
Design Rationale for
the <chrono> Library

Howard Hinnant

Ripple

Meeting C++ 2019

Structure of <chrono>
• Durations:

seconds

hours

nanoseconds

microseconds

milliseconds

minutes

• Introduced in C++11

• Durations are the heart of the <chrono> library.

• These six durations
represent the
convenient high-
level access.

• lower-level access
is available to
clients for creating
any duration unit
they need.

Structure of <chrono>

duration

• Introduced in C++11

Structure of <chrono>

duration

time_point

• Time points: • Introduced in C++11

Structure of <chrono>

duration

time_point

clocks

• Clocks: • Introduced in C++11

Evolution of <chrono>

duration

time_point

clocks

calendar

Calendrical types: • Coming in C++20

Evolution of <chrono>

duration

time_point

clocks

calendartime
zones

Time zone management: • Coming in C++20

Evolution of <chrono>

duration

time_point

clocks

calendartime
zones

And more clocks: • Coming in C++20

Formatting and parsing:

Evolution of <chrono>

duration

time_point

clocks

calendartime
zones

formatting
and parsing

• Coming in C++20

C++20 provides a complete time handling library.

chrono in C++20
• Everything talked about today, whether it is old types

from C++11 (e.g. durations and time_points) or new
types in C++20, has a streaming operator in C++20:

cout << system_clock::now() << '\n';

• C++20 <chrono> becomes much easier to work with
because you can easily print values out, even without
knowing their type.

auto t0 = steady_clock::now();
...
auto t1 = steady_clock::now();
cout << "That took " << t1-t0 << '\n'; // That took 657ns

duration

• duration represents a duration of time, and can
come in any unit.

• durations are represented by an arithmetic type, or a
class type emulating an arithmetic type.
• int, long, double, safe<int>, etc.

• duration::period is a compile-time fraction
representing the time in seconds between each
integral value stored in the duration.

template<class Rep, class Period = ratio<1>>
 class duration;

• <chrono> defines several convenience type aliases for
common units.

duration
template<class Rep, class Period = ratio<1>>
 class duration;

• <chrono> defines several convenience type aliases for
common units.

nanoseconds
microseconds
milliseconds
seconds
minutes
hours

days
weeks
months
years

New in C++20

duration
template<class Rep, class Period = ratio<1>>
 class duration;

• Clients can define any custom unit they want.

using dsec = duration<double>;

using frame_rate = duration<int, ratio<1, 60>>;

using safe_ns = duration<safe_int<int64_t>, nano>;

duration
template<class Rep, class Period = ratio<1>>
 class duration;

• Durations implicitly convert from coarse to fine:

auto limit = 2h;
milliseconds x = limit; // 7'200'000ms

duration
template<class Rep, class Period = ratio<1>>
 class duration;

• Durations have a named conversion from fine to coarse:

auto limit = 2h;
milliseconds x = limit; // 7'200'000ms
auto y = duration_cast<hours>(x); // 2h

duration
template<class Rep, class Period = ratio<1>>
 class duration;

• If the destination is floating-point-based,
converts implicitly

auto limit = 2h;
milliseconds x = limit; // 7'200'000ms
auto y = duration_cast<hours>(x); // 2h
duration<double> z = x; // 7'200.0s

• Implicit truncation error is a compile-time error.

• Round-off error is not a compile-time error.

time_point

• time_point represents a point in time.

• time_point is a wrapper around a duration.

• Same value, same representation, just a different
meaning.

template<class Clock, class Duration = typename Clock::duration>
 class time_point;

• time_point offers only a subset of arithmetic algebra
so as to catch logic errors at compile-time.

time_point
template<class Clock, class Duration = typename Clock::duration>
 class time_point;

• time_point offers only a subset of arithmetic algebra
so as to catch logic errors at compile-time.

auto tp1 = system_clock::now(); // tp1 is a time_point

auto tp2 = system_clock::now(); // tp2 is a time_point

auto diff = tp2 - tp1; // diff is a duration

auto sum = tp2 + tp1; // compile-time error

time_point
template<class Clock, class Duration = typename Clock::duration>
 class time_point;

• time_point is templated on Clock to catch the error
of mixing time_points from different clocks.

auto tp1 = system_clock::now(); // tp1 is a time_point

auto tp2 = steady_clock::now(); // tp2 is a time_point

auto diff = tp2 - tp1; // compile-time error

What is the difference between
a time point and a date?

