A over k is finite.

Can construct (finite, connected) isogeny graphs:
e Vertices are abelian varieties in an isogeny class,
e Edges are irreducible isogenies, e.g. labeled by degree.

Question

What are the possible isogeny graphs?
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Elliptic curves over the rationals: the LMFDB

We can explore isogeny graphs of elliptic curves over Q at www.LMFDB. org.

e Ignoring degrees, we find 10 different graphs:

Size 1 2 3 4 6 8
Examples 37.a 26.b 1l1.a 27.a3, 20.a, 17.a 14.a,21.a 15.a, 30.a

e All edge labels, i.e. degrees of irreducible isogenies, are prime.

e Not all primes ¢ appear as isogeny degrees: only

¢e{2,...,19,37,43,67,163)}.
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www.LMFDB.org
https://www.lmfdb.org/EllipticCurve/Q/37/a/
https://www.lmfdb.org/EllipticCurve/Q/26/b/
https://www.lmfdb.org/EllipticCurve/Q/11/a/
https://www.lmfdb.org/EllipticCurve/Q/27/a/
https://www.lmfdb.org/EllipticCurve/Q/20/a/
https://www.lmfdb.org/EllipticCurve/Q/17/a/
https://www.lmfdb.org/EllipticCurve/Q/14/a/
https://www.lmfdb.org/EllipticCurve/Q/21/a/
https://www.lmfdb.org/EllipticCurve/Q/15/a/
https://www.lmfdb.org/EllipticCurve/Q/30/a/

Elliptic curves over the rationals: theorems

Lemma

Any isogeny ¢ : E — E’ can be factored as gl g B2 .. 2% E =F,

where deg(y;) = ¢; are primes.

Theorem (Mazur)
If p: E — E’ defined over Q has prime degree ¢, then ¢ € {2,...,19,37,43,67,163}.

Theorem (Kenku)
Any isogeny class of elliptic curves over Q has size at most 8.

Chiloyan — Lozano-Robledo 2021

Complete classification of possible labeled isogeny graphs.

The LMFDB contains examples for all of these graphs. 5/26



Higher dimensions?

No such complete picture away from elliptic curves over Q.

One approach is to collect data:

Algorithmic problem

Given an abelian variety A over a number field k, compute its isogeny class.

Eventually restrict to the simplest higher-dimensional case:
e Abelian surfaces
e endowed with principal polarizations
e over k=0Q
e that are typical, i.e. End(A?) = Z.

These are all Jacobians of genus 2 curves over Q.

www.LMFDB. org contains genus 2 curves with small discriminants, grouped by
(heuristic) isogeny class of their Jacobians, but these isogeny classes are not complete. 6/26


www.LMFDB.org

Algorithmic approach

Algorithmic problem
Given an abelian variety A over a number field k, compute its isogeny class.

For an elliptic curve E/Q:
1. Search for /-isogenies E — E’ for each £ in Mazur’s list. This is a finite problem.

2. Reapply on E’ as needed.

In general:
1. Reduce to finitely many isogeny types. (E.g., “prime degree” for elliptic curves)
2. Compute a finite number of possible degrees. We now face a finite problem.
3. Search for all isogenies of a given type and degree.

4. Reapply as needed.
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Classification of isogenies

@ : A — B isogeny between principally polarized abelian varieties.
A—*B
ZL\A ZP\B ~ =t opY 0lgop € End(A).
AY <;v BY
©
Recall that End(A) has a positive Rosati involution 1 defined by uf = )\;1 ou oM.
Theorem (Mumford)

There is a bijection

{¢:A—>B}<—>{(M,K):MeEnd(A)T’M>O }

K C A[p] maximal isotropic

©—> ()\Zlogpvo/\gogo, ker<p).
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Irreducible isogeny types

Assume now that End(A)" = Z. (True in particular if A is typical).
Any ¢ : A — B satisfies: ker(y) is maximal isotropic in A[n] for some n € Z>.
Up to decomposing ¢, can assume n = (€ is a prime power.

Lemma

Assume e > 3. If K C A[¢¢] is maximal isotropic, then /K N A[¢(¢~2] is maximal
isotropic in A[¢¢72].

Thus, any isogeny ¢ : A — B can always be factored as
A=A) 2 AL 2 A, 2. 25 A, = B,

where ker(¢;) is maximal isotropic in A;_1[¢;] or A;_l[ﬁ?], for ¢; prime.
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Irreducible isogeny types for abelian surfaces

Further assume that A is an abelian surface (with p.p., and End(A)f = Z). Then the
other p.p. abelian surfaces in the isogeny class of A can be enumerated by looking at

isogenies ¢ of the following types:
1. l-step: K := ker(y) is a maximal isotropic subgroup of A[], so K ~ (Z/{Z)?,
2. 2-step: K is a maximal isotropic subgroup of A[f?] and K ~ (Z/{Z)? x Z./(*Z.

Degree 2 and ¢* respectively.

