Meeting C++ 2019

MODULES

The Beginner's Guide

by Daniela Engert

ABOUT ME

Diploma degree in electrical engineering
For 40 years creating computers and
software

For 30 years developing hardware and
software in the field of applied digital signal
processing

novice member of the C++ committee

employed by “ GMH Priiftechnik

GmbH - NDTesting - Systems - Services

http://www.gmh-prueftechnik.de/

PRELUDE

The road towards modules

WHAT IS A PROGRAM?

The compilation model of C++ is inherited from C, and as such half a century old:

The compiler processes just one single unit of program text individually in total isolation from
all other program texts. This complete unit of program text is called a 'translation unit' (TU).
The result of compiling a TU is a binary representation of machine instructions and associated
meta information (e.g. symbols, linker instructions). This binary data is called an 'object file',
The linker takes all of the generated object files, interprets the meta information and puts all
the pieces together into one final program. In the world of the C++ standard, the program is
then to be executed by the 'abstract machine’ In reality, this is real hardware whose observable
behaviour is supposed to be the same.

If necessary, the preprocessor stitches multiple program text fragments together to form a
complete TU ready for compilation. These code fragments are called 'source files' and 'header
files’

A program text fragment is the unit of reuse in traditional C++. 4

translation unit 1

sourcel.cpp

translation unit 2

source2.cpp

object file 1

Y

object file 2

translation unit 3

source3.cpp

Y

object file 3

.

ES translation unit declarations macros compiler options

predefined, defaults,
none .
commandline commandline
source.cpp
header1.h
header2.h

1

object file [discarded) [discarded]

THE MOTIVATION

Much less a problem in C, due to the nature of C++ and it's entities — in
particular templates — much larger fractions of program text need to
move from source files out into header files before being stitched back
before compilation.

#include <iostream> // tenths of thousands lines of code hide here!

int main() {
std::cout << "Hello, world!";

}

O H W N

On msvc 19.24, the total number of lines in this program is 53330.

.

THE MOTIVATION

The invention of so called header-only libraries and their popularity
emphasize this problem.

#include <fmt/format.h>

int main() {
fmt::print("Hello, world!");

}

O H W N

On msvc 19.24, the total number of lines in this programis 75198.

6

.2

THE PROBLEM

The duplication of work — the same header files are possibly compiled
multiple times and most of the compiled output is later-on thrown away
again by the linker — while creating the final program is growing ever
more unsustainable.

In case of multiple definitions of the same linker symbol, the linker will
decide which one will ultimately end up in the final program.
Unfortunately, the linker is totally agnostic of language semantics, has no
clue if duplicate symbols implement the same thing, and which one to
pick. This choice is up to the implementation without any guarantees.

The difficulties in figuring out the actual meaning of code leads to errors
(e.g. violations of the 'one definition rule') and unsatisfactory tooling.

THE OBJECTIVE

Increase efficiency:

e Avoid duplication of work
o Minimize the total effort that a compiler has to put into the creation of
a program

Increase effectiveness:

* Make reasoning about pieces of code much less dependent on the
context

e |eave less room for accidental mistakes

e Open the path to much richer tooling

ENTER MODULES

The new kid on the block
Coming soon in C++20 — already available today

OVERVIEW

A bit of history — how it came to be
Modules 101 — basic concepts
Modules level 2 — digging deeper
Mo' Modules — the C++20 additions

Pitfalls — beware!

Implementation status — bumpy roads ahead ...

From header to module — a reality check

Transitioning to modules

10

THE RISTORY OF MODULES

how it came to be

1A RENA

TIMELINE

Modules have a history of more than 15 years now:

e 2004: Daveed Vandevoorde reveals his ideas of modules and sketches a syntax (N1736)

e 2012: WG21 SG2 (Modules) is formed

e 2012: Doug Gregor reports about the efforts of implementing modules in clang

e 2014: Gabriel Dos Reis and his co-authors show their vision of implementing Modules
with actual language wording (N4214)

e 2017:implementations in clang (5.0) and msvc (19.1) become usable

e 2018: The Modules TS is finalized (N4720)

e 2018: a competing proposal of syntax and additional features is proposed by Google —
the so called ATOM proposal (P0947)

e 2019:the Modules TS and ATOM merge (the first time that controlled fusion leads to a
positive energy gain) (P1103)

e 2019: the fused Modules proposal is merged into the C++20 committee draft (N4810)