• Example time points:
• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

Time points can have
arbitrarily fine precision.

What is the difference between
a time point and a date?

• Example time points:
• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

• 2019-11-14 10:30

• 2019-11-14 10

Time points can
have arbitrarily
coarse precision.

What is the difference between
a time point and a date?

• Example time points:
• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

• 2019-11-14 10:30

• 2019-11-14 10

• 2019-11-14

When the time point
has a precision of a
day, we call it a date.

What is the difference between
a time point and a date?

• Example time points:

• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

• 2019-11-14 10:30

• 2019-11-14 10

• 2019-11-14

time_point<system_clock, seconds>

time_point<system_clock, milliseconds>

time_point<system_clock, microseconds>

time_point<system_clock, nanoseconds>

time_point<system_clock, minutes>

time_point<system_clock, hours>

time_point<system_clock, days>

Each precision has a type
in the chrono system.

What is the difference between
a time point and a date?

• Example time points:

• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

• 2019-11-14 10:30

• 2019-11-14 10

• 2019-11-14

sys_time<seconds>

sys_time<milliseconds>

sys_time<microseconds>

sys_time<nanoseconds>

sys_time<minutes>

sys_time<hours>

sys_time<days>

sys_time<Duration>
is a type alias for

time_point<system_clock, Duration>

What is the difference between
a time point and a date?

• Example time points:

• 2019-11-14 10:30:15

• 2019-11-14 10:30:15.123

• 2019-11-14 10:30:15.123456

• 2019-11-14 10:30:15.123456789

• 2019-11-14 10:30

• 2019-11-14 10

• 2019-11-14

sys_seconds

sys_time<milliseconds>

sys_time<microseconds>

sys_time<nanoseconds>

sys_time<minutes>

sys_time<hours>

sys_days

sys_time<Duration>
is a type alias for

time_point<system_clock, Duration>

Additional convenience

type aliases

What is a calendar?
• A calendar is a collection of dates,

where each date has a unique name.

30.12.1969

31.12.1969

01.01.1970

02.01.1970

03.01.1970

Civil calendar

What is a calendar?
• A calendar is a collection of dates,

where each date has a unique name.

30.12.1969

31.12.1969

01.01.1970

02.01.1970

03.01.1970

Civil calendar

17.12.1969
18.12.1969
19.12.1969
20.12.1969
21.12.1969

Julian calendar

• Different calendars can refer to the same physical
date, but have different names for that date.

What is a calendar?
• A calendar is a collection of dates,

where each date has a unique name.

30.12.1969

31.12.1969

01.01.1970

02.01.1970

03.01.1970

Civil calendar

-2
-1
0
1
2

sys_days

• sys_days is a calendar too!

Calendar Interoperability

• sys_days is the canonical calendar in <chrono>.

sys_days

Calendar Interoperability

• sys_days is the canonical calendar in <chrono>.

• As long as each calendar can convert to and from sys_days,
then each calendar can convert to any other calendar.

sys_days

civil calendar

Julian calendar

Chinese calendarIslamic calendar

Hebrew calendar

ISO Week-based year

Calendar Interoperability

• Only these two calendars are in C++20 <chrono>.

• Clients can write their own calendars.

• I've written several of them as proof of concept.

sys_days

civil calendar

Julian calendar

Chinese calendarIslamic calendar

Hebrew calendar

ISO Week-based year

The civil calendar

• year_month_day implicitly converts to and from sys_days,
with no loss of information (constexpr and noexcept).

• Constructible from a year, month and day.

• Has year, month and day getters.

• Equality and less-than comparable.
• Does year and month-oriented arithmetic.

• Does not do day-oriented arithmetic. sys_days does day-
oriented arithmetic very efficiently.

class year_month_day;

data structure: {year, month, day}

The civil calendar

• year represents the "name" of a year in the civil calendar. It
does not represent a number of years (a duration).

