Design Rationale for
the <chrono> Library

Howard Hinnant
Ripple

Meeting C++ 2019

o$ripple

Structure of <chrono>

* Durations: e Introduced in C++11

e These six durations

represent the hours
convenient high- R
level access.
seconds
e |ower-level access milliseconds

IS avalilable to

clients for creating
any duration unit nanoseconds
they need.

microseconds

ofripple

Structure of <chrono>

e |ntroduced in C++11

ofripple

Structure of <chrono>

 Time points: e |ntroduced in C++11

ofripple

Structure of <chrono>

e Clocks: e |ntroduced in C++11

duration

time_point

clocks

ofripple

Evolution of <chrono>

Calendrical types: e Coming in C++20

duration

time_point

clocks

ofripple

Evolution of <chrono>

Time zone management: e Coming in C++20

duration

time_point

clocks

ofripple

Evolution of <chrono>

And more clocks: e Comingin C++20

duration

time_point

clocks

ofripple

Evolution of <chrono>

Formatting and parsing: e Coming in C++20

duration

time_point

clocks

ofripple

o$ripple

chrono in C++20

Everything talked about today, whether it is old types
from C++11 (e.g. durations and time_points) or new
types in C++20, has a streaming operator in C++20:

cout << system_clock::now() << "\n';

C++20 <chrono> becomes much easier to work with
because you can easily print values out, even without
knowing their type.

auto t@ = steady_clock: :now();

auto tl = steady_clock: :now();
cout << "That took " << t1-t0 << '\n'; [// That took 657ns

duration

template<class Rep, class Period = ratio<l>>
class duration;

 duration represents a duration of time, and can
come in any unit.

 durations are represented by an arithmetic type, or a
class type emulating an arithmetic type.

* int, long, double, safe<int>, etc.

e duration::period is a compile-time fraction

representing the time in seconds between each
integral value stored in the duration.

 <chrono> defines several convenience type aliases for
common units.

o$ripple

duration

template<class Rep, class Period = ratio<l>>
class duration;

 <chrono> defines several convenience type aliases for
common units.

New in C++20
nanoseconds days
microseconds weeks
milliseconds months
seconds

. ears
minutes Y
hours

o$ripple

duration

template<class Rep, class Period = ratio<l>>
class duration;

e Clients can define any custom unit they want.

using dsec = duration<double>;
using frame_rate = duration<int, ratio<l, 060>>;

using safe_ns = duration<safe_int<int64_t>, nano>;

o$ripple

duration

template<class Rep, class Period = ratio<l>>
class duration;

e Durations implicitly convert from coarse to fine:

auto Llimit = Zh;
milliseconds x = 1imit; // 7'200'000ms

o$ripple

duration

template<class Rep, class Period = ratio<l>>
class duration;

e Durations have a named conversion from fine to coarse:

auto Llimit = Zh;
milliseconds x = 1imit; // 7'200'000ms

auto y = duration_cast<hours>(x); // 2h

o$ripple

duration

template<class Rep, class Period = ratio<l>>
class duration;

* |f the destination is floating-point-based,
converts implicitly
auto Llimit = Zh;
milliseconds x = 1imit; // 7'200'000ms

auto y = duration_cast<hours>(x); // 2h
duration<double> z = x; // 7'200.0s

e |Implicit truncation error is a compile-time error.

e Round-off error is not a compile-time error.

o$ripple

time_point

template<class (Clock, class Duration = typename Clock::duration>
class time_point;

 time_point represents a point in time.

* time_point is a wrapper around a duration.

e Same value, same representation, just a different
meaning.