12

MODULES 101

the basics

OUR FIRST MODULE

Declares a module context sensitive The name of this module
interface unit \ l / . : :
multiple parts possible
~.

not exported 1 export module my.first module; n Separated bya dot
2 .
- - = must be valid
. . e . 3 int foo(int x) {
e invisible outside the : : :
dul ;1 \ return x; identifiers
module :
6 = do not clash with
7 export . 5
D G & o other identifiers
exported 9
. i) g e canonly bereferred to
the module interface 11 int bar() { .
12 return foo(e);
e visible outside the e m module declaration
module by import = import declaration

All exported entities have the same definition in all translation units! 14.1

interface.cpp

module interface unit

1

object file

declarations

none

BMI file

- E—

Macros

predefined,

commandline

[discarded)

compiler options

defaults,
commandline

14.

SEPARATE INTERFACE FROM IMPLEMENTATION

module 1 export module my.first module;
2
interface unit 3 int foo(int);
4
5 export {
6 int e = 42; module
not ascope — N 7 A ’
8 int bar(); purview
9}
not a
Namespace,
but a
module ; module my.first module; module my.first module; Separate
implementation 3 int foo(int x) { int bar() { name
. 4 return Xx; return foo(e); . . :
units 5 3 } universe

all entities in the interface unit are implicitly visible in implementation units 15.

module implementation

unit

declarations macros

. predefined,
module interface

mOdimpl.Cpp /\ module mod;
mod.bmi

1

object file
modimpl.obj

commandline

(discarded) [discarded)

compiler options

defaults,
commandline

15.

USING THE MODULE

context sensitive module name valid only in

import module — 1
2

3
invisible — ‘51
visible by import — j

\ / import declaration

import my.first module;

does not compile,

int main() {
foo(42); // sorry Dave! +— name 'foo'is not
e = bar(); available for lookup

}

imports are cheap

imports of named modules exhibit only architected side effects

import order is irrelevant

16.

1

module interface unit

source.cpp

mod.bmi import mod;

declarations

none

1

object file
source.obj

(discarded)

Macros

predefined

commandline,

[discarded)

compiler options

defaults,
commandline

16

.2

USING HEADERS

global module

1

fragment §

4

°* NO E

declarations .

e only 8

preprocessor 13
directives

module declaration
without a name

global module /

default name 'universe'

O 00 JOoUlL b WDN K

#include <vector>
module my.first module;

std: :vector<int> frob(S s) {

module purview

module;
#include <vector>
mod.h

export module my.first module;

#pragma once;
#include "mod.h"

struct S {
export int value = 1;
std::vector<int> frob(S); }

module;

return {s.value};

17

NAME ISOLATION

1 export module my.first module; 1 export module your.best stuff;
2 2
3 int foo(); «— noclash —— 3 int foo();
4 4
5 export namespace A { 5 namespace A {
6 .o 6
7 int bar() { =elills namespace "A’ 7 export int baz() {
8 return foo(); exports its name and 8 return foo();
9 } : 9 }
10 contents of this 10
11 } // namespace A namespace part 11 } // namespace A
name "::foo' is attached to 1 import my.first_module; name "::foo' is attached to
. 2 import your.best stuff; .
module 'my.first_ module', i.e. S = module 'your.best_stuff' i.e.
'“foo@my.first._ module), g using namespace A; ':foo@your.best_stuff',
oo A\ o (I 6 int main(){ Tee A oo (I
exported name '::A::bar' is T S Y exported name '::A::baz'is
attached to the global module 8 } attached to the global module

namespace name "::A' is attached to the global module, and is oblivious of module boundaries 1