• One can subtract two year instances and get a years
duration type.

• year explicitly converts to and from int.

• Equality and less-than comparable.

• Does year-oriented arithmetic.

• Has user-defined literal y, e.g. 2019y.

class year;

data structure: {short}

The civil calendar

• month represents a month of a year. It does not represent
a number of months (a duration).

• One can subtract two month instances and get a months
duration type.

• month explicitly converts to and from unsigned.

• Equality and less-than comparable.

• Does month-oriented arithmetic (modulo 12).

• Has inline constexpr constants, e.g. January,
February, March, ...

class month;

data structure: {unsigned char}

The civil calendar

• day represents a day of a month. It does not represent a
number of days (a duration).

• One can subtract two day instances and get a days
duration type.

• day explicitly converts to and from unsigned.

• Equality and less-than comparable.

• Does day-oriented arithmetic.

• Has user-defined literal d, e.g. 14d.

class day;

data structure: {unsigned char}

The civil calendar

• Typically sizeof is 4 bytes.

class year_month_day;

data structure: {year, month, day}

The civil calendar

• Typically sizeof is 4 bytes.
• Constructible with conventional syntax operators in 3

different orders:

class year_month_day;

data structure: {year, month, day}

2019y/November/14d;

14d/November/2019y;

November/14d/2019y;

auto ymd =

auto ymd =

auto ymd =

The civil calendar

• Typically sizeof is 4 bytes.
• Constructible with conventional syntax operators in 3

different orders:
• Only the first field must be typed, the trailing fields can be

integral.

class year_month_day;

data structure: {year, month, day}

2019y/11/14;

14d/11/2019;

November/14/2019;

auto ymd =

auto ymd =

auto ymd =

The civil calendar

• Or, if you prefer:

class year_month_day;

data structure: {year, month, day}

year_month_day ymd{year{2019}, month{11}, day{14}};

The civil calendar

• Construction was designed to be type-safe and readable,
but not overly verbose.

• Try to eliminate errors such as

• year_month_day{10, 11, 12}.

class year_month_day;

data structure: {year, month, day}

The civil calendar

• Invalid dates are allowed, but are easily detectable.

class year_month_day;

data structure: {year, month, day}

auto ymd = November/31/2019;
assert(ymd.ok() == false);

• Rationale: Invalid dates are not necessarily errors
(examples to follow later). And if they are errors, you get to
decide if they are fatal, exceptional, or handled with an error
code.

The civil calendar

• Represents the last day of the {year, month} pair.

• Constructible from a year and month.

• Implicitly convertible to sys_days (it's a partial calendar).

• Has year and month and day getters.

• Equality and less-than comparable.

• Does year and month-oriented arithmetic.

class year_month_day_last;

data structure: {year, month}

The civil calendar

• Constructible with conventional syntax operators by
replacing the day-specifier with last.

class year_month_day_last;

data structure: {year, month}

auto ymd = last/November/2019;

• Implicitly convertible to year_month_day.

year_month_day ymd = November/last/2019;

The civil calendar
• Consider:

auto ymd = 31d/October/2019;
ymd += months{1};

• ymd has the value 2019y/November/31d

More about year and month arithmetic

The civil calendar
• Consider:

auto ymd = 31d/October/2019;
ymd += months{1};

• ymd has the value 2019y/November/31d

More about year and month arithmetic

if (!ymd.ok())
 ymd = ymd.year()/ymd.month()/last;

• To snap to the end of the month:

The civil calendar
• Consider:

auto ymd = 31d/October/2019;
ymd += months{1};

• ymd has the value 2019y/November/31d

More about year and month arithmetic

if (!ymd.ok())
 ymd = ymd.year()/ymd.month()/last;

• To overflow into the next month:
if (!ymd.ok())
 ymd = sys_days{ymd};

• To snap to the end of the month:

The civil calendar
More about year and month arithmetic

• To overflow into the next month:

• To snap to the end of the month:

• In either case, the invalid date 2019-11-31 is not a fatal nor
exceptional error. It is just an intermediate result.