* time_point offers only a subset of arithmetic algebra
so as to catch logic errors at compile-time.

o$ripple

time_point

template<class (Clock, class Duration = typename Clock::duration>

class time_point;

* time_point offers only a subset of arithmetic algebra
so as to catch logic errors at compile-time.

auto tpl = system_clock: :now();
auto tp2 = system_clock: :now();
auto diff = tp2 - tpl;
auto sum = tpZ2 + tpl;

o$ripple

// tpl 1s a time_point
// tp2 1s a time_point
// diff 1s a duration

// compile-time error

time_point

template<class (Clock, class Duration = typename Clock::duration>
class time_point;

e time_point is templated on Clock to catch the error
of mixing time_points from different clocks.

auto tpl = system_clock::now(); // tpl 1s a time_point
auto tp2 = steady_clock::now(); // tp2 1s a time_point
auto diff = tp2 - tpl; // compile-time error

o$ripple

What is the difference between
a time point and a date?

e Example time points:
10:30:1
10:30:1
10:30:"
10:30:1

e 20°
e 20°
e 20°
e 20°

o$ripple

4
14
4

14

OO O O Ol

123
123456
123456789

Time points can have
arbitrarily fine precision.

What is the difference between
a time point and a date?

Time points can

e Example time points: have arbitrarily

e 2019-11-14 10:30:15 coarse precision.
e 2019-11-14 10:30:15.123

e 2019-11-14 10:30:15.123456

e 2019-11-14 10:30:15.123456789

e 2019-11-14 10:30

e 2019-11-14 10

o$ripple

e Example time points:
10:30:1
10:30:1
10:30:"
10:30:1
10:30
10

20°
20"
20"
20°
20"
20"
20°

o$ripple

14

~ BB~ B~ B

OO O O Ol

What is the difference between
a time point and a date?

When the time point
has a precision of a
day, we call it a date.

123
123456
123456789

e Example time points:
10:30:1
10:30:1
10:30:"
10:30:1
10:30
10

What is the difference between

20°
20"
20"
20°
20"
20"
20°

o$ripple

14

~ BB~ B~ B

o o1 a1 O

a time point and a date?

Each precision has a type
In the chrono system.

time_point<system_clock, seconds>
123 time_point<system_clock, milliseconds>
123456 time_point<system_clock, microseconds>
123456789 time_point<system_clock, nanoseconds>

time_point<system_clock, minutes>
time_point<system_clock, hours>

time_point<system_clock, days>

e Example time points:
10:30:1
10:30:1
10:30:"
10:30:1
10:30
10

What is the difference between

20°
20"
20"
20°
20"
20"
20°

o$ripple

14

~ BB~ B~ B

OO O O Ol

a time point and a date?

sys_time<Duration>

IS a type alias for
time_point<system_clock, Duration>

123
123456
123456789

sys_time<seconds>

sys_time<milliseconds>

sys_time<microseconds>

sys_time<nanoseconds>

sys_time<minutes>
sys_time<hours>

sys_time<days>

What is the difference between
a time point and a date?

sys_time<Duration>

IS a type alias for
e Example time points: time_point<system_clock, Duration>

e 2019-11-14 10:30:15
e 2019-°
e 2019-°
e 2019-°
e 2019-11-14 10:30
e 2019-11-14 10

e 2019-11-14

» Sys_seconds

sys_time<milliseconds>

sys_time<microseconds>

9 sys_time<nanoseconds>

sys_time<minutes>

sys_time<hours>

sys_days

o$ripple

What is a calendar?

* A calendar is a collection of dates,
where each date has a unique name.

Civil calendar

30.12.1969
31.12.1969
01.01.1970
02.01.1970
03.01.1970

o$ripple

What is a calendar?

* A calendar is a collection of dates,
where each date has a unique name.

Civil calendar Julian calendar
30.12.1969 17.12.1969
31.12.1969 18.12.1969
01.01.1970 19.12.1969
02.01.1970 20.12.1969
03.01.1970 21.12.1969

e Different calendars can refer to the same physical
date, but have different names for that date.

o$ripple

What is a calendar?

* A calendar is a collection of dates,
where each date has a unique name.

Civil calendar sys_days
30.12.1969 -2
31.12.1969 -1
01.01.1970 0
02.01.1970 1
03.01.1970 2

* sys days is a calendar too!

o$ripple

Calendar Interoperability

[sys_d ays)

* sys_days is the canonical calendar in <chrono>.

o$ripple

Calendar Interoperability

(CiV” calendarJ

(ISO Week-based year) I (Julian Calendarj
sysdays]\
Eslamic calendaa 1 (Chinese calendar]
[Hebrew calendar]

* sys_days is the canonical calendar in <chrono>.

