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Abstract

This article investigates technical issues behind the discussion that resulted from a recent attempt to
merge the Google Android’s opportunistic suspend feature into the mainline Linux kernel. It first describes
the opportunistic suspend framework and the problems that it is intended to address. Next, it discusses
difficulties related to using full system suspend for aggressive power management and explores alternative
solutions that do not introduce them. Finally, it presents mainline kernel work targeted at addressing the
problems that originally caused the opportunistic suspend feature to be developed, which is less intrusive and
allows of more flexibility.

1 Introduction

If you have been following the Linux kernel development for a few recent months, it has been hard to overlook
the massive thread on the Linux Kernel Mailing List (LKML) resulting from an attempt to merge the Google
Android’s suspend blockers framework into the main kernel tree [I]. As probably everyone interested in
Linux knows already, the suspend blockers patches from Google have been rejected [2], but the reason for
that doesn’t seem to be particularly clear to anyone who’s not deeply engaged in the kernel development.
Arguably, the presentation of the patches might be better and the explanation of the problems they addressed
might be more straightforward [3], but in the end it appears that merging them wouldn’t be the smartest
thing from the technical point of view. Unfortunately, though, it is difficult to explain that without describing
the technical issues behind the suspend blockers patchset.

In fact, suspend blockers, or wakelocks in the original Android terminology, are a part of a specific approach
to power management, which is based on aggressive utilization of full system suspend to save as much energy
as reasonably possible. In this approach the natural state of the system is a sleep state [4], in which energy is
only used for refreshing memory and providing power to a few devices that can generate signals to wake the
system up from that state. The working state, in which the CPUs are executing instructions and the system
is generally doing some useful work, is only entered in response to a wakeup signal from one of the selected
devices. The system stays in that state only as long as necessary to do certain work requested by the user.
When the work has been completed, the system automatically goes back to the sleep state.

Generally, this sounds like a good idea. Still, as it often happens, the final outcome depends on the details
and it turns out that the Android’s implementation of the approach outlined above, discussed in Section
leads to problems that are quite hard to solve. Moreover, if this approach is used on a generic GNU/Linux
system, like an x86 PC, it will potentially cause some timekeeping issues to appear, as explained in Section [3]
For these reasons, the question arises if there is an alternative way to achieve comparable energy savings. The
general answer to it is yes, there is one, based on the cpuidle framework [5], but it also has some disadvantages,
as shown in Section [

Although the way in which Android uses full system suspend for aggressive power management is con-
troversial, it doesn’t seem reasonable to dismiss the idea of automatic suspend in general as a valid method
of saving energy. Other operating systems actively use it, which allows them to claim an advantage over
GNU/Linux in the power management field [5]. Some Linux-based systems, like the OLPC project [6], also
use it successfully and they have to deal with the same problems that Android wakelocks are supposed to
address. However, on these systems full system suspend is always initiated by user space which allows of
more flexibility and requires some problems addressed with the help of wakelocks on Android to be handled
in a different way.



From the kernel’s point of view these systems are really quite similar to systems that only use full suspend
occasionally. All of them have to avoid race conditions between system suspend and system wakeup events,
which is one of the problems addressed by the Android wakelocks framework. Yet, the Android’s solution
only applies to systems that use suspend aggressively and initiate it from kernel space, so it doesn’t really
cover, for example, the systems that only suspend at the user’s request. On the other hand, if there’s a way
to avoid the race conditions between system suspend and system wakeup events on those systems, it will also
apply to the systems that use full system suspend aggressively, but start it from user space, like OLPC. That
practically has to be implemented with the help of a framework which is similar to the Android’s wakelocks,
but which is different enough to be substantially less controversial. There is some effort in that direction
under way, which resulted in an initial patch merged into the main kernel tree a couple of months ago [7].
The new interface introduced by it and the general idea of the new framework are presented in Section [f]
There is hope that Android might use this framework in the future and either add a small out-of-the-tree
patch introducing a kernel-based suspend mechanism on top of it, or switch to the more popular model in
which full system suspend is always started from user space.

2 Opportunistic Suspend the Android’s Way

The Google’s Android operating system has been designed with mobile devices, like cell phones or tablets,
in mind. Such devices are generally not expected to be able to carry out CPU-intensive computations or do
very I/O-intensive kind of work like workstations or servers. Thus, although they are supposed to allow their
users to preform some tasks that can also be done on a desktop computer, like browsing the Web, reading and
sending e-mail, listening to music or playing simple video games, they generally need not support extensive
multitasking and they are inherently single-user. Generally speaking, their performance requirements are
quite different from the performance requirements of other Linux-based systems.

On the other hand, it is essential that these devices can be used for as much time as possible without
connecting to any external power sources (e.g. AC power). In other words, their battery life has to be as long
as reasonably possible, even at the expense of performance.

In principle there are multiple ways to achieve this goal. In particular, one can use various runtime power
management (runtime PM) techniques for this purpose [8]. Basically, hardware components of the system
may be powered down when they are not used and powered up when they are needed again. For example,
the display is usually one of the most power-hungry components of a hand-held device like a mobile phone,
so it makes sense to switch it off when the user is not looking at itﬂ It also is generally possible to reduce
the capacity of various system components if full capacity is not necessary. For instance, the display can be
dimmed when the ambient light is not too bright, so that it doesn’t draw too much power in vain. If all
of the system’s hardware components are treated this way, they all will be powered down when the system
is completely idle and, in theory, from the energy usage point of view, it will behave as though it has been
suspended.

Android uses runtime PM to some extent, but its developers claim that runtime PM alone is not sufficient
to get acceptable battery life of an Android-based system in the majority of cases [9]. It is difficult, though, to
either universally accept this claim, or reject it entirely, because its validity depends on a number of different
factors. For instance, it depends on the particular implementation of runtime PM in use as well as on the
capabilities of the hardware in question. It also depends on what length of the system’s battery life is regarded
as “acceptable”.

The implementation of runtime PM certainly is important. Among other things, runtime PM can be
implemented as either more aggressive, or more performance-oriented and most likely the expected energy
savings in both cases will be different. Moreover, the heuristics used to decide whether or not a particular
hardware component can be powered down at a given instant of time play a significant role, but there is
no golden rule allowing one to choose the most appropriate heuristics for every possible situation. It also is
generally difficult to incorporate those heuristics into the drivers handling the hardware components without
hampering their basic functionality. In addition to that, hardware components may depend on one another
in various ways that need to be taken into account (e.g. if there’s a bus with multiple I/O devices on it
and a bridge connecting it to the rest of the system, then the bridge cannot be powered down if any I/O
devices on the bus are in use). There is the I/O runtime PM framework in the Linux kernel introduced to
help driver writers deal with these difficulties [], but the first version of Android had been released before
that framework was developed. In consequence, to the best knowledge of yours truly, none of the versions of
Android available to date uses the kernel’s I/O runtime PM framework in any significant way. Therefore one

LOf course, this is not always easy to tell, but some heuristics can be applied to figure that out more or less accurately



has to believe that the Android’s implementation of runtime PM cannot be improved so that it’s possible to
achieve better battery life of devices running it.