• You get to decide how to handle it.

if (!ymd.ok())
 ymd = ymd.year()/ymd.month()/last;

if (!ymd.ok())
 ymd = sys_days{ymd};

The civil calendar

• Represents dates of the form the 2nd Thursday of November 2019.
• Constructible with conventional syntax
• Anywhere one can put a day-specifier, one can use a
weekday_indexed instead.

• year_month_weekday implicitly converts to and from sys_days,
with no loss of information (constexpr and noexcept).

• This is a second complete civil calendar!

class year_month_weekday;

data structure: {year, month, weekday_indexed}

auto date = Thursday[2]/November/2019;

The civil calendar

• Has year, month, weekday, and index getters.

• Equality comparable (not less-than).
• Does year and month-oriented arithmetic.

• Will explicitly convert to and from year_month_day by
bouncing off of sys_days (just like a user-written calendar).

class year_month_weekday;

data structure: {year, month, weekday_indexed}

auto date = Thursday[2]/November/2019;

The civil calendar

• weekday explicitly converts to and from unsigned.

• Constructor accepts both C's tm encoding and ISO encoding.

• Explicitly constructible from sys_days (a partial calendar).

• Equality comparable (not less-than).
• Does day-oriented arithmetic (modulo 7).
• Implies there is no officially supported "first day of the week."

• Has inline constexpr constants, e.g. Monday, Tuesday,
Wednesday, ...

class weekday;

data structure: {unsigned char}

The civil calendar

• Represents the concept: nth weekday of an unspecified
month.

• weekday_indexed constructs from a weekday and an
unsigned.

• Constructible with conventional syntax:

class weekday_indexed;

data structure: {weekday, integral index} // allowed to be 1 byte

auto wdi = Thursday[2];

The civil calendar

• Represents the concept: last weekday of an unspecified
month.

• weekday_last explicitly constructs from a weekday.

• Constructible with conventional syntax:

class weekday_last;

data structure: {weekday}

auto wdi = Thursday[last];

The civil calendar
• Consider: auto date = Friday[5]/November/2019;

date += years{1};

• date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

More about year and month arithmetic

The civil calendar
• Consider: auto date = Friday[5]/November/2019;

date += years{1};

• date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

More about year and month arithmetic

if (!date.ok())
 date = sys_days{date.year()/date.month()/date.weekday()[last]};

• To snap to the end of the month (4th Friday of November/2020):

The civil calendar
• Consider: auto date = Friday[5]/November/2019;

date += years{1};

• date has the value Friday[5]/November/2020. But
November/2020 only has 4 Fridays.

More about year and month arithmetic

if (!date.ok())
 date = sys_days{date.year()/date.month()/date.weekday()[last]};

• To overflow into the next month (1st Friday of December/2020):

• To snap to the end of the month (4th Friday of November/2020):

if (!date.ok())
 date = sys_days{date};

Time Zones
• system_clock (and sys_time<Duration>) are Unix Time.

• Unix Time measures time since (and prior) 1970-01-01
00:00:00 UTC excluding leap seconds.

• Yes, C++20 can handle leap seconds but sys_time ignores
them (we'll get there ...).

Time Zones
• system_clock (and sys_time<Duration>) are Unix Time.

• Unix Time measures time since (and prior) 1970-01-01
00:00:00 UTC excluding leap seconds.

• Yes, C++20 can handle leap seconds but sys_time ignores
them (we'll get there ...).

• C++20 adds a time_zone class which is used to transform
sys_time<Duration> into "local time".

• C only has the concept of UTC and "local time". C++20
adds to these two concepts the ability to compute with any
time zone in the IANA time zone database.

• This means time zone names are portable.