IMPORT & EXPORT

1 export module my.stuff; 1 export module your.stuff;
2 2
3 import your.stuff; S : - 2 3 import other.stuff
4 export import other.stuff; a” |mp0rt5 4
5 5 export
6 int foo(); 6 constexpr int foo(int);
7 7
8 export int bar() { > 8 export
) return foo() + baz(); . 9 constexpr int baz() {
10 } Interface 10 return foo(beast);
dependency =
interface interface
dependency dependency
1 import my.stuff; transitive interface 1 export module other.stuff;
2 2
3 int main(){ dependency 3 export
4 return bar() + beast; 4 constexpr int beast = 666;
5 } >

module interface unit

declarations

none
mOd.Cpp export module mod;
other.bmi import other; .
object file BMI file
mod.obj mod.bmi

Macros

predefined

commandline,

[discarded)

compiler options

defaults,
commandline

19

.2

EXPORTABLE GOODS

All kinds of C++ entities can be exported that

e have aname
e have external linkage

Corollary: names with internal linkage or no linkage cannot be exported
Names of namespaces containing export declarations are implictly exported as well

The export declaration

e must also introduce the name

e or be ausing declaration eventually referring to an entity with external linkage
e includes all semantic properties known at this point

An export group must not contain declarations that cannot be exported, e.g. a
static_assert or an anonymous namespace

20

SYNTAX GOTCHAS

comments and empty lines before

/

module declaration are ok ~

doesn't compile

the module declaration must not be
the result of macro expansion

/'

™~

[

// ok

export module my.first module;

// ok
module;

-DMODULE="module"

MODULE my.first module;

MODULE ;

-DMODULE="module ;"

MODULE

-DMODULE="export module"

MODULE my.first module;

21

FIRST GUIDELINES

think about taking advantage of the
structured module naming scheme
mirror the subparts of the module name
in top-level namespaces

think about mirroring this in the file
system layout and file naming as well
prefer a modularized standard library
over standard library headers

use #includes within the module
purview very carefully — only if you
really need to

never #include standard library headers
within the module purview!

0O O Ul WD -

NNNNMNNMNNRRRRPRRRRRRPRBRE
U WN R OWOWLNOUE WNRFEO W

module;
#include <standard library header>
#include "library not ready for modularization"
export module top.middle.bottom;
import modularized.standard.library.component;
import std; // it's probably a cheap, simple option
import other.modularized.library;
#include "module internal header" // beware!
non-exported declarations;
export namespace top {

namespace middle {

namespace bottom ({

exported declarations;

P}

MODULES LEVEL 2

digging deeper

[ELMO

[TAKE-OUTS]

Visibility of names: invisible names from a foreign TU 1 auto make() {

become visible by means of export and import 2 // the semantic propertles
Y P P 3 // of struct S are reachable

Reachability of declarations: the collected semantic G /7 ke e ot @I diss

))) B 5 // declaration

properties associated with exported entities along the 6
. . . . 7 struct S{ int i = 0; };
dependency chain of imported module interface units 8 return S{}:
become available to the compiler 1(9) }
module linkage: like external linkage but applies to 11 static_assert(

. . . . 12 is default constructible v<
declarations in the module purview (mangling) 13 decltype (make())>);
language linkage: a way to re-attach names to the global
module
1 module mine;

2

3 extern "C++" int foo(); // external linkage, C++ language linkage, attached to global module

4 extern "C" int var; // external linkage, C language linkage, attached to global module

5

6 int bar(); // module linkage, C++ language linkage, attached to module 'mine'

7 int jot; // module linkage, C++ language linkage, attached to module 'mine’ o4

MO" MODULES

the C++20 additions

[TAKE-OUTS]

Refined types of module TUs specified in the C++20 draft:

e module interface partitions: must be re-exported through the primary
module interface unit

e module implementation partitions: these do not implicitly import the
primary interface unit

e the private module fragment: available only in case of single-file
modules

These module unit types are currently mostly not available in
implementations

26

HEADER MODULES

Header modules are generated from header files without tampering them:

e compiled through compilation phases 1 ... 7 like a normal source file

e all declarations are implicitly exported

e all declarations are attached to the global module

e must not contain a module declaration

e do not have a module name

e export their macro definitions and deletions from the end of translation phase 4

e taint translation phase 4 of the importing translation unit beyond the point of the
import declaration until the end of the TU

1 #include <vector> 1 import <vector>; nNo mOdU|e
2 #include "importable.h" » 2 import "importable.h"; —

MEREE] name

The import of an unnamed header file requires special syntax: the BMI of the compiled
header module is nominated like an #include nominates a header file

27 .

header.h
header1.h

header2.h

header module unit

1

object file

header.obj

declarations

none

BMI file
header.bmi

Macros

predefined,
commandline

compiler options

defaults,
commandline

27 .