Over Q| every 2-step isogeny decomposes as a sequence of two 1-step isogenies, in
¢+ 1 different ways (permuted by Galois).
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Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

Elliptic curves /Q

Typical p.p. abelian surfaces /Q

Isogeny types

Prime degree

1-step or 2-step v/

Possible degrees

Mazur's theorem

?

Search for isogenies
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Serre’s open image theorem

Theorem (Mazur)
If o : E — E’ defined over Q has prime degree /¢, then ¢ € {2,...,19,37,43,67,163}.

No uniform result a la Mazur is known for abelian surfaces. However:

Serre’s open image theorem
If Ais a typical abelian surface, then its Galois representation has open image

~

in GSp4(Z). Thus, A[¢] has nontrivial rational subgroups only for finitely many ¢'s.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo,
Zywina give bounds on such ¢'s (depending on A), but are impractical.
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Dieulefait’s algorithm

Results of Lombardo, Zywina give bounds on ¢ as in Serre’'s open image theorem
(depending on A), but are impractical.

Instead we use:

Algorithm (Dieulefait)?
Input: Conductor of A and a finite list of L-polynomials
Output: Finite superset of primes £ with reducible mod-¢ Galois representation.

Example where the only possibilities are isogenies of degree 312:

C:y?+ (x+ 1)y = x* + 23x* — 48x3 + 85x% — 69x + 45.

1See also Banwait—Brumer—-Kim—Klagsbrun—Mayle—Srinivasan—Vogt (2023).
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Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

Elliptic curves /Q

Typical p.p. abelian surfaces /Q

Isogeny types

Prime degree

1-step or 2-step v/

Possible degrees

Mazur's theorem

Dieulefait's algorithm v

Search for isogenies

7

77
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Modular polynomials

Elliptic curves: usually search for (-isogenies using algebraic equations for the cover of
modular curves Xp(¢) — X(1).

E.g., the modular polynomials ®,(x, y) € Z[x, y] defined by
®(j,j') =0 <= Fp: Ej — Ej such that kerp ~ Z/(Z.

Size grows as O(¢3), big but manageable (28MB for ¢ = 163).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical.
More variables: ®y(x1,x2,x3,y) € Q(x1,x2, x3)[y].

Size grows as O(/'%) (K. 2022), already >> 29 GB for ¢ = 7.

We use complex-analytic methods instead.
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Moduli space of elliptic curves

Let E/C be an elliptic curve. Moduli space: SLa(Z)\H;.

Can choose 7 € H; and an equation E : y2 = x3 — 27¢4x — 54cg such that
E(C) =~ C/(Z+T7),
d
x —> 2midz.
2y

Then ¢4, cg are modular forms:

e = Ea(7), 6= Es(r), hence j(E)=j(r) = 1728—2(T)

Ea(7)* — Eo(7)>

Theorem
The graded C-algebra of modular forms on Hj for SLo(Z) is C[Ea, Es).

Moreover E4, Eg have integral, primitive Fourier expansions.
Hence ¢4, cs are indeed “the right invariants” to consider. 16/26



Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form C?/(Z? + 772) with 7 € Hp.
Moduli space: Spy(Z)\Ho.
Theorem (lgusa)

The graded C-algebra of (scalar-valued) Siegel modular forms of even weight on H
for Spa(Z) is C[Ma, Mg, Mg, M12], where the M; are algebraically independent.

Normalized such that the M; have primitive, integral Fourier expansions and Mg, M;»
are cusp forms.

Explicit relations with the |gusa—Clebsch invariants b, I, Is, 1o of a genus 2 curve:
My = 2721y, Ms = 273(hly — 315),
Mg = =21y, Mz =2 P hhg.

The M;'s are “the right invariants” on the moduli space of p.p. abelian surfaces.
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Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic side.
e Elliptic curves: the complex tori (-isogenous to C/(Z + 7Z) are given by
C/(Z+ ¢n7Z)
where 1 € SLo(7Z) are coset representatives for [0(¢)\SLx(Z).
Note: %m’ = v7 where v = ((1) 2)77 € GL,(Q)*.
e Abelian surfaces: explicit sets S1(¢), S2(¢) C GSps(Q)™ such that for i = 1,2,
{ab. surfaces i-step (-isogenous to C?/(Z* + 7Z%)} = {C?/ (Z* + v7Z?) }765,-(6) :
Cf. explicit formulas for Hecke operators T (¢), T1(¢?).

Algorithmic problem
Decide when 7 € Hp, is attached to an abelian surface defined over ).
18/26



Construction of algebraic integers

Theorem (corollary of Igusa)

If £ is a Siegel modular form of even weight k with integral Fourier coefficients, then
12kf € Z[Mz]_, Me, My, M12].

Theorem

Let 7 € Hy such that there exists A € C* with M M;(7) € Z for j € {4,6,10,12}.