Time Zones
• Examples:

auto tp = system_clock::now();

The current UTC time:

2019-11-14 10:13:40.785346

Time Zones
• Examples:

auto tp = system_clock::now();

The current UTC time:

zoned_time tp{current_zone(), system_clock::now()};

The current local time:
2019-11-14 10:13:40.785346

2019-11-14 11:13:40.785346 CET

Time Zones
• Examples:

auto tp = system_clock::now();

The current UTC time:

zoned_time tp{current_zone(), system_clock::now()};

The current local time:

zoned_time tp{"Europe/Berlin", system_clock::now()};

The current time in Berlin:

2019-11-14 10:13:40.785346

2019-11-14 11:13:40.785346 CET

2019-11-14 11:13:40.785346 CET

Time Zones

• zoned_time is a convenience wrapper of a pointer to a time
zone, and a sys_time time_point.

• One can think of it as a triple of {time_zone*,
local_time<Duration>, sys_time<Duration>}, but the
local time is computed upon demand.

• One can create custom time zones to handle things outside
the IANA time zone database (e.g. POSIX time zone strings).

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

Time Zones

• zoned_time is typically constructed with two arguments.

• The first argument represents a time_zone.

• Can be either a time_zone const*, or a string_view.

• The second argument represents a time_point.

• Can be a sys_time, local_time, or another zoned_time.

template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

• Examples:

The current local time:

2019-11-14 11:13:40.785346 CET

time_zone const* sys_time

zoned_time tp{current_zone(), system_clock::now()};

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

• Examples:

The current Berlin time:

2019-11-14 11:13:40.785346 CET

sys_time

zoned_time tp{"Europe/Berlin", system_clock::now()};

string_view

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

• Examples:

Midnight Berlin time:

2019-11-14 00:00:00 CET

local_time

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14}};

string_view

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

• Examples:

1:00 Berlin time:

2019-11-14 01:00:00 CET

string_view sys_time

zoned_time tp{"Europe/Berlin", sys_days{2019y/11/14}};

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

• Examples:

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1h};

1:00 Berlin time:

2019-11-14 01:00:00 CET

Specify local time of day

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time zt{A time zone, A time point};

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1h};

1:00 Berlin time:

2019-11-14 01:00:00 CET
zoned_time

zoned_time tp2{"America/New_York", tp};
2019-11-13 19:00:00 EST

• tp and tp2 represent the same UTC
instant, but in different time zones

Time Zones
local_time<Duration>
is a type alias for

time_point<local_t, Duration>
• local_t is "not really a clock."

• It has no now() function.

• local_time is a time_point with respect to a not-yet-
specified time_zone.

• It can be paired with a time_zone and only then will it
refer to an instant in time (e.g. in a zoned_time
constructor).

• local_days is just a type alias for local_time<days>.
• Calendars convert back and forth to local_days with the

exact same formulas that they use for sys_days.

Time Zones
local_time<Duration>
is a type alias for

time_point<local_t, Duration>

• Calendars convert back and forth to local_days with the
exact same formulas that they use for sys_days.

local_days{2019y/11/14}

sys_days{2019y/11/14} A UTC time_point

A somewhat nebulous

time_point, until you pair

it with a time_zone.

But both contain the value 18214 days.

Time Zones
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time;

data structure: {TimeZonePtr, sys_time<Duration>}

zoned_time tp{"Europe/Berlin", local_days{2019y/11/14} + 1h};

tp.get_sys_time();

tp.get_local_time();

2019-11-14 00:00:00

2019-11-14 01:00:00

• sys_time and local_time are distinct families of time_points
so that the compiler will catch accidentally mixing them.

• They both have distinct semantics.
• They are both useful.
• They are both available.

for (auto d = January/9/2019; d.year() < 2020y;
 d = sys_days{d} + weeks{2})
{
 zoned_time london{"Europe/London", local_days{d} + 18h};
 cout << london << '\n';
 cout << zoned_time{"America/New_York", london} << "\n\n";
}

Time Zones
Example: Directions Group meeting times

2019-01-09 18:00:00 GMT
2019-01-09 13:00:00 EST

2019-01-23 18:00:00 GMT
2019-01-23 13:00:00 EST

...

for (auto d = January/9/2019; d.year() < 2020y;
 d = sys_days{d} + weeks{2})
{
 zoned_time london{"Europe/London", local_days{d} + 18h};
 cout << london << '\n';
 cout << zoned_time{"America/New_York", london} << "\n\n";
}

Time Zones
Example: Directions Group meeting times

2019-01-09 18:00:00 GMT
2019-01-09 13:00:00 EST

2019-01-23 18:00:00 GMT
2019-01-23 13:00:00 EST

...