The capabilities of the hardware the operating system has to run on matter as well, because on many
types of hardware the level of energy savings attainable by suspending the system cannot be reached with
the help of runtime PM. That can be explained on the example of PCI hardwar(ﬂ Namely, PCI devices, or
more precisely PCI functionsﬂ support up to four different modes of operation called power states. There is
the full-power state, labeled as DO, in which the device can process I/O normally, and there are low-power
states, labeled as D1-D3, in which I/O cannot be processed normally, but substantially less power is drawn
than in the full-power state [II]. The low-power states differ from each other in the amount of power drawn
by the device and the time needed to switch it from DO to the given low-power state and back. D1 is the
narrowest low-power state, in which the device draws more power than in the other low-power states, but can
be switched back to DO in the shortest time. D3, in turn, is the deepest low-power state. All PCI devices are
required to support the full-power state, DO (quite obviously), and the deepest low-power state, D3, while the
intermediate low-power states D1 and D2 are optionaﬂ A PCI device can be programmed to switch from
DO to one of the supported low-power states and, if it already is in a low-power state, it can be programmed
to switch back to Ddﬂ This means that even if the device is in D3, it is still drawing power, at least as much
as necessary to switch back into the full-power statdﬂ However, it is possible to remove power entirely from a
PCI deviceﬂ and that’s where the hardware-related difference between full system suspend and runtime PM
originates (as far as PCI hardware is concerned).

PCI devices cannot be programmed to cut off power from themselves, so this has to be done from the
outside of the device in question. If the device is on a bus segment (e.g. in a PCI slot), power can be removed
entirely from that bus segment by programming its parent bridge to switch to Di*ﬁ Of course, as a result
power will not be provided to any devices on that bus segment until the bridge is programmed to switch back
to DO. In turn, if the device is not on a separate bus segment (e.g. it may be integrated into the computer’s
chipset, in which case it is called a planar device), the only way to remove power from it is to turn off the
circuitry providing it with power, sometimes referred to as the device’s power resources. This can be done
directly if the system’s hardware architecture is well known or its firmware provides the kernel with a suitable
interface, but in many cases it only is done automatically by the system’s firmware when the whole system
is going to be powered off or suspended. More specifically, on many systems there is a firmware interface
that the kernel is supposed to use in the last phase of system shutdown, hibernation and suspend to ask the
firmware to turn off all power resources, except for a few selected ones, needed to support wakeup signaling.
There may be no other way to turn the power resources off, in which case it is necessary to shut down,
hibernate or suspend the system to remove power entirely from a number of devices. In that case full system

2Contemporary Android-based systems usually don’t contain standard PCI hardware, but other types of hardware tend to have
similar properties.

3The idea is that one physical piece of hardware occupying a PCI slot can consist of multiple I/O modules which can be
programmed and used more-or-less independently of each other. These I/O modules are then referred to as functions by the official
PCI documentation [I0], but since they are the hardware units that process 1/O, they are I/O devices from the kernel’s point of
view. For this reason they are referred to as devices in what follows.

4For this reason and since D3 is more attractive from the energy saving point of view, D1 and D2 are used very rarely. The
Linux kernel’s PCI subsystem doesn’t use them at all.

SIf D1 and D2 are supported, the device can be programmed to switch from D1 to D2 and to switch from D1 or D2 to D3, but
it cannot be programmed to switch from D3 to D1 or D2, or to switch from D2 to D1.

SIn fact, every PCI function contains a set of standard registers, referred to as standard configuration registers, whose contents
are preserved in low-power states [I1], so even in the deepest low-power state it has to draw as much power as necessary to preserve
the contents of all these registers.

"This observation led to the most confusing part of the PCI power management terminology. Namely, one can think that a
device with cut off power is in a special “low-power state” and in that situation it “behaves” as though it were in D3, except that
it cannot be programmed to do anything. Hence, the designers of PCI power management interface decided to treat that “state“
as a variant of the deepest low-power state available to PCI devices and labeled it as D3.04. In consequence, the “normal” D3,
in which the device can be programmed to switch to D0, was called “software accessible D3” and labeled as D3po:. In my not so
humble opinion this naming convention doesn’t make sense for two reasons. First, PCI devices cannot be programmed to switch into
D3coid, they only can end up in that “state” as a result of an external action (e.g. removing power from the bus segment they are
on). Second, if a PCI device is in D304, it doesn’t automatically go into DO after power has been restored [I1]. Therefore D3coiq
is fundamentally different from D3+ and they shouldn’t be regarded as two “variants” of the same low-power state. Consequently,
throughout the present article the symbol D3 is used to refer to the state called D3,: in the official PCI documentation and the
D3coia “state” is regarded as a separate special case. Accordingly, the symbols D3t and D3.o1q4 are not used.

8In PCI terminology there are low-power states of bus segments. In particular, the low-power state of a bus segment in which
power is entirely removed from it is labeled as B3 and the bus segment is switched to it by programming its parent bridge to switch
to D3.



suspend will always save more energy than runtime Pl\/lﬂ

Apparently, this was the case on the Android’s first reference platform, the Google G1 [12], which must
have influenced its creators’ power management philosophy. Since at that time the kernel did not support 1/0
runtime PM at the core level and on the given hardware platform runtime PM couldn’t save as much energy
as full system suspend anyway, they decided to use an approach based on suspending the entire system as
frequently as reasonably possible. That, however, required them to address a number of issues.

First, they noticed that there were races between the system suspend process and wakeup events. Namely,
on a typical Linux-based system, the suspend process is started by writing mem to the /sys/power/state file
on sysfs. One of the first things it does is to freeze user space processes (except for itself) and after that’s been
completed user space cannot react to any events signaled by the kernel. Consequently, if a system wakeup
event occurs exactly at the time /sys/power/state is written to, user space may be frozen before it will have
a chance to consume the event, which will be delivered to it only after the system is woken up from the sleep
state as a result of another wakeup event. Unfortunately, on a cell phone the “deferred” wakeup event may
be a very important incoming call, so the above scenario is hardly acceptable for this type of devices.

This issue was addressed with the help of wakelocks. Essentially, a wakelock is an object that can be in one
of two states, active or inactive, and the system cannot be suspended if at least one wakelock in it is active.
Thus, if the kernel subsystem handling a wakeup event activates a wakelock right after the event has been
signaled and deactivates it after the event has been passed to user space, the race described in the previous
paragraph can be avoided. For this purpose, however, one has to specify how exactly system suspend is going
to be prevented from happening if there is an active wakelock. Of course, if the wakelock is activated when
the suspend process is already in progress, the only way to prevent the system from suspending is to abort
the suspend process, but if the wakelock has already been active before the suspend process is started, there
are a few different possibilities. For example, the operation of writing mem to /sys/power/state may fail if
there’s an active wakelock or it may block until there are no more active wakelocks in the system. Whichever
option is chosen, there still is a problem, because user space may be frozen after the kernel has deactivated
all wakelocks, but before the handling of wakeup events in user space is complete.