SANE PRECOMPILED HEADERS

Header modules have the same properties as precompiled headers:

e make all of their declarations visible in the importing TU like the equivalent
#includes do
o affect macro definitions in the importing TU like the equivalent #includes do

The benefits of importing header modules over including header files:

e importing compiled declarations is faster — like precompiled headers
e |imited isolation: the compilation context is not affected by the point of #include

But beware:

e header guards have no effect on the compilation of a header module!

28

LIMITATIONS OF HEADER MODULES

Not every header file can be compiled into a header module, only so called "importable
headers" can

the definition of an importable header and the resulting set of importable headers
Is implementation defined

the C++ standard guarantees that all standard library headers — but not the
wrapped C ones — are importable headers

other header files can be assumed to be accepted as importable headers by an
implementation if they behave reasonably well (e.g. no X-macros)

Compiling importable headers into header modules requires special incantations
of the compiler

nominating header modules in import declarations with #include syntax require
support from the build system to locate the BMls

29

ONE MORE THING

The C++ standard allows special support for header modules

¢ incase of C++ standard standard library headers — and only those —
e #include directives are automatically turned into import declarations nominating
the same C++ standard library header

1 #include <vector> 1 import <vector>;

2 #include <string> — > 2 import <string>;
implicit

e the support of this functionality is an optional feature of an implementation
e if available, it offers immediate benefits without changing the code base at all

® this is probably the & feature of header modules @

30

PITFALLS

beware!

THINGS TO TAKE CARE OF

mistaking module names as namespace nhames — modules do not establish a
namespace

calls from exported inline function bodies that call into functions with internal
linkage that are not available in the importing TU

= exported inline functions
= inline member functions from exported classes

incomplete treatment of module interface units as translation units

= missing compilation into an object file
= missing linking the object file into the final program

precompiled headers or force-included headers (/Fl or -include) may no longer be
available due to syntactic restrictions

semantic deviations because of compiler bugs (transitional)

32

IMPLEMENTATION STATUS

bumpy roads ahead ...

LANGUAGE / LIBRARY FEATURES

gcc (branch) clang msvc

Syntax specification C++20 <=8.0: Modules TS <=19.23: Modules TS

>=9.0:TSand C++20 |>=19.24:C++20 A\
Named modules v v v
Module partitions v — —
Header modules X (undocumented) X (undocumented) X (undocumented)
Private mod. fragment |®= ¥ (in C++20 mode) -
Name attachment (V) (V) -
#include — import - - -
__cpp_modules 201810L A - -
Modularized std library | = - (V)

BUILD SYSTEMS

Build systems with support for modules are rare

e build2

= supports clang, gcc, and msvc
= predefines macro __cpp_modules

e more?

35

FROM HEADER TO MODULE

A reality check

CONVERTING AN EXISTING LIBRARY

Use a library from our in-house production codebase and check out what
it takes to transform it into a named module.

Library "libGalil":

e wraps and augments a vendor provided
C-library that implements low-level
network communication with its
'‘Digital Motion Controller'

e adds higher level functions and error
handling on top of it

37 .

CONVERTING AN EXISTING LIBRARY

e the OEM provides 2 headers, a link library and a DLL
e we add 4 more headers and 2 source files

The consumable artifacts after compiling the 2 source files are

e astaticlibrary
e asingle header file with the C++ API

The actual interface is a single class plus some enums within a unique
namespace.

37 .

THE HEADER API

The header "DmcDevice.h" exposing the APl looks quite unsuspicious ...