2019-03-20 18:00:00 GMT
2019-03-20 14:00:00 EDT

2019-04-03 18:00:00 BST
2019-04-03 13:00:00 EDT

...

2019-10-30 18:00:00 GMT

for (auto d = January/9/2019; d.year() < 2020y;
 d = sys_days{d} + weeks{2})
{
 zoned_time london{"Europe/London", local_days{d} + 18h};
 cout << london << '\n';
 cout << zoned_time{"America/New_York", london} << "\n\n";
}

Time Zones
Example: Directions Group meeting times

2019-01-09 18:00:00 GMT
2019-01-09 13:00:00 EST

2019-01-23 18:00:00 GMT
2019-01-23 13:00:00 EST

...

2019-03-20 18:00:00 GMT
2019-03-20 14:00:00 EDT

2019-04-03 18:00:00 BST
2019-04-03 13:00:00 EDT

...

2019-10-30 18:00:00 GMT
2019-10-30 14:00:00 EDT

...

2019-12-25 18:00:00 GMT
2019-12-25 13:00:00 EST

for (auto d = January/9/2019; d.year() < 2020y;
 d = sys_days{d} + weeks{2})
{
 zoned_time london{"Europe/London", local_days{d} + 18h};
 cout << london << '\n';
 cout << zoned_time{"America/New_York", london} << "\n\n";
}

Time Zones
Example: Directions Group meeting times

Formatting

• Even though everything has a streaming operator, it may
not stream with the format you desire.

• C++20 <chrono> fully integrates into C++20
std::format.

• With all of the flag functionality of std::strftime/
std::put_time.

• And a little more.

Formatting

• Examples:

cout << zoned_time{tz, tp} << '\n';

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

2019-11-14 11:13:40.785346 CET

The default streaming format

Formatting

• Examples:

cout << format("{:%F %T %Z}\n", zoned_time{tz, tp});

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

2019-11-14 11:13:40.785346 CET

No change.

The default explicitly specified.

Formatting

• Examples:

cout << format("{:%d.%m.%Y %T%z}\n",
 zoned_time{tz, tp});

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

14.11.2019 11:13:40.785346+0100

d.m.y ordering.

UTC offset instead of time zone abbreviation.

Formatting

• Examples:

cout << format(locale{"de_DE"}, "{:%d.%m.%Y %T%z}\n",
 zoned_time{tz, tp});

14.11.2019 11:13:40,785346+0100

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

Decimal point specified by explicit locale.

Your OS may not support this locale.

Formatting

• Examples:

cout << format("{:%d.%m.%Y %T}\n",
 zoned_time{tz, floor<milliseconds>(tp)});

14.11.2019 11:13:40.785

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

Precision governed by input time point precision.

Dropped UTC offset.

Formatting

• Examples:

cout << format("{:%d.%m.%Y %T}\n",
 zoned_time{tz, floor<seconds>(tp)});

14.11.2019 11:13:40

auto tp = system_clock::now();
auto tz = locale_zone("Europe/Berlin");

• Given:

Seconds-precision eliminates decimal point.

Formatting
• All of these types can be formatted:

zoned_time local_time sys_time

file_time

gps_time

tai_time

utc_time

duration

daymonthyear weekday

weekday_indexed

weekday_last

month_day

month_day_last month_weekdaymonth_weekday_last

year_month

year_month_day year_month_day_last

year_month_weekday_last

year_month_weekday

hh_mm_ss

sys_info
local_info

Parsing
• In general, if you can std::format it, you can
std::chrono::parse it back in, usually with the
same formatting string.

system_clock::time_point tp;
cin >> parse("%d.%m.%Y %T%z", tp);
cout << tp << '\n';

14.11.2019 11:13:40.785346+0100

2019-11-14 10:13:40.785346

Input:

Output:

Clocks
• C++11 introduced system_clock, steady_clock and

high_resolution_clock.
• Each clock has its own family of time_points
• A family of time_points allows different precisions,

but not different clocks.
• Arithmetic within a family of time_points results in a

time_point or duration with a precision computed by
the common_type of the precision of the arguments.