For instance, consider a keyboard that also is a source of wakeup events, so if the system is in a sleep
state and one of the keys is pressed on the keyboard, the system will be woken up. In that case it may not
make sense to suspend the system if any keys have just been pressed. More precisely, it may not make sense
to suspend it until user space can read the key codes and react to them as appropriate. Thus there should be
a mechanism allowing the processes that read the key codes from the kernel to prevent /sys/power/state
from being written to until they finish the work. Of course, they cannot prevent arbitrary privileged processes
from writing to /sys/power/state. However, if there is one special process, a power manager, attempting to
write to /sys/power/state whenever it decides that it’s desirable to suspend the system, then in theory the
key code readers may be synchronized with it by means of inter-process communication (IPC) of some sort.

Assume that every time a key code is read from the kernel, the user space process that read it uses an IPC
mechanism to prevent the power manager from writing to /sys/power/state. Then, system suspend won'’t
be started as long as user space key code readers are doing their work, but unfortunately that doesn’t prevent
a key press event from slipping through. Namely, if the user is typing a message, there may be random delays
between consecutive key press events. When one key is pressed, the keyboard driver promptly detects that
and activates a wakelock. The key code is registered and the user space process waiting for it is woken up.
This process activates the IPC preventing the power manager from writing to /sys/power/state and reads
the key code from the kernel. Then, the keyboard driver deactivates the wakelock and waits for another key
press event. In the meantime, the process that read the key code does whatever it is supposed to do after
reading it and uses the IPC to let the power manager know that it can proceed with suspending. As a result,
the power manager may decide to write to /sys/power/state and if there are no active wakelocks in the
kernel at that time, the suspend process will be started. Now suppose that another key is pressed exactly
at that time, the wakelock is activated and the key code is read by user space before the suspend process
starts freezing it. The keyboard driver deactivates the wakelock after the key code has been read and the
suspend process need not notice the activation and deactivation of the wakelock, in which case it will continue
as though nothing happened. Of course, the user space key code reader hasn’t done its work yet, but the
IPC used to prevent the power manager from writing to /sys/power/state won’t be effective, because this
operation has been carried out already. In consequence, the reader process will be frozen along with the rest
of user space and the key code will be processed after the subsequent system resume resulting from another
wakeup event.

There are a few ways to prevent the above scenario from taking place. For example, one may intro-

9The difference need not be substantial, though, because the majority of PCI devices in D3 draw only a little power and this
amount need not matter at all, depending on the system designer’s expectations.



duce a mechanism by which system suspend will always be aborted if any wakelocks are activated after
/sys/power/state has been written to, even if these wakelocks are immediately deactivated. However, the
Android developers apparently thought that would be wasteful (the user space key code reader may actually
manage to handle the event entirely before being frozen) and instead they introduced an APIT allowing user
space to create, activate, deactivate and destroy wakelocks. Thus, on Android, instead of using IPC to prevent
a power manager from writing to /sys/power/state, the user space key code reader will activate a wakelock
that will be deactivated after dealing with the key code entirely.

Of course, this allows the races between wakeup events and the system suspend process to be avoided
completely, but at the same time it is somewhat controversial, because it appears to violate the principle of
separation between the kernel and user space. After all, in this approach user space is allowed to manipulate
objects inside the kernel almost directly. Still, if that only affected an operation started by user space,
which system suspend was on typical Linux-based systems, that wouldn’t be much of a deal. Unfortunately,
on Android this is not the case because of the way it addresses the second issue related to the aggressive
utilization of system suspend.

That issue is, basically, when exactly system suspend should be started or, in other words, what conditions
should cause the system to be suspended. Although there are no simple answers to this question in general
[13], it should be clear that if system suspend is to be used aggressively, it ought to happen as often as
reasonably possible. Of course, the system cannot be suspended when it is doing useful work, but in principle
it may be suspended as soon as the work is done. Thus one can think that whenever the system is not doing
useful work, there is an opportunity to suspend it. There are systems which aggressively try to use that
opportunity and for this reason they can be referred to as systems that suspend opportunistically. Evidently,
Android is one of them.

For opportunistic suspend to work one needs to have reliable criteria for deciding whether or not the
system is doing something useful. The criterion used by Android is very simple and straightforward: The
system is suspended whenever there are no active wakelocks. More precisely, every deactivation of the last
active wakelock starts the system suspend process. Attempts to suspend that would certainly fail are avoided
this way. Yet, it requires every user space process that does important, or useful, work to use wakelocks,
which adds unusual and cumbersome issues for application developers to deal with [14]. In turn, the processes
using wakelocks can impact the system’s battery life quite significantly, so the ability to use wakelocks has to
be regarded as a privilege that should not be given unwittingly to all applications. Unfortunately, however,
there is no general principle the system designer can rely on to figure out what applications will be important
enough to the system user to allow them to use wakelocks by default, so ultimately the decision is left to the
user. This, of course, is only going to really work if the user is qualified enough to make the decision, which
quite obviously need not be the case. That problem is discussed in more detail in Section

Since the Android developers chose to use the deactivation of the last active wakelock as the suspend-
triggering condition, they also decided that it would be better to start the suspend process from kernel space.
This appeared to be logical, because otherwise a power manager in user space would only be necessary for
writing to /sys/power/state whenever the kernel ordered it to do that. Consequently, in the Android kernel
there is a work item whose job is to start the suspend process when the last active wakelock is deactivated.
After doing that, its work function reschedules the execution of itself. Thus on Android the suspend process
runs in the context of the workqueue thread that happens to execute this work function, which brings along
the violation of the separation between the kernel and user space mentioned earlier. Namely, it causes the
(almost) direct manipulation of wakelocks, being kernel objects, by user space to influence decisions made by
the kernel in a way that may hinder the system’s expected functionality (i.e. as a result of it the battery may
be exhausted much faster than expected resulting in a denial of service and the kernel has no means to prevent
that from happening). Although this problem doesn’t seem to be particularly serious from the practical point
of view, there are other issues related to the Android’s implementation of opportunistic suspend that directly
affect user experience.

3 Problems with Kernel-Based Opportunistic Suspend

To recap, Android uses opportunistic suspend as one of its most important power management measures.
It implements this feature in such a way that the suspend process is started from kernel space whenever
there are no active wakelocks. Moreover, wakelocks are used for avoiding races between the suspend process
and wakeup events, as described in Section [2} User space is allowed to manipulate wakelocks, although they
formally belong to the kernel, and there is a special interface between the kernel and user space designed
specifically for this purpose.

It turns out that the Android’s kernel-based implementation of opportunistic suspend leads to a number



of issues that in part are purely theoretical and in part manifest themselves in practice, resulting in some
undesirable effects which are not too difficult to observe on Android-powered devices.