#pragma once

#include <boost/asio/ts/net.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/signals2.hpp>
#include <meerkat/semaphores.hpp>
#include <atomic>

#include <chrono>

#include <memory>

#include <string>

#include <string view>

#include <system error>

#include <vector>

OO0l WN -

e
B WN P oW

namespace libGalil ({

=
o U

... // some enums used in member function parameters and return values

=
o

namespace detail {
..o // 2 small classes used as non-static data members in the class below

}

N DNDNDN -
N = O VO

class DmcDevice {

N DN DN
(O 2 B~ UV
—~ ~ e
-e o
L]

Turn this into the primary module interface unit "DmcDevice.cpp" of module "libGalil"

—

Ll

0oLk WN

NNMNNMNNNNRRRERRRRFR &
U WN RO WU WN OV

module;

#include
#include
#include
#include
#include
#include
#include

THE MODULE API

// the global module fragment starts here
<boost/asio/ts/net.hpp>
<boost/filesystem/path.hpp>
<boost/signals2.hpp>

<string>
<string view>
<system error>
<vector>
// the global module fragment ends here

export module libGalil; // the module purview starts here

namespace libGalil { // entity 'namespace libGalil' implicitly exported
export { // make enums visible outside of module

... // some enums used in member function parameters and return values

}

namespace detail { // not mentioned anywhere in the exported entities
.o // totally hidden

}

export class DmcDevice { // make class name visible

.o // and its contents reachable

}i

}

39

BUILD THE BMI

Compile the primary module interface just like any other translation unit.

Depending on the compiler this might require compiler flags to nudge it to
treat the source file as an module interface.

MSVC 14.24 greeted me with this:

At least it processed the source up to the last line, Clang 10 didn't even
get that far.

40

BUILD THE BMI (TAKE 2)

As it turns out, there is some problem in a Boost library that both

Boost.Filesystem and Boost.Signals2 depend on.

After modifying two member functions in a functionally identical or
equivalent way | got rid of both Boost library includes, and at least MSVC

compiles the module interface unit.

the BM/

DmcDevice.cpp

libGalil.ifc

\the compiled code

DmcDevice.obj

41

BUILD THE IMPLEMENTATION

As before, transforming the source file "DmcDevicelmpl.cpp" into a
module implementation unit is straight-forward:

0O JOo Ul LWDN B

NRRPRRRPRRRRR R
C VWO U B WNREFE OV

21

#include

#include

"DmcDevice.h"

"gclibo.h"

#pragma comment(lib, "gclib")

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

lots

"expected.h"
<boost/signals2/signal.hpp>
<boost/algorithm/string.hpp>
<boost/filesystem.hpp>
<boost/filesystem/fstream.hpp>
<boost/asio/ts/net.hpp>
<fmt/format.h>
<meerkat/ping.hpp>
<meerkat/makeIpEndpoint.hpp>
<algorithm>

<cassert>

<chrono>

<memory>

<system error>

of code

42

BUILD THE IMPLEMENTATION

just declare the global module fragment and the module itself

1 module; // the global module fragment starts here
2 // the import of the module interface is implicit! P
3 #include "gclibo.h"

4 #pragma comment(lib, "gclib")

5

6 #include "expected.h"

7 #include <boost/signals2/signal.hpp>

8 #include <boost/algorithm/string.hpp>

9 #include <boost/filesystem.hpp>

10 #include <boost/filesystem/fstream.hpp>

11 #include <boost/asio/ts/net.hpp>

12 #include <fmt/format.h>

13 #include <meerkat/ping.hpp>

14 #include <meerkat/makeIpEndpoint.hpp>

15 #include <algorithm>

16 #include <cassert>

17 #include <chrono>

18 #include <memory>

19 #include <system error>
20 // the global module fragment ends here
21 module libGalil; // the module purview starts here
22

23 ... lots of code

DmcDevice.cpp

BUILD THE LIBRARY

libGalil.ifc

DmcDevice.obj

DmcDevimpl1.0bj

DmcDevimpll.cpp

DmcDevimpl2.0bj

libGalil.lib

DmcDevIimpl2.cpp

44

USE THE MODULE

1 #include <1libGalil/DmcDevice.h> 457440 IineS after pl‘eprocessing
2
3 int main() { _ .
4 1ibGalil::DmcDevice("192.168.55.10"); 151268 non-blank lines
5 erle 5
/ 1546 milliseconds to compile
becomes
— it 5 lines after preprocessing
3 int main() { _ .
4 1ibGalil::DmcDevice("192.168.55.10"); 4 non-blank lines
5}

62 milliseconds to compile

The compile time was taken on a Intel Core i7-6700K @ 4 GHz using msvc 19.24.28117, average of 100 compiler invocations after preloading the filesystem caches.