 As long as each calendar can convert to and from sys_days,
then each calendar can convert to any other calendar.

o$ripple

Calendar Interoperability

(Civil calendarj

(ISO Week-based year) (Julian Calendarj

[sys_daysj

Eslamic calendaa (Chinese calendar]

[Hebrew calendar]

* Only these two calendars are in C++20 <chrono>.
e Clients can write their own calendars.

* |'ve written several of them as proof of concept.
o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

e year_month_day implicitly converts to and from sys_days,
with no loss of information (constexpr and noexcept).

* Constructible from a year, month and day.
* Has year, month and day getters.

 Equality and less-than comparable.
* Does year and month-oriented arithmetic.

 Does not do day-oriented arithmetic. sys_days does day-
oriented arithmetic very efficiently.

o$ripple

The civil calendar

class year;

data structure: {short}

* year represents the "name"” of a year in the civil calendar. It
does not represent a number of years (a duration).

* One can subtract two year instances and get a years
duration type.

* year explicitly converts to and from 1int.

e Equality and less-than comparable.
e Does year-oriented arithmetic.

* Has user-defined literal y, e.g. 2019y.

o$ripple

The civil calendar

class month;

data structure: {unsigned char}

 month represents a month of a year. It does not represent
a number of months (a duration).

 One can subtract two month instances and get a months
duration type.

 month explicitly converts to and from unsigned.
e Equality and less-than comparable.
e Does month-oriented arithmetic (modulo 12).

e Has 1inline constexpr constants, e.g. January,
February, March,

o$ripple

The civil calendar

class day;

data structure: {unsigned char}

* day represents a day of a month. It does not represent a
number of days (a duration).

 One can subtract two day instances and get a days
duration type.

e day explicitly converts to and from unsigned.

e Equality and less-than comparable.
e Does day-oriented arithmetic.

» Has user-defined literal d, e.g. 14d.

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

* Typically sizeof is 4 bytes.

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

* Typically sizeof is 4 bytes.

* Constructible with conventional syntax operators in 3
different orders:

auto ymd = 2019y/November/14d;

auto ymd = 14d/November/2019y;
auto ymd = November/14d/2019y;

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

* Typically sizeof is 4 bytes.

* Constructible with conventional syntax operators in 3
different orders:

* Only the first field must be typed, the trailing fields can be
integral.

auto ymd = 2019y/11/14;

auto ymd = 14d/11/2019;
auto ymd = November/14/2019;

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

e Or, if you prefer:

year_month_day ymd{year{2019}, month{11}, day{14}};

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

* Construction was designed to be type-safe and readable,
but not overly verbose.

* Try to eliminate errors such as
e year_month_day{10, 11, 12}.

o$ripple

The civil calendar

class year_month_day;

data structure: {year, month, day}

* |nvalid dates are allowed, but are easily detectable.

auto ymd = November/31/2019;
assert(ymd.ok() == false);

 Rationale: Invalid dates are not necessarily errors

(examples to follow later). And if they are errors, you get to
decide if they are fatal, exceptional, or handled with an error

code.

o$ripple

The civil calendar

class year_month_day_last;

data structure: {year, month}

 Represents the last day of the {year, month} pair.

e Constructible from a year and month.
* Implicitly convertible to sys_days (it's a partial calendar).
e Has year and month and day getters.

e Equality and less-than comparable.
e Does year and month-oriented arithmetic.

o$ripple

The civil calendar

class year_month_day_last;

data structure: {year, month}

e Constructible with conventional syntax operators by
replacing the day-specifier with last.

auto ymd = last/November/2019;

e Implicitly convertible to year_month_day.

year_month_day ymd = November/last/2019;

o$ripple

The civil calendar

More about year and month arithmetic
e Consider:

auto ymd = 31d/0October/2019;
ymd += months{1l};

* ymd has the value 2019y/November/31d

o$ripple

The civil calendar

More about year and month arithmetic
e Consider:

auto ymd = 31d/0October/2019;
ymd += months{1l};

* ymd has the value 2019y/November/31d

e Jo snap to the end of the month:

1f (lymd.ok())
ymd = ymd.year()/ymd.month()/last;

o$ripple

The civil calendar

More about year and month arithmetic
e Consider:

auto ymd = 31d/0October/2019;
ymd += months{1l};