First, there is the problem of broken separation between the kernel and user space mentioned in the last
paragraph of Section Although it is rather theoretical, it is closely related to the much more practical
observation that applications allowed to use wakelocks can do quite a bit of damage by causing the battery to
be drained unexpectedly quickly. For this reason the ability to use wakelocks has to be regarded as a privilege
that should be granted very carefully. In some, arguably rare, cases there may be even security implications
of granting it to a wrong applicatiorﬂ Therefore someone has to decide what applications should be granted
this privilege, but that decision cannot be made in advance by the system designer, because only the user is
able to determine the set of sufficiently important applications. However, if the user is expected to make such
a decision, he (or she) should be informed ezactly about the possible consequences of it. Moreover, the user
should be able to disallow chosen applications the use of wakelocks at any time. On Android, though, that
simply doesn’t happerﬂ

An Android system contains a few applications allowed to use wakelocks by default, like GMail, and the
user cannot change that. In turn, for applications installed by the user, the permission to use wakelocks has
to be granted before installing them or they won’t be installed at all. Once an application that wants to use
wakelocks has been installed, it will use them and the user won’t be able to prevent it from doing that in any
other way than by uninstalling it. Thus a knowledgeable user only really has the choice to either allow the
application to ruin the device’s battery life if it wants to, or to restrain himself from installing or using the
application at all. Needless to say, that may not be an attractive choice for many users, especially given that
one of the applications in question is Google Maps E[

In addition to that the vast majority of Android users have no idea about the opportunistic suspend
feature and how it works, so they really don’t have sufficient information to make reasonable decisions in this
respect. Worse yet, when installing a new application the user is shown a list of “permissions” the application
needs to function properly and the permission to use wakelocks is present in this list as a part of the “System
tools” item under the label “prevent phone from sleeping”H There is no indication whatsoever that this
basically translates into “this application wants to be able to make the phone drain battery faster”, so in the
majority of cases the users don’t really know what they are agreeing to. Moreover, even if they knew, they
probably would agree to install the applications anyway, because they wanted to use them in the first place,
at least occasionally.

Fortunately, an Android user can check which running applications prevent the device from suspending
most of the timﬁ and can forcibly stop them if they need not run at the moment. Still, this information
is generated on the basis of wakelock statistics collected by the kernel, consisting of several numbers having
different meanings per wakelock, but it is shown to the user in the form of a single meter (i.e. a percentage
represented by a “usage bar”). It can’t be accurate for this reason, although it generally gives the user a good
idea of who’s responsible for draining the battery in the first place. Once identified, an offending application
has to be forcibly stopped every time it has run for a while and doesn’t need to run any longer, which is
cumbersome and requires the user to remember to stop it. Definitely, this is not the most convenient mode of
operations one can imagine. Perhaps if the Android user space had been designed differently, it would have
been easier to handle this issue in a more convenient way, but it seems that the Android’s use of opportunistic
suspend really is the source of the problem.

Another issue with it is that some advertised features of applications don’t really work because of it.
Namely, some applications (e.g. GMail, the e-mail application, news and weather applications, etc.) are
supposed to periodically check things on remote Internet servers. The e-mail programs check if there are any

10 After all, availability is generally regarded as one of the key principles of information security [I5] and unexpected draining the
system’s battery is nothing else than a violation of availability.

1At least I was unable to find such an interface on a Nexus One phone with Android 2.2.

12My experience indicates that Google Maps can actually hurt an Android phone’s battery life quite a bit. This year in Boston
I used it before leaving the hotel room to find a way to go to some other place. I downloaded the map and walking directions
into the phone and checked them a few times on my way. When I finally got to the destination, I pressed the phone’s “turn off
the screen” button and put it into a pocket, leaving Google Maps in the foreground. Then, I had been moving from one place to
another relatively quickly for a couple of hours. When I got back to the hotel, I realized that the phone’s battery was almost empty,
although I had charged it before leaving the room. The battery got drained almost entirely during my trip, even though I didn’t
make or receive any calls and in fact I didn’t even look at the phone’s screen! Apparently, Google Maps used the GPS all the time
when I was moving to update my current location and it was using wakelocks to block the opportunistic suspend mechanism, so
the device burned much more energy than expected.

13 Along with some other things like “change Wi-Fi state”, whatever that means.

40n a Nexus One phone with Android 2.2 this information is available from the “Battery use” item in the “About phone” menu
under “Settings”.



new messages to read, the weather applications check for new weather forecasts and so on. For this to work
they need to run when they are supposed to do their checks, but they obviously aren’t running when the
system is in a sleep state. They also need to access the network which is unavailable after the system has
been suspended. Thus the periodic checks the applications are supposed to make aren’t really made at that
time. In fact, they are only made when the system is in the working state incidentally for another reason
and there happens to be the time to do the checksiﬂ This most likely is not what the users of the affected
applications would expect to take placdﬂ but making it work as expected is not as easy as one might think
either.

If the system is in a sleep state when there is time for an application to do some work, the only way to
allow it to do that work is to wake the system up. In particular, if the instant of time when the application
is going to start doing the work is known in advance, one can use a clock-generated wakeup event to wake
up the system right before that time. Every hardware platform known to yours truly has a real time clock
(RTC) device being essentially a persistent clock that is running even after the system has been suspended or
powered off and that usually can be used exactly for this purpose. Most often the RT'C can be programmed
to generate a wakeup event at a specific instant of time. This mechanism is referred to as the RTC wake
alarm and is available through the /sys/class/rtc/rtcN/wakealarm sysfs interface, where N is the number
of the RTC device within the system, starting from 0 [16]. Although that generally is straightforward and
simple, up to some gory technical details you don’t really want to know unless you're writing a driver for an
RTC device, there is one difficulty related to it: When the alarm time expires, the RTC wake alarm has to be
set once again from scratch. Moreover, when it is set to a new value, the previous setting is simply forgotten,
so if there’s a need to set it to trigger at two different instants of time, one has to wait until it triggers at
the earlier instant and then set it once again to trigger at the later one. This complicates things quite a bit
when there are two different applications in the system that need to do some work periodically with different
frequencies.

To illustrate this complication suppose that there is an e-mail client configured to check for new e-mail
every 15 minutes and a news application set up to look for a news update every 20 minutes. Let T be the
time the e-mail client is started and suppose that the news application starts 2 minutes later. Then, if the
RTC wake alarm is to be set by each application individually, the e-mail client will set it to Ty 4+ 15 minutes,
but then the news application will change this setting to T 4+ 22 minutes. In consequence, if the system is
suspended, for example, at the time Ty + 10 minutes, the RTC wake alarm will not trigger at the time the
e-mail client should do its check, it will only trigger at the time set by the news application.

To address this problem one can use a list of instants of time when the RTC wake alarm should trigger,
but this list has to be managed somehow. Specifically, a new RTC wake alarm time always has to be set right
after the previous one has expired, so there should be a guarantee that at least one process will try to do
that every time. The seemingly simplest way to achieve this goal is to introduce a special process that will
repeatedly set the wake alarm and put itself to sleep to wake up right after the alarm has triggeredﬂ Then,
the applications that need to do work periodically may communicate with this process using some form of
IPC to tell it what instants of time the wake alarm should trigger at. This, however, is dangerously close to
the user space power manager idea discussed in Section [2] and the question arises whether it may be better
to implement a power manager in user space and let it take care of the issue at hand, among other things.

There is one more problem with full system suspend that is related to time measurements. Unfortunately,
though, it is not limited to the opportunistic system suspend initiated from kernel space. Namely, every
suspend-resume cycle, regardless of the way it is initiated, introduces inaccuracies into the kernel’s timekeeping
subsystem. Basically, the kernel’s timekeeping subsystem relies on two types of resources, clock sources and
clock event devices [17] and they both are affected by system suspend and resume.

A clock source is a kernel object associated with and representing a piece of hardware that can be used to
measure the flow of time, like the High Precision Event Timer (HPET) or the Time Stamp Counter (TSC)
CPU register [18]. Usually, when the system goes into a sleep state like ACPIIE S3 (memory sleep) or ACPI

'5This is my observation from a Nexus One phone with Android 2.2.