The time shown is the additional time on top of compiling an empty main function.

45

TRANSITIONING TO MODULES

My Assessment

THE PROS

Immediate benefits:

e improved control over APl surfaces, better isolation

e improved control over overload-sets

e improved control over argument dependent lookup

e lower probability of unconscious one-definition rule violations
e no macros intruding from other source code

® NO mMacros escaping into other source code

e smaller compilation context

e better local reasoning about source code

Future benefits:

* new tooling opportunities
e improved compile times, faster development cycles
e increased developer satisfaction

47

THE CONS

Current roadblocks:

e |limited compiler availability

e |imited feature support

e |limited compiler stability

e major implementation bugs

e mostly missing modularized standard library implementations
e severely limited support by build systems

e hardly any support in IDEs or code editors

e all but missing documentation

Long-term costs:

e longer build-dependency chains

48

MY RECOMMENDATIONS

start experimenting with simple examples to get familiar with the new syntax and
features

stick with the feature set as described in the Modules TS (i.e. no module partitions,
no header modules) before exploring the less-well supported C++20 module
language features

use the C++20 syntax from the beginning

use a simple build tool like 'make' (or even simpler) to start with as little friction as
possible

or use a build system with support for modules (e.g. build2) to focus your efforts on
learning modules rather than fighting with the build environment

be prepared to run into problems with your compiler. There will be crashes,
miscompiles, or even totally misleading compiler messages

be resilient to frustration and persevere

feel happy while becoming confident in using modules as a great language feature
to structure your codebase and manage API surfaces 49

RESOURCES

Papers

e Modules in C++, 2004, Daveed Vandevoorde

e Modules, 2012, Doug Gregor

e A Module System for C++, 2014, Gabriel Dos Reis, Mark Hall, Gor Nishanov
e C++Modules TS, 2018, Gabriel Dos Reis

e Another take on Modules, 2018, Richard Smith

e Merging Modules, 2019, Richard Smith

o C++20 Draft

Contact

e dani@ngrt.de
e danielae on Slack

Images: Bayeux Tapestry, 11th century, world heritage

source: WikiMedia Commons, public domain

50

https://wg21.link/N1736
https://isocpp.org/blog/2012/11/modules-update-on-work-in-progress-doug-gregor
https://wg21.link/N4214
https://wg21.link/N4720
https://wg21.link/P0947
https://wg21.link/P1103
http://eel.is/c++draft/
https://commons.wikimedia.org/wiki/File:Tapisserie_de_Bayeux_31109.jpg

1

QUESTIONS

A TS TR S STt

iy

51

Ceterum censeo ABI esse frangendam

VISIBILITY or NAMES

as soon as a named entity is declared within a given scope, it may become subject
to name lookup

name lookup finds only names that are visible, i.e. the name is not hidden

the visibility of a particular named entity is not a static property but the result of

= the point and scope of its first declaration
= the point and scope from where it is looked-up
= the lookup rules

auto make() {
// struct S has no linkage
// name 'S' is invisible

. struct S{ int i = 0; };
o qualified lookup

1
2
3
o regular, unqualified lookup L Srom orier seopes
6 return S{};
7
o argument dependent lookup

}

without modules, total invisibility of entities with linkage is impossible

moving declarations from headers into modules makes them totally invisible

exporting names from a module and importing them controls the extent to which

names become visible in the importing translation unit 52

REACHABILITY or DECLARATIONS

the reachability of a declaration is orthogonal to the visibility of the declared name

e each visible declaration is also reachable

1 auto make() {
e not all reachable declarations are also visible 2 // the semantic properties
3 // of struct S are reachable
4 // from the point of its
. . . . 5 // declaration
the set of semantic properties associated with a 6 struct S{ int i = 0; };
reachable declaration depends on the point within a TU Gy s
. 9
o after the declaration 10 static assert(
ey 11 is default constructible v<
e after the definition i N — I T

when a named entity is exported from a module, then

e the name becomes visible
e the declaration becomes reachable with the set of properties known at this point
e all declarations referred to from the exported declaration become reachable, too!