* ymd has the value 2019y/November/31d

e Jo snap to the end of the month:

1f (lymd.ok())
ymd = ymd.year()/ymd.month()/last;

e To overflow Iinto the next month:

1f (lymd.ok())
ymd = sys_days{ymd};

o$ripple

The civil calendar

More about year and month arithmetic

e o snhap to the end of the month:

1f (lymd.ok())
ymd = ymd.year()/ymd.month()/last;

e To overflow into the next month:

1f (lymd.ok())
ymd = sys_days{ymd};

* |n either case, the invalid date 2019-11-31 is not a fatal nor
exceptional error. It is just an intermediate result.

* You get to decide how to handle it.

o$ripple

The civil calendar

class year_month_weekday;

data structure: {year, month, weekday_indexed}

auto date = Thursday[Z2]/November/2019;

 Represents dates of the form the 2nd Thursday of November 2019.

* Constructible with conventional syntax

* Anywhere one can put a day-specifier, one can use a
weekday_1indexed instead.

e year_month_weekday implicitly converts to and from sys_days,
with no loss of information (constexpr and noexcept).

* This is a second complete civil calendar!

o$ripple

The civil calendar

class year_month_weekday;

data structure: {year, month, weekday_indexed}

auto date = Thursday[Z2]/November/2019;

* Has year, month, weekday, and index getters.
 Equality comparable (not less-than).
* Does year and month-oriented arithmetic.

o Will explicitly convert to and from year_month_day by
bouncing off of sys_days (just like a user-written calendar).

o$ripple

The civil calendar

class weekday;

data structure: {unsigned char}

 weekday explicitly converts to and from unsigned.

e Constructor accepts both C's tm encoding and

SO encoding.

e Explicitly constructible from sys_days (a partial ca
e Equality comparable (not less-than).
e Does day-oriented arithmetic (modulo 7).

endar).

 |Implies there is no officially supported "first day of the week."

e Has inline constexpr constants, e.g. Monday, T
Wednesday, ...

o$ripple

uesday,

The civil calendar

class weekday_indexed;

data structure: {weekday, 1integral index} // allowed to be 1 byte

* Represents the concept: nth weekday of an unspecified
month.

* weekday_1indexed constructs from a weekday and an
unsigned.

 (Constructible with conventional syntax:

auto wdi = Thursday[2];

o$ripple

The civil calendar

class weekday_last;

data structure: {weekday}

 Represents the concept: last weekday of an unspecified
month.

* weekday_last explicitly constructs from a weekday.

 (Constructible with conventional syntax:

auto wdi = Thursday[last];

o$ripple

The civil calendar

More about year and month arithmetic

* Consider: auto date = Friday[5]/November/2019;
date += years{l};

 date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

o$ripple

The civil calendar

More about year and month arithmetic

* Consider: auto date = Friday[5]/November/2019;
date += years{l};

 date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

 To snap to the end of the month (4th Friday of November/2020):

1f (!date.ok())
date = sys_days{date.year()/date.month()/date.weekday()[last]};

o$ripple

The civil calendar

More about year and month arithmetic

* Consider: auto date = Friday[5]/November/2019;
date += years{l};

 date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

 To snap to the end of the month (4th Friday of November/2020):

1f (!date.ok())
date = sys_days{date.year()/date.month()/date.weekday()[last]};

* To overflow into the next month (1st Friday of December/2020):

1f (!date.ok())
date = sys_days{date};

o$ripple

Time Zones

 system_clock (and sys_time<Duration>) are Unix Time.

 Unix Time measures time since (and prior) 1970-01-01
00:00:00 UTC excluding leap seconds.

* Yes, C++20 can handle leap seconds but sys_time ignores
them (we'll get there ...).

o$ripple

Time Zones

 system_clock (and sys_time<Duration>) are Unix Time.

 Unix Time measures time since (and prior) 1970-01-01
00:00:00 UTC excluding leap seconds.