16When I configure an e-mail client application to check for new e-mail every 15 minutes, I expect it to actually do that every 15
minutes and not “every 15 minutes or less often depending on whether or not the system automatically suspends in the meantime”,
even it that application is running in the background.

170On Android it would also have to use a wakelock to prevent the system from being suspended before the new wake alarm time is
set. Moreover, the wakelock would have to be kept active for some time to allow the “periodic” applications to run and presumably
activate their own wakelocks.

!8The Advanced Configuration and Power Interface (ACPI) specification defines an interface between the platform firmware
(e.g. the BIOS on a PC) and the operating system for configuring platform-dependent hardware and changing its power states.
Among other things, it introduces system states S0-54, where S0 is the working state and S1-54 are sleep states. The most widely
used ACPI sleep states are S3 and S4, corresponding to suspend to RAM and hibernation, respectively.



S4 (hibernation), the clock source’s hardware is powered off, so it has to be reinitialized (typically from
scratch) during system resume. For this reason, the global kernel variables representing the current time,
xtime and wall_to_monotoni need to be readjusted every time during system resume to keep track of
the time spent in the sleep stat This is done with the help of the read_persistent_clock() function,
the definition of which is unfortunately architecture-specific and, for example, on x86 its result is rounded
down to the closest 1 second boundary@ In consequence, on x86, if the suspend time is saved exactly
at 1s boundary, the systems sleeps for about 2s and read_persistent_clock() is called (during resume)
exactly 2.3 s after the suspend time has been saved, only 2s will be added to xtime and subtracted from
wall_to_monotoni@ The remaining 0.3 s will be effectively lost, although it would have been taken into
account if the suspend-resume cycle hadn’t occur. On x86 this mechanism introduces a random shift up to
1 s between the persistent clock and the kernel monotonic clock in every suspend-resume cyclﬂ Likewise,
on x86 every measurement of a time interval across a suspend-resume cycle is subject to a random error of
the order of 1s. Moreover, kernel timers are affected in a similar way.

Kernel timers are objects used for scheduling future execution of specific code. Each timer contains,
among other things, a pointer to a function to run in the future and a representation of the desired time of its
execution. Depending on the type of the timer, that representation may be either the value of the jiffies
variable corresponding to the instant of time the function is supposed to be run at, or the kernel’s monotonic
clock value corresponding to that instant of time, as returned by function ktime_get ()@ In both cases this
number is used to program a hardware timer to trigger an interrupt on the local CPU at the desired time.

The hardware timers used for this purpose are referred to as clock event devices in the kernel terminology
[I7] and usually there is at least one of them per CPU corﬂ Typically, they each contain a counter
incremented periodically in accordance with certain clock signal and coupled with one or more comparator
registers that cause interrupts to occur for specific values of the counter. Each of them is associated with a
data structure organizing kernel timers in such a way that the interrupt handler can easily determine which
timer will expire next and reprogram the clock event device to generate the next interrupt at that tim@
System suspend unfortunately disturbs these operations, because it causes all of the clock event devices to
be shut down, so they need to be programmed from scratch during the subsequent resume. Of course, to
program them during the resume the kernel will use the new values of xtime and wall_to_monotonic that
contain the rounding error resulting from the reinitialization of clock sources. These new values of xtime and
wall_to_monotonic will also be compared with the timer expiration times when deciding which timers have
already expired and their functions should be run. In consequence, all of the timers that had been added
and didn’t expire before the suspend are going to expire slightly earlier or slightly later than they would
have expired if the suspend-resume cycle hadn’t occurred. This means that the timing of some events in the
system will be different from their analogous timing without the suspend-resume cycle, although the relative
time intervals between events occuring after the resume will remain approximately the same.

Needless to say, a system that suspends and wakes up very often can introduce some confusion in a
networking environment, because its idea about what the current time is will change with every suspend-
resume cycleiﬂ Moreover, NTP is not guaranteed to help in that case, because it also needs some time to
resynchronize the kernel’s monotonic clock with external time sources.

As stated above, on Linux-based systems this problem is connected with every form of full system suspend,
not only with the opportunistic variant of it used by Android. However, if system suspend is initiated by
user space, the kernel may assume that user space is ready for it and somehow prepared to cope with
the consequences. For example, user space may want to take all of the network interfaces down before
asking the kernel to suspend the system or to carry out other similar preparations. It also may want to use
settimeofday() to set the kernel’s monotonic clock using a time value taken from and NTP server right
after the subsequent system resume. On the other hand, if system suspend is started by the kernel in an

9Defined in kernel/time/timekeeping.c.

20The total time spent in sleep states is accumulated in the total_sleep_time variable.

210n OMAP, though, it is much more accurate, because that platform provides a persistent clock ticking 32768 times per second.

22The 2 s will also be added to total_sleep_time.

Z20n OMAP the rounding error is much smaller due to the higher resolution of the persistent clock, but still, if the frequency of
the clock source used normally by the kernel is 10 M H z or more, it may be several orders of magnitude.

24Roughly, it returns is the sum of xtime and wall_to_monotonic adjusted by the number of nanoseconds elapsed since the last
modification of these variables, according to the clock source currently in use.

20n modern x86 PC machines they usually are Local Advanced Programmable Interrupt Controller (LAPIC) timers.

26The clock event device may also need to be reprogrammed when a new timer is added, if the new timer is to expire earlier than
all the existing ones.

2TOf course, it will also disappear from the network and reappear in it with every suspend-resume cycle and that may cause its
own problems to happen.



opportunistic fashion, user space doesn’t really have a chance to do anything like this.

4 Idle-Based System Power Management

In the Linux kernel there is a well implemented and widely used framework allowing CPUs to be put into low-
power states when they have no code to execute, called cpuidle [I9]. Although it is designed with CPU power
management in mind, there seem to be natural ways to extend it so that it also covers power management of
I/O devices. Moreover, there are good reasons to do that.

First, the fact that CPUs don’t have any code to execute often indicates that there are no data to process
for I/0O devices. That need not be the case, though, because CPUs may be idle while data are being transferred
between I/O devices and memory via DMA. Moreover, one CPU (or CPU core) may be idle while other CPUs
(or CPU cores) in the system are executing instructions. Nevertheless, it might make sense to extend the
cpuidle framework so that it could, for example, schedule the execution of the I/O runtime PM framework’s
pm_request_idle() function for certain set of I/O devices before putting the last CPU into a low-power
state.

Second, there are integrated circuits, referred to as systems-on-a-chip (SoC), that consist of a CPU and
a number of I/O devices depending on each other in various ways. In particular it is possible that the I/O
parts of the chip have to be powered down before putting the CPU into a particular low-power state [20].
The cpuidle drivers for CPUs included in the chips designed in such a way have to take this limitation into
account and there already are implementations doing that in the kernel tree, mostly in the ARM architecture
subtree. Technically, however, this involves putting devices into low-power states from the context of the
cpuidle framework when the CPU doesn’t have any code to execute, so it really is not that much different
from the case discussed in the previous paragraph.