53

LINKAGE

linkage determines the relationship between named entities within scopes of

e asingle translation unit
e multiple translation units

non-modular C++ knows three kinds of linkage

e no linkage: entities at function block scope are not related to any other entities
with same name. They live in solitude within this scope

e internal: entities at namespace or class scope that are not related to any entities
with the same name in other TUs. There may be multiple of them in the program

o external: entities that are related to entities with the same name in all other TUs.
They are the same thing and there is only one incarnation in the final program

Modules add a fourth kind of linkage

e module linkage: effectively the same as external linkage, but confined to TUs of the
same module

54

MODULE LINKAGE

module linkage

e applies to names attached to named modules

e requires different mangling of linker symbols

e exhibits the same linker behavior as external linkage does to linker symbols from
names attached to the global module

therefore, each named module opens a new, separate linker symbol domain

e external-linkage names attached to the global, unnamed module are decorated
with no additional name part

e module-linkage names attached to a named module become decorated with an
additional name part derived from the module name

55

LANGUAGE LINKAGE

C++ knows two kinds of language linkage that apply to function types, functions and
variables with external linkage

e C++language linkage — this is the default
e Clanguage linkage

the language linkage affects (at least) the mangling of external-ish names

in addition to that, declarations within a linkage specification in the purview of a
module attach the declared names to the global module

N o0l WD

module mine;

extern "C++" int foo(); // external linkage, C++ language linkage, attached to global module
extern "C" int var; // external linkage, C language linkage, attached to global module

int bar(); // module linkage, C++ language linkage, attached to module 'mine'
int jot; // module linkage, C++ language linkage, attached to module 'mine'

56

MODULE PARTITIONS

module partition — ; export module my.stuff : part; < partition name
contributing to interface 3 export { must be unigue
4 template <typename T>
e must be exported 2 St;“z;t f E , / within module
X * L. *
through the primal"y 7 operator int() const { /* ... */ }
. . 8 }i
module interface unit .

® Mmay be imported intO 10 int func(auto x) { return S{x}; }
other TUs of this module

primary modu|e interface —» 1 export module my.stuff;
, no module
. 3 t 1 t t: —
e constitutes the full) eXport import : par name
module interface 5 export
6 1nt foo();

57

MODULE PARTITIONS

module partition not —

contributing to interface

not visible outside of
module

may be imported into
other TUs of this module
do not implicitly import
the module interface
may replace module-
internal #includes

2
3
4

O 00O o Ul WDN -

module my.stuff : forward;

template <typename T>
struct S;

module my.stuff : impl;
import : forward;

template <typename T>

struct S {
S(T x) { /* ... */ }
operator int() const { /* ...

}i:

*/

}

N

partition names
must be unique

/ within module

«—— no module
name

58

PRIVATE MODULE FRAGMENT

module interface partition —_— ; export module cute.little.skunk;
3 template <typename T>
() I 4 struct S {
must be.theor)ly,smgle S S
translation unit of this 6 operator int() const {
7 return foo(*this);
module s 3
9 };
10
private module fragment — [|, "°°"'¢ ¢ Private —— partition name
13 int foo(auto x) { (I '
® N0 exports 14 // do something with x must be ‘private
ofe 15 // resulting in y
e definitions not reachable 16 return y;
from outside of module L7y

59

COMPATIBILITY (BONUS)

Add a shim header "DmcDevice.h" like this after renaming the 'old' header
file:

#pragma once

#1if cpp modules >= 201907
import libGalil;

#else

#include "DmcDevice.hh"
#endif

o U WD -

Now, all users of the library will benefit from modularization as soon as
their compiler is capable of C++ modules even without any code changes.

#include <libGalil/DmcDevice.h>

int main() {
libGalil: :DmcDevice("192.168.55.10");

O H W N

}

60