* Yes, C++20 can handle leap seconds but sys_time ignores
them (we'll get there ...).

e C++20 adds a time_zone class which is used to transform
sys_time<Duration> into "local time".

e C only has the concept of UTC and "local time". C++20
adds to these two concepts the ability to compute with any
time zone in the IANA time zone database.

e This means time zone names are portable.

o$ripple

Time Zones

e Examples:

The current UTC time:

auto tp = system_clock: :now();
2019-11-14 10:13:40.785346

o$ripple

Time Zones

e Examples:

The current UTC time:

auto tp = system_clock: :now();
2019-11-14 10:13:40.785346

The current local time:

zoned_time tp{current_zone(), system_clock: :now()};
2019-11-14 11:13:40.785346 CET

o$ripple

Time Zones

e Examples:

The current UTC time:

auto tp = system_clock: :now();
2019-11-14 10:13:40.785346

The current local time:

zoned_time tp{current_zone(), system_clock: :now()};
2019-11-14 11:13:40.785346 CET

The current time in Berlin:

zoned_time tp{"Europe/Berlin", system_clock::now()};
2019-11-14 11:13:40.785346 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

e zoned_time is a convenience wrapper of a pointer to a time
zone, and a sys_time time_po1int.

e One can think of it as a triple of {time_zone*,
local_time<Duration>, sys_time<Duration>}, but the
local time is computed upon demand.

e One can create custom time zones to handle things outside
the IANA time zone database (e.g. POSIX time zone strings).

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

e zoned_t1ime is typically constructed with two arguments.
* The first argument represents a time_zone.

e Can be either a time_zone const*, ora string_view.
e The second argument represents a time_point.

e Canbe asys_time, local_time, or another zoned_time.

zoned_time zt{A time zone, A time point};

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e Examples:
time_zone const¥* sys_time

The current local time:

zoned_time tp{current_zone(), system_clock::now()};
2019-11-14 11:13:40.785346 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e Examples:
string_view sys_time

The current Berlin time: l

zoned_time tp{"Europe/Berlin", system_clock::now()};
2019-11-14 11:13:40.785346 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e Examples:
string_view local_time

Midnight Berlin time: l

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14}};
2019-11-14 00:00:00 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e Examples:
string_view sys_time

1:00 Berlin time: l

zoned_time tp{"Europe/Berlin", sys_days{2019y/11/14}};
2019-11-14 01:00:00 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e Examples:

1:00 Berlin time: Specify local time of day

\

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1lh};
2019-11-14 01:00:00 CET

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

e tp and tpZ represent the same UTC
instant, but in different time zones

1:00 Berlin time:

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1lh};

2019-11-14 01:00:00 CET
zoned_t1ime
tp3¥

zoned_time tpZ2{"America/New_York",
2019-11-13 19:00:00 EST

o$ripple

Time Zones

local_time<Duration>
Is a type alias for
time_point<local_t, Duration>

e local_t is "not really a clock."
e |t has no now() function.

e local_timeis atime_point with respect to a not-yet-
specified time_zone.

e |t can be paired with a time_zone and only then will it
refer to an instant in time (e.g. in a zoned_t1ime
constructor).

 local_days is just a type alias for Llocal _time<days>.

e Calendars convert back and forth to Local_days with the
exact same formulas that they use for sys_days.

o$ripple

Time Zones

local_time<Duration>
Is a type alias for
time_point<local_t, Duration>

e Calendars convert back and forth to Local _days with the
exact same formulas that they use for sys_days.

sys_days{2019y/11/14} A UTC time_point

A somewhat nebulous
local_days{2019y/11/14} time_po1int, until you pair
it with a ti1me_zone.

But both contain the value 18214 days.

o$ripple

Time Zones

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}
zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1h};
tp.get_sys_time(); 2019-11-14 00:00:00
tp.get_local_time(); 2019-11-14 01:00:00

e sys_time and local_time are distinct families of time_points
so that the compiler will catch accidentally mixing them.

* They both have distinct semantics.

* They are both useful.