• Arithmetic among different families of time_points is
a compile-time error.

Clocks

• system_clock measures the time of day and the date.
• steady_clock is a stop watch no relationship to a

calendar.
• high_resolution_clock is typically a type alias of

steady_clock or system_clock.

Clocks

• C++20 adds:

• file_clock

• utc_clock

• gps_clock

• tai_clock

Clocks

• file_clock is the same type as
std::file_system::file_time_type::clock.

• file_clock's epoch is unspecified.

• file_time_type is returned from functions such as
file_system::last_write_time(const path& p).

• file_time can be cast to sys_time (and vice-versa)
via clock_cast:

file_clock
template<class Duration>
 using file_time = time_point<file_clock, Duration>;

auto tp = clock_cast<system_clock>(last_write_time("/path"));
last_write_time("/path", clock_cast<file_clock>(tp));

Clocks

• utc_time is just like sys_time except that it counts leap seconds.

• Useful when subtracting time_points across a leap second
insertion point and 1s accuracy is required.

• clock_cast can be used to convert among utc_time, file_time
and sys_time.

• utc_clock::now() is allowed but not required to be accurate
during a leap second insertion.

• formatting and parsing utc_time allows for 61s in a minute, but
only for a utc_time that is actually referencing a leap second
insertion.

utc_clock
template<class Duration>
 using utc_time = time_point<utc_clock, Duration>;

Clocks

• gps_time measures time since Sunday[1]/January/1980 00:00:00
UTC.

• Useful for dealing with time points in the "GPS-shifted" civil calendar.
• clock_cast can be used to convert among gps_time, utc_time,
file_time and sys_time.

• gps_clock::now() is allowed but not required to be fed from a GPS
receiver.

• formatting and parsing gps_time maps to a civil time that is currently
18s ahead of sys_time and utc_time, and gets another second
ahead with each added leap second.

gps_clock
template<class Duration>
 using gps_time = time_point<gps_clock, Duration>;

Clocks

• tai_time measures time since 1958y/1/1 00:00:00 and is offset
10s ahead of UTC at this date.

• Useful for dealing with time points in the "TAI-shifted" civil
calendar.

• clock_cast can be used to convert among tai_time, gps_time,
utc_time, file_time and sys_time.

• tai_clock::now() is allowed but not required to be accurate
during a leap second insertion.

• formatting and parsing tai_time maps to a civil time that is
always 19s ahead of gps_time.

tai_clock
template<class Duration>
 using tai_time = time_point<tai_clock, Duration>;

Clocks

• User-written clocks can add support to participate in the
clock_cast system with O(1) amount of code (independent
of the number of clocks supporting clock_cast).

• Once clock_cast is supported by a user-written clock, that
clock can clock_cast bidirectionally to every clock that
supports clock_cast.

time_point<A_clock, Duration>
clock_cast<A_clock>(time_point<B_clock, Duration> tp);

Library Design

• Library Design is an engineering process.

• Both an art and a science.

• There are always tradeoffs to be made among conflicting
goals.

• It is an iterative process, as is all engineering.

Library Design

• The first car wasn't Ferrari Enzo.

• It was a tricycle with a motor attached.

• It took many years and iterations for engineering
technology to evolve from one to another.

• So it goes with software.

• It is an iterative process, as is all engineering.

Library Design
• And we're still early in the maturing of this industry.

• Study other's code.

• Learn from past successes.

• Learn even more from failures.

Library Design
• Detect as many errors as you can at compile-time.

• Make client code as readable as possible.

• Eliminate ambiguities in client code.

• Encourage your client to write efficient code.

• Offer both low-level and high-level access.

• Low-level access emphasizes uncompromising
performance and flexibility.

• High-level access emphasizes convenience for
common cases.

Library Design

• The readability of the code your
clients write is far more important
than the readability of your
library's synopsis or header.

• If you only take away one thing from this talk...

Q & A

Thank you for your time.