It turns out that on some SoCs the state of the hardware after putting all of the I/O devices on the
chip and the CPU into deep low-power states is very similar to the state of it after carrying out full system
suspend [I2]. Thus, seemingly, using the cpuidle framework to put all of the system’s hardware components
into deep low-power states one should be able to get substantial energy savings, comparable to the energy
savings achievable with the help of the Android’s kernel-based opportunistic suspend. Unfortunately, though,
this really is not the case in general, since while the cpuidle framework may be able to put the system into
the state in which the total power drawn by it is close to the minimum, referred to as the pseudo sleep state
in what follows, it may not be able to do that sufficiently often.

In fact, although the ability to put the system into a state in which it draws (almost) minimum power is
necessary for maximizing energy savings, it is not sufficient for this purpose. The amount of time spent in
that state matters as well, because energy used by the system over a given time interval is the integral of the
function representing power drawn by it over that interval [§]. For a given state of the system the contribution
to the integral is the product of power drawn by the system in that state and the amount of time spent in it.
For example, if the system has only two different states, A and B, and the power drawn by it in these states
is denoted by P4 and Ppg, respectively, then the energy used by it over a time interval of length T is given by

E = PsTy + PB(T — TA> s

where T4 < T is the time spent by the system in state A. Thus the more time the system spends in the
state in which it draws minimum power, the smaller the value of the integral and the less energy is used.
Of course, if the system stayed in the pseudo sleep state all the time, it would use (almost) the minimum
amount of energy, but then it couldn’t do any useful work. Whenever useful work is done, the system draws
more power than it would spending the same amount of time in the pseudo sleep state. Thus, in theory, to
minimize the usage of energy, the system should go into the pseudo sleep state as soon as reasonably possible
after the work has been completed and it should stay in that state for the maximum possible time. However,
this turns out to be difficult to achieve in practice.

Every operation initiated by the cpuidle framework can only be carried out if one of the CPUs in the
system becomes idle. Moreover, the system can only be put into the pseudo sleep state if all CPUs are idle and
presumably all of them but one have been put into deep low-power states already. Hence, every application
that causes one of the CPUs to execute instructions continuously (e.g. polling a file descriptor in a tight loop)
is going to prevent the system from being put into the pseudo sleep state. At the same time, the Android’s
opportunistic suspend will trigger if there are no active wakelocks in the system, which very well may happen
when some applications are running. On Android only the applications allowed to use wakelocks can prevent
the system from being suspended and so long as they behave nicely, the system may be suspended relatively
often. On the other hand, if the cpuidle framework is used to put the system into the pseudo sleep state, every
single application that doesn’t behave nicely affects the system’s ability to save energy in the same way as a



“rogue” Android application using wakelocks. For this reason, the approach based on putting the system into
the pseudo sleep state from the cpuidle framework’s context can only be effective if all applications running
on it are designed in accordance with specific set of rules, so that they sleep as often as reasonably possible
and give the system a chance to minimize its total power draw relatively often. Of course, if the user can
install arbitrary applications in the system, this is rather difficult to make happen.

In an attempt to address this issue one can divide all applications installed in the system into two sets,
the ones that are regarded as “important”, so they may be allowed to prevent the system from being put into
the pseudo sleep state, and the ones that are regarded as “bulk”, so they may be preemptively stopped when
the “important” ones are sleeping to give the cpuidle framework a chance to do its job. Still, the fact that all
of the “important” applications are sleeping alone need not imply that the “bulk” ones should be stopped.
Namely, to stop the “bulk” applications one needs to know the reason why the “important” ones are sleeping,
because they simply may be waiting for the “bulk” applications to do something. For instance, consider an
e-mail client, regarded as “important”, that starts an image viewer, regarded as “bulk”, to display a graphics
attachment. Usually, in that situation the e-mail client will go to sleep as soon as the image viewer is started,
but that doesn’t mean the image viewer should be stopped at the same time!

Regardless of the way the stopping of the “bulk” applications is implcmcnteﬂ there always will be some
uncertainty about the intentions of the “important” applications, unless there is a mechanism allowing them
to specify whether or not it is safe to stop the “bulk” ones. That mechanism, however, would have to be
very similar to the Android wakelocks, although it might be confined to user space. Suppose, for example,
that there is a power manager in user space deciding when to forcibly stop all of the “bulk” applications.
For this purpose it will need to use IPC to allow the “important” applications to let it know whether or not
they are waiting for the “bulk” ones. Thus it seems that there should be an IPC mechanism allowing an
“important” process to send an “I'm waiting for process X” message to the power manager. It also should
be possible to send an “I'm not waiting for any processes any more” message to the power manager from an
“important” process. The power manager, in turn, will receive these messages and keep track of the number
of “bulk” processes that are being waited for at any given time. If that number drops down to zero and all of
the “important” processes are sleeping, the power manager will forcibly stop all of the “bulk” ones to let the
cpuidle framework do its job. That, in theory, should help reduce the influence of the “bulk” applications on
the system’s ability to save energy, but at the cost of introducing the power manager and implementing the
necessary IPC in the “important” applications.

Of course, this approach is susceptible to the problem of deciding which applications should be regarded
as “important” that affects Android as noted in Section [3] Moreover, having introduced a user space power
manager, one can use it to implement automatic suspend initiated from user space mentioned in Section
which is not very much different from the approach discussed in the previous paragraph. Still, if full system
suspend is used to put the system into a sleep state, full system resume has to be used to put it back into the
working state, which sometimes is problematic. For instance, suppose that user space has to check the battery
status every 10 minutes. Then, if any form of system suspend is used to put the system into a sleep state,
system resume has to be used every 10 minutes to bring the entire system, including all processes and 1/0
devices, back into the working state just in order to check the battery statuﬂ Needless to say, this can lead
to excessive energy usage during the time when the battery status is being checked (e.g. the “bulk” processes
can cause the CPUs to execute instructions in that time intervals). In turn, if the approach described in the
previous paragraph is used, only the “important” process checking the battery status has to be woken up and
the parts of hardware it doesn’t rely on may remain in deep low-power states. Therefore this approach seems
to be worth investigating, although the system’s ability to go into the pseudo sleep state relatively frequently
may also be affected by power management Quality of Service (PM QoS) requests.

PM QoS may be used by kernel subsystems and user space processes to specify their expectations about
certain aspects of the system’s behavior related to power management [23]. Every expectation is expressed by
a PM QoS request belonging to one of several PM QoS classeﬂ that in turn is internally represented by the
kernel in the form of a struct pm_qgos_request_list object. For each PM QoS class the kernel maintains
a priority-sorted list of requests, where the meaning of the priority depends on the class. In particular, for
the CPU_DMA_LATENCY class, the priority is interpreted as the maximum expected latency of the transition
of a CPU from a low-power state to the state in which it can execute code, in microseconds. Adding a PM
QoS request one has to specify the priority of it, which for a CPU_DMA_LATENCY class request is the maximum

3

Z8There was a proposal to use the cgroup freezer feature to freeze them [21], but that is basically equivalent to sending SIGSTOP
to all of them.

2This actually happens on Nexus One phones [22].