 They are both available.

o$ripple

Time Zones

Example: Directions Group meeting times

for (auto d = January/9/2019; d.year() < 2020y;
d = sys_days{d} + weeks{2})

{
zoned_time london{"Europe/London", local_days{d} + 18h};
cout << london << '\n';
cout << zoned_time{"America/New_York", london} << "\n\n";
3

o$ripple

Time Zones

Example: Directions Group meeting times

for (auto d = January/9/2019; d.year() < 2020y;
d = sys_days{d} + weeks{2})

{
zoned_time london{"Europe/London", local_days{d} + 18h};
cout << london << '\n';
cout << zoned_time{"America/New_York", london} << "\n\n";
3

2019-01-09 18:00:00 GMT
2019-01-09 13:00:00 EST

2019-01-23 18:00:00 GMT
2019-01-23 13:00:00 EST

o$ripple

Time Zones

Example: Directions Group meeting times

for (auto d = January/9/2019; d.year() < 2020y;
d = sys_days{d} + weeks{2})

{
zoned_time london{"Europe/London", local_days{d} + 18h};
cout << london << '\n';
cout << zoned_time{"America/New_York", london} << "\n\n";
3

2019-03-20 18:00:00 GMT
2019-03-20 14:00:00 EDT

2019-04-03 18:00:00 BST
2019-04-03 13:00:00 EDT

o$ripple

Time Zones

Example: Directions Group meeting times

for (auto d = January/9/2019; d.year() < 2020y;
d = sys_days{d} + weeks{2})

{
zoned_time london{"Europe/London", local_days{d} + 18h};
cout << london << '\n';
cout << zoned_time{"America/New_York", london} << "\n\n";
3

2019-10-30 18:00:00 GMT
2019-10-30 14:00:00 EDT

2019-12-25 18:00:00 GMT

o2 riopl 2019-12-25 13:00:00 EST
ripple

Formatting

 Even though everything has a streaming operator, it may
not stream with the format you desire.

e C++20 <chrono> fully integrates into C++20
std: : format.

e With all of the flag functionality of std: :strftime/
std: :put_time.

e And a little more.

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << zoned_time{tz, tp} << '\n';

2019-11-14 11:13:40.785340 CET

The default streaming format

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << format("{:%F %T %Z}\n", zoned_time{tz, tp});

2019-11-14 11:13:40.785340 CET

No change.
The default explicitly specified.

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << format("{:%d.%m.%Y AT%Z}\n"
zoned. tlme{tz tp});

14.11.2019 11:13:40./785346+0100

d.m.y ordering.
UTC offset instead of time zone abbreviation.

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << Format(locale{"de DE"}, "1:%d.%m. %Y %T%zI\n",
zoned tlme{tz tp});

14.11.2019 11:13:40,/785346+0100

Decimal point specified by explicit locale.
Your OS may not support this locale.

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << format("{:%d.%m.%Y %T}i\n",
zoned_timeitz, floor<milliseconds>(tp)});

14.11.2019 11:13:40.785

Precision governed by input time point precision.
Dropped UTC offset.

o$ripple

Formatting

e Given:

auto tp = system_clock: :now();

auto tz = locale_zone("Europe/Berlin");
e Examples:

cout << format("{:%d.%m.%Y %T}i\n",
zoned_time{tz, floor<seconds>(tp)});

14.11.2019 11:13:40

Seconds-precision eliminates decimal point.

o$ripple

Formatting

e All of these types can be formatted:

zoned_time local_time sys_time
duration year_month_day year_month_day_last
month_day year month day weekday
weekday_indexed
file_time -MM-SS . -
| year_mon weekday _last
utc_time
gps_time year_month_weekday sys_info
tai_time year_month_weekday_last local_info
month_day _l|ast month_weekday_last month_weekday

o$ripple

Parsing

e |n general, if you can std: : format it, you can
std: :chrono: :parse it back in, usually with the
same formatting string.

system_clock: :time_point tp;
cih >> parse("%d.%m.%Y %T%z", tp);
cout << tp << '\n';

Input: 14.11.2019 11:13:40.7385346+0100
Output: 2019-11-14 10:13:40.785346

o$ripple

o$ripple

Clocks

C++11 introduced system_clock, steady_clock and
high_resolution_clock.

Each clock has its own family of time_points

A family of time_points allows different precisions,
but not different clocks.

Arithmetic within a family of time_points results in a
time_point or duration with a precision computed by
the common_type of the precision of the arguments.