If £ is a Siegel modular form of even weight k with integral Fourier coefficients, then

I1 (X — (1203 det(c, + dv)‘l)kf(w)) e Z[X].
7€Si(£)

Thus, for each j € {4,6,10,12}, the complex numbers
N(j,7) = (12M3 det(c, + dy) LY Mj(y7)  for y € Si(£), i=1or 2,

form a Galois-stable set of algebraic integers. 19/26



Algorithm and certification

Input: Invariants my, mg, myg, mi2 € Z of a genus 2 curve, a prime ¢, and i € {1,2}.
Output: Invariants of all /-step f-isogenous abelian surfaces.

1. Compute complex balls that provably contain:
e T cHy
e )\ € C* such that NM;(T) = m; for j € {4,6,10,12}
e N(j,v), for each j € {4,6,10,12} and v € S;(¥).
2. Keep the 1o's such that N(j, 7o) contains an integer m; for each j € {4,6, 10,12}
The m' are putative invariants for the abelian surface attached to 7o7.

J
3. Confirm that N(j,v) = mJ’- by certifying the vanishing of

[T NG —m) ez
~v€S;i(€)

We need to recompute N(j,70) (only!) to a much higher precision. 20/26



Example, continued

Let ¢ =31,i=1 and

C:y% 4 (x+ 1)y = x° +23x* — 48x3 + 85x — 69x + 45.
Working at 300 bits of precision, there is only one 7o such that the N(j, o) for
J € {4,6,10,12} contain integers:

N(4,70) = o? - 318972640 + 7.8 x 10~ *,
N(6,70) = o> - 1225361851336 & 5.5 x 1073,

N(10, ) = a5 10241530643525839 + 1.6 x 1072,
N(12,v) = 307105165233242232724 + 4.6 x 10722
where o = 22 - 32 . 31.

We certify these equalities by working at 4128 800 bits of precision. Use certified

quasi-linear time algorithms for the evaluation of modular forms (K. 2022).* 212



Reconstructing a genus 2 curve

Given (mj, ml, my, mi,) = (318972640, 1225361851336, 10241530643525839, . . .),
find a corresponding curve C’ such that Jac(C) and Jac(C’) are isogenous over Q.

Mestre's algorithm yields

y? = —1624248x°+5412412x° —6032781x* +876836x> —1229044x> —5289572x— 1087304,
a quadratic twist by —83761 of the desired curve

C': y?4xy = —x>4+2573x*+92187x3+2161654285x>+406259311249x+93951289752862.

We reapply the algorithm to C’, and we only find the original curve.

Comments:
e 113 minutes of CPU time for this example; 90% is to certify the results.

e Can independently create a certificate for the isogeny (6.5 hours and 3 MB). 2226



LMFDB data

Originally 63 107 typical genus 2 curves in 62600 isogeny classes.
By computing isogeny classes, we found 21923 new curves.

Size\l 2 3 4 5 6 7 8 9 10 12 16 18
Count | 51540 2672 6936 420 756 164 40 45 3 2 3 9 1
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https://www.lmfdb.org/Genus2Curve/Q/349/a/
https://www.lmfdb.org/Genus2Curve/Q/353/a/
https://www.lmfdb.org/Genus2Curve/Q/976/a/

LMFDB data

Originally 63 107 typical genus 2 curves in 62600 isogeny classes.

By computing isogeny classes, we found 21 923 new curves.

Size \ 1 2 3 4 5 6 7 8
Count | 51549 2672 6936 420 756 164 40 45 3

9 10 12 16 18
2 3 9 1

Observation
A 2-step 2-isogeny (of degree 16) always implies an existence of a second one.

This explains the 6913 A and the 756 1 we found.
The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

e 349.a: 56 min, isogeny of degree 13%.

e 353.a: 23 min, isogeny of degree 114,
e 976.a: 19 min, checking that no isogeny of degree 29* exists.
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https://www.lmfdb.org/Genus2Curve/Q/349/a/
https://www.lmfdb.org/Genus2Curve/Q/353/a/
https://www.lmfdb.org/Genus2Curve/Q/976/a/

Upcoming to LMFDB

A new set of 5235806 curves due to Sutherland is soon to be added to the LMFDB.
Of these, 1823592 are typical, split amongst 1538 149+t¢ isogeny classes.

We found 688 094 new curves (in 97 days). Counts per size:

1 2 3 4 5 6 7 8 >9
1098812 125694 212000 58310 16925 15459 498 6073 4270

We discovered irreducible isogenies of degree
22 (= Richelot isogenies), 2% 32, 3% 52 5% 72 7% 11% 132 13* 172 31°.

Size 2: 75% have degree 22 22% have degree 3% and then 32, 5% 52 74 72 ...
Size 3: 99.2% are A of degree 2* isogenies.
Size 4: 97.8% are > of Richelot isogenies.
Size 5: 99.8% are < of degree 24 isogenies.

e Size 6: 75% + 15% are two graphs consisting of Richelot isogenies. 24/26



Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves outside our database, with
conductor 497051100 = 22 .33 .52.72.13 . 172
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https://arxiv.org/abs/2301.10118

Thank you.
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