
Addendum 2 to
RIDL: Rogue In-flight Data Load

Stephan van Schaik∗, Alyssa Milburn∗, Sebastian Österlund∗, Pietro Frigo∗, Giorgi Maisuradze†‡,
Kaveh Razavi∗, Herbert Bos∗, and Cristiano Giuffrida∗

∗Department of Computer Science
Vrije Universiteit Amsterdam, The Netherlands

{s.j.r.van.schaik, a.a.milburn, s.osterlund, p.frigo}@vu.nl,
{kaveh, herbertb, giuffrida}@cs.vu.nl

†CISPA Helmholtz Center for Information Security
Saarland Informatics Campus

giorgi.maisuradze@cispa.saarland

Abstract—On Jan 27, 2020, we (VUSec) disclose two “new”
RIDL/MDS variants at the end of another (third) embargo. We
do not think either of these variants is particularly novel or
interesting and they are simply “more RIDL” (focusing on ways
to get data into microarchitectural buffers RIDL can leak from).

A. Flawed MDS mitigations (encore!)

Intel’s original microcode update, which modifies the
VERW instruction to clear CPU buffers and mitigate MDS,
was flawed in that it cleared the buffers using stale (potentially
sensitive) data on several of the CPUs we used for testing
(e.g., i7-7700K). This meant that data could still be leaked
across privilege boundaries using RIDL even if SMT has been
disabled and the recommended VERW mitigation has been
applied. See our first addendum (on TAA and VERW-bypass)
for more details.

Then in November 2019, Intel published another set of
updates to mitigate the RIDL/MDS vulnerability once and
for all. Unfortunately, they failed again, as the fix still leaves
multiple avenues for exploitation. None of these issues is new.
They merely support the claim in the original paper that there
are multiple ways to and multiple buffers to leak from. One of
the issues (L1DES) was insisted on by us ever since we first
shared the RIDL pre-final paper in January 2019. The other
issue is a one-line of code change from one of the PoCs we
originally submitted.

B. L1D Eviction Sampling (L1DES)

The first issue, which Intel refers to as L1D Eviction
Sampling (L1DES), is a RIDL variant that leaks from L1D
evictions (assigned CVE-2020-0549). It may seem that some-
times history does repeat itself, because this is again something
that we had already shown in our original RIDL paper, as
shown in Figure 6. In the camera-ready version of the RIDL
paper, we also explicitly mentioned that, at every context
switch, ”the entire L1 cache needs to be flushed first since
the entries go through the LFBs” to properly mitigate RIDL.
We removed this sentence in the original version of the RIDL
paper released on May 14, 2019, since Intel had not yet miti-
gated the RIDL variant based on L1D evictions (which would
eventually become L1DES). Since then, we spent months
trying to convince Intel that leaks from L1D evictions were
possible and needed to be addressed.

On Oct 25, 2019, we reported to Intel that this variant
would bypass their latest VERW mitigation (and so did a PoC

shared with Intel on May 10, 2019), resulting in Intel finally
acknowledging the L1D eviction issue and requesting another
(L1DES) embargo. We learned that Intel had not found this
issue internally and that the only other independent finder was
the Zombieload team, which reported a PoC to Intel in May,
2019. Our RIDL-L1DES PoC is available on GitHub1.

C. Vector Register Sampling (VRS)

The second issue, which Intel refers to as Vector Register
Sampling (VRS), is a RIDL variant that leaks from vector
registers (assigned CVE-2020-0548). This variant shows that
RIDL can also leak values that are never even stored in
memory. In reality, this is possible with a small, 1-line of
code variation of our ‘alignment write‘ PoC (originally leaking
values stored in memory using alignment faults), which we
shared with Intel on May 11, 2019. Since then, we spent
months trying to convince Intel that our ‘alignment write‘ PoC
and its variations needed to be properly addressed.

On Oct 1, 2019, we reported to Intel that a 1-line modi-
fication of our ‘alignment write‘ PoC can leak vector register
values, resulting in Intel requesting a new (VRS) embargo. We
are not aware of other independent finders to acknowledge for
VRS. Our RIDL-VRS PoC is available on GitHub1.

D. Conclusion

This research—some of whose details were withheld from
the public version of the RIDL paper due to responsible
disclosure considerations—further supports the arguments pre-
sented in our original paper. We reiterate that RIDL-class
vulnerabilities are non-trivial to fix or mitigate, and current
“spot” mitigation strategies for resolving these issues are
questionable. Moreover, we question the effectiveness of year-
long disclosure processes and also raise concerns on their
disruptive impact on the academic process. We continue to
work with Intel to improve their coordinated disclosure process
and collaboration with academia.

1https://github.com/vusec/ridl

https://github.com/vusec/ridl

	Flawed MDS mitigations (encore!)
	L1D Eviction Sampling (L1DES)
	Vector Register Sampling (VRS)
	Conclusion