Arithmetic among different families of time_points is
a compile-time error.

Clocks

e system_clock measures the time of day and the date.

e steady_clock is a stop watch no relationship to a
calendar.

* high_resolution_clock is typically a type alias of
steady_clock or system_clock.

o$ripple

Clocks

e C++20 adds:
e file_clock
e utc_clock
e gps_clock
e tai_clock

o$ripple

file_clock

Clocks

template<class Duration>
using file_time = time_point<file_clock, Duration>;

e file_clock is the same type as
std::file_system::file_time_type::clock.

e f1

e f1
f1

e f1

le_clock's epoch is unspecified.

Le_time_type is returned from functions such as
le_system: :last_write_time(const path& p).

.e_t1ime can be cast to sys_time (and vice-versa)

via clock_cast:

auto tp =

clock_cast<system_clock>(last_write_time("/path"));

last_write_time("/path", clock_cast<file_clock>(tp));

o$ripple

Clocks

utc_clock

template<class Duration>
using utc_time = time_point<utc_clock, Duration>;

e utc_timeisjust like sys_time except that it counts leap seconds.

e Useful when subtracting time_points across a leap second
iInsertion point and 1s accuracy is required.

e clock_cast can be used to convert among utc_time, file_time
and sys_time.

e utc_clock: :now() is allowed but not required to be accurate
during a leap second insertion.

e formatting and parsing utc_time allows for 61s in a minute, but

only for a utc_time that is actually referencing a leap second
insertion.

o$ripple

Clocks

gps_clock

template<class Duration>
using gps_time = time_point<gps_clock, Duration>;

e gps_time measures time since Sunday[1]/January/1980 00:00:00
UTC.

e Useful for dealing with time points in the "GPS-shifted" civil calendar.

e clock_cast can be used to convert among gps_time, utc_time,
file_time and sys_time.

* gps_clock: :now() is allowed but not required to be fed from a GPS
receiver.

e formatting and parsing gps_time maps to a civil time that is currently
18s ahead of sys_t1ime and utc_t1ime, and gets another second
ahead with each added leap second.

o$ripple

Clocks

tai_clock

template<class Duration>
using tai_time = time_point<tai_clock, Duration>;

 tai_time measures time since 1958y/1/1 00:00:00 and is offset
10s ahead of UTC at this date.

o Useful for dealing with time points in the "TAl-shifted" civil
calendar.

e clock_cast can be used to convert among tai_time, gps_time,
utc_time, file_time and sys_time.

e tai_clock: :now() is allowed but not required to be accurate
during a leap second insertion.

e formatting and parsing tai_time maps to a civil time that is
always 19s ahead of gps_time.

o$ripple

Clocks

time_point<A_clock, Duration>
clock_cast<A_clock>(time_point<B_clock, Duration> tp);

e User-written clocks can add support to participate in the
clock_cast system with O(1) amount of code (independent

of the number of clocks supporting clock_cast).

e Once clock_cast is supported by a user-written clock, that
clock can clock_cast bidirectionally to every clock that
supports clock_cast.

o$ripple

Library Design

e Library Design is an engineering process.
e Both an art and a science.

e There are always tradeoffs to be made among conflicting
goals.

e |tis an iterative process, as is all engineering.

o$ripple

Library Design

e |t is an iterative process, as is all engineering.
e The first car wasn't Ferrari Enzo.
e |t was a tricycle with a motor attached.

e |t took many years and iterations for engineering
technology to evolve from one to another.

e So it goes with software.

o$ripple

Library Design

e And we're still early in the maturing of this industry.
e Study other's code.
e | earn from past successes.

e | earn even more from failures.

ofripple

o$ripple

Library Design

Detect as many errors as you can at compile-time.
Make client code as readable as possible.
Eliminate ambiguities in client code.
Encourage your client to write efficient code.

Offer both low-level and high-level access.

e | ow-level access emphasizes uncompromising
performance and flexibility.

e High-level access emphasizes convenience for
common cases.

o$ripple

Library Design

e |f you only take away one thing from this talk...

* The readability of the code your
clients write is far more important
than the readability of your
library's synopsis or header.

Q&A

Thank you for your time.

o$ripple