30At the time of this writing there are three PM QoS classes, the CPU_DMA_LATENCY class, the NETWORK_LATENCY class, and the
NETWORK_THROUGHPUT class.
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number of microseconds one can wait for a CPU to change states. At any given instant of time the only
CPU_DMA_LATENCY class request that matters is the one with the lowest priority (i.e. the smallest acceptable
CPU transition latency), because its priority is taken by the cpuidle governors into account when deciding
which low-power state to put a CPU into.

Every CPU low-power state available to the cpuidle framework is associated with a specific latency of
the CPU transition from that state to the functional state. If that latency is greater than the lowest
CPU_DMA_LATENCY class PM QoS request priority, the CPU will not be put into the given state. Now, it
seems reasonable to expect that the CPU transition latency associated with the system’s pseudo sleep state
will always be relatively high, so the majority of CPU_DMA_LATENCY class PM QoS requests will effectively
prevent that state from being taken into consideration by cpuidle governors. In consequence, the users of
the CPU_DMA_LATENCY class PM QoS requests can practically disable the system’s ability to save substantial
amounts of energy. In particular, this can be done by any root-owned user space processes, by opening the
/dev/cpu_dma_latency special device file and writing a sufficiently low number to it. Of course, root-owned
processes have much more potential to do harm than that, but if the cpuidle framework is going to be used for
system-wide power management, one has to be aware of this potential difficulty related to PM QoS. Moreover,
this is not the last possible problem with the cpuidle-based system power management.

In general, there may be one more difference between the pseudo sleep state that the system goes into as
a result of the cpuidle framework’s action and the “regular” sleep states entered by carrying out full system
suspend. That potential difference is related to wakeup signals. More precisely, it is related to the fact
that the number of devices configured to signal wakeup when the system is in the pseudo sleep state may be
greater than the number of devices that can signal wakeup when the system is in one of the “real” sleep states.
Namely, for the cpuidle framework making the system go into the pseudo sleep state it is most convenient
to use runtime PM facilities, such as the I/O runtime PM framework, to put I/O devices into low-power
states. In turn, these facilities, including the subsystem and driver callbacks used by the I/O runtime PM
framework, generally work in such a way that all devices capable of signaling wakeup are configured to do so.
On the other hand, only a limited set of specifically selected devices can wake up the system from “real” sleep
states, which follows from both the software configuration and the capabilities of the available hardware. For
example, some PCI devices are capable of signaling wakeup even if all the parts of the device not strictly
necessary for that are entirely powered off (i.e. the device is in the “power off” state from the software point
of view@ and they may be provided with the minimum amount of power needed to generate a wakeup signal
while the system is in a sleep statdg Other PCI devices may not be capable of doing that, even though they
generally can signal wakeup from “software accessible” low-power states D1-D3. These devices will generally
be configured to signal wakeup before the system is put into the pseudo sleep state, but they will never be
able to wake it up from a sleep state in which power is removed from the bus segment they are on.

Clearly, if wakeup signals are generated at approximately constant rate, the probability of waking up the
system from an energy-saving state over a time unit is proportional to the number of devices capable of doing
that, referred to as wakeup sources from now on. In turn, for a given probability of putting the system into
an energy-saving state over a time unit, the amount of time spent in that state during a given time interval
depends on the probability of waking up the system over a time unit. For example, if the system goes into
the energy-saving state, on the average, once per second, while it is woken up every 2 s, it will spend from
about 6 s to about 7s in that state during a 10 s interval. However, if it is woken up, on the average, every
5s, it will spend between 8 s and 9s in the energy-saving state during the same time interval. Thus, since
the number of wakeup sources for a system in the pseudo sleep state is generally greater than the number of
wakeup sources for the same system in a “real” sleep state, the amount of time spent by it, on the average,
in the “real” sleep state generally will be greater, under the assumption that in both cases the probability
of putting the system into the energy-saving state over a time unit is roughly the sam@ Moreover, if the
wakeup sources for the system in the pseudo sleep state include the clock event devices discussed in Section [3]
the system will be woken up from that state every time a kernel timer expires, which may happen quite often
on a typical Linux-based system.

In general, to mitigate this issue it would be necessary to turn off as many wakeup sources as possible
while putting the system into the pseudo sleep state. That, in turn, might require the cpuidle framework to
carry out some intrusive low-level operations beyond the “normal” I/O runtime PM. For PCI devices it would
have to use special suspend callbacks turning off the devices’ capability to wake up the system, unless they

31The official PCI documentation says that these devices can generate Power Management Events (PMEs) from the D3.q4 state.

32This minimum wakeup power supply is referred to as auziliary power in the PCI documentation. In fact, usually, devices that
can use auxiliary power can also signal wakeup after the whole system has been powered down, so long as enough power is provided
to the motherboard by the power supply.

33That, of course, depends on how often the system can go into the given state, which has already been discussed earlier.
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are supposed to wake it up from “real” sleep states. In consequence, leaving the pseudo sleep state would
require the devices to be powered up, at least to be reprogrammed so that they could signal wakeup again.
Similarly, if clock event devices, discussed in Section |3 were shut down when the system was going to the
pseudo sleep state, they would need to be reprogrammed while leaving that state. All of these operations
resemble the operations carried out during system suspend and resume very closely, except that user space
is frozen when the system is suspending and resuming, which is not the case during transitions initiated by
cpuidle.

While it may be easier to turn off wakeup sources from the cpuidle context on SoCs, the observation that
runtime PM tends to prepare devices to signal wakeup, which generally is not desirable when the system is
going to be put into the pseudo sleep state, remains valid for that platforms. Thus it seems that in order
to make the system stay longer in the pseudo sleep state one would have to create a special framework for
powering off devices that would be similar to the existing system suspend framework, except that it would
need to satisfy additional requirements (i.e. it would have to be able to cope with occasional interactions with
user space in case it becomes active in the middle of a transition). Moreover, if this difficulty is overcome
and the system can stay in the pseudo sleep state until it is woken up by the user pressing a power button
or by the RTC wake alarm discussed in Section [3] there still will be a problem with the values of xtime and
wall_to_monotonic. Namely, if the time spent in the pseudo sleep state is simply added to xtime during
wakeup without modifying wall_to_monotonic, it may be necessary to run a significant number of kernel
timer functions simultaneously, because their timers have expired during that time. On the other hand, if the
time spent in the pseudo sleep state is also subtracted from wall_to_monotonic, just like during “regular”
system resume, the timers will expire later than they would have expired if the system had not been in that
state, which still may lead to some undesirable eﬂects{ﬁ Naturally, system suspend also is affected by this
issue, but it would only make sense to work on increasing the average time spent in the pseudo sleep state
if that allowed one to avoid issues associated with using the “real” sleep states. If these issues cannot be
avoided, then it most likely is better to simply use system suspend instead.

To summarize, extending the cpuidle framework so that it can power manage I/O devices as well as CPUs
appears to be a good idea in general and may be necessary for some specific types of hardware (i.e. SoCs
in which the CPU is tightly coupled with I/O device in terms of power management). With the help of the
mechanism causing “bulk” applications to be forcibly stopped in some situations discussed above, implemented
entirely in user space, it may be possible to allow the system to enter a state in which its total power draw is
very close to the minimum relatively often. However, attempting to introduce mechanisms that would allow
the system to stay in that state as long as in a sleep state (entered as a result of carrying out full system
suspend) doesn’t look like a promising way to go. It may be worth doing on some types of hardware, but the
prospective complications associated with it are not encouraging. On the other hand, though, if the usage of
timers in the kernel is optimized, which very likely is going to happen for other reasons [24], the idle-based
system power management will automatically become more attractive.

5 Wakeup Events Framework and Opportunistic Suspend

The Android’s wakelocks framework discussed in Section [2] attempts to address multiple problems with one
unified approach, akin to the famous Swiss Army knife. First, it allows the kernel to avoid races between
the suspend process and wakeup events (i.e. wakelocks are activated whenever wakeup events occur, which
prevents the kernel from suspending the system or causes it to abort suspend in progress). Second, it provides
a straightforward criterion for the kernel to decide when opportunistic suspend should be started (i.e. the
kernel attempts to suspend the system whenever there are no active wakelocks). Moreover, it helps to avoid
the problem with “bulk” applications that may cause the system to use too much energy, described in Section[4]
(i.e. “bulk” applications are not allowed to use wakelocks and therefore they cannot prevent the kernel from
suspending the system). In addition to that it makes the kernel collect statistics related to wakeup events.
Namely, each wakelock object contains fields in which statistical information is recorded, like the number of
times the wakelock has been activated, the total time it has been active, or the maximum time it has been
active continuously, whenever it is activated or deactivated®}

Out of the four problems addressed by the wakelocks framework mentioned above two matter only if

34Consider a kernel subsystem that uses a timer to implement a timeout of 5s. After 1s the system goes into the pseudo sleep
state and spends 2 s in it, but the time spent in that state is subtracted from the monotonic clock value. Then, the timer will expire

4 s after the wakeup from the pseudo sleep state, which in fact is 7 s after it was started, instead of the original 5 s.

350n Android this feature is also used to annotate code. Its implementation of wakelocks requires their users to give them names
that are associated with the reported statistics. Then, the names given to wakelocks can be used to easily trace the pieces of code

that use them. That applies to the wakelocks manipulated by user space too.
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kernel-based opportunistic suspend is used. Still, the races between the suspend process and wakeup events
affect system suspend started from user space too, so there should be a mechanism for avoiding them in that
case. Collecting statistics related to wakeup events is also generally useful, so it would be good to have an
infrastructure for that either. In principle it might be possible to use the wakelocks framework as is for this
purpose, but that wouldn’t be very convenient.

The wakelocks framework is really concerned with whether or not the processing of all wakeup events is
complete and, consequently, whether or not it is possible to suspend the system at a given instant of time.
That’s why it allows user space processes that may take part in the processing of wakeup events to use
wakelocks in the first place. However, this means that within the wakelocks framework the races between
wakeup events and the suspend process can only be avoided if the relevant user space processes are modified
to use wakelocks. While that may be good for Android, whose user space already is designed with using
wakelocks in mind, at least to some extent, it is not very practical for other Linux-based systems with user
space which is not aware of the wakelocks interface. Still, the possible races between the suspend process and
wakeup events affect those systems as well and there should be a way to avoid them without redesigning user
space completely.

Suppose you want to initiate suspend from user space, by writing mem to /sys/power/state, but at the
same time you want to avoid races with wakeup events. In other words, if one of the devices configured to
wake up the system from the memory sleep state signals wakeup while the system is suspending or even a
little before you write to /sys/power/state, the suspend operation should not succeed. There’s a question,
however, how much time before writing to /sys/power/state is really interesting. Are wakeup events signaled
10 minutes before writing to /sys/power/state so important that they should cause the suspend to fail? Is
10 s a more reasonable time distance? The kernel doesn’t really know that in advance and it has to be provided
with that information by user space. That may be accomplished with the help of an interface allowing user
space to tell the kernel: “If any wakeup events are signaled from now on, the subsequent attempt to suspend
should fail.”

That leads to the question how to detect whether or not any wakeup events were signaled in a given time
interval. While in principle there are multiple possible ways to achieve that, probably the simplest of them
is to have a running counter of signaled wakeup events and to compare its values at the beginning and at
the end of the time interval of interest: If they are different, at least one wakeup event has occurred in the
meantime. Hence, if there is an interface for kernel subsystems to increment the counter whenever a wakeup
event is signaled and another interface for user space to tell the kernel what value of the counter to take as
the initial one for the given attempt to suspend, it should be possible to avoid races between wakeup events
and the suspend process, so long as all of the wakeup events can be regarded as instantaneous.

In reality, though, there are wakeup events that produce data, like a key press on a keyboard enabled to
wake up the system, and these data need to be processed or at least passed to user space before the system
may be permitted to suspend. It may be thought that these events are not instantaneous, but take some
time to receive, starting at the moment when wakeup is signaled and ending at the moment when its data
have been delivered to user space. For wakeup events of this type the counter introduced in the previous
paragraph should only be incremented when the processing of the event by the kernel has ended, but at the
same time the system should not be suspended after the event has been signaled. This complication may be
taken into account by using a counter of wakeup events whose processing by the kernel hasn’t ended yet in
addition to the counter introduced above. This new counter will be incremented whenever there is a wakeup
event producing data to be processed by the kernel. In turn, it will be decremented after the processing of the
event’s data by the kernel has ended (e.g. the data have been passed to user space) and that will cause the
main counter of signaled wakeup events to be incremented. Accordingly, an attempt to suspend the system
will fail if the counter of wakeup events whose data are being processed by the kernel is not equal to zero.
Of course, for that to work, there ought to be an interface for kernel subsystems to mark the beginning and
ending of a “continuous” wakeup event and it is necessary to modify the core power management (PM core)
code to actually use both counters.

The above considerations led to the kernel patch that introduced the wakeup events framework shipped in
the 2.6.36 kernel [25]. Specifically, it introduced the running counter of signaled wakeup events, event_count,
and the counter of wakeup events whose data are being processed by the kernel, events_in_progresﬂ Two
interfaces have been added to allow kernel subsystems to modify these counters in a consistent way. First, the
prn_stay_awake() function increments events_in_progress and the complementary function pm_relax()
decrements it and increments event_count at the same time. Additionally, pm_stay_awake() takes a
struct device pointer argument in order to update the new power.wakeup_count field in the device object

36Defined in drivers/base/power/wakeup.c.
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pointed to by it, which is exported via sysfs (read-only) as /sys/devices/.. ./power/wakeup_countlﬁ Sec-
ond, the function pm_wakeup_event () increments events_in_progress and sets up a timer to decrement it
and increment event_count in the future. Its first argument is a struct device pointer used for updating
the device’s power .wakeup_count field and its second argument is the number of milliseconds to wait before
decrementing events_in_progress.

The current value of event_count can be read from the new sysfs file /sys/power/wakeup_count. In turn,
writing to it causes the current value of event_count to be stored in the auxiliary variable saved_count.
However, the write operation will only succeed if the written number is already equal to event_count.
If that happens, another auxiliary variable events_check_enabled is set, which tells the PM core to use
event_count and events_in_progress during the subsequent suspendlﬂ Namely, the PM core’s suspend
code calls the function pm_check_wakeup_events() returning true if either events_check_enabled is not
set, or events_in_progress is equal to zero and event_count is equal to saved_count. Otherwise, false
is returned which means that the system should not be suspended.

This relatively simple mechanism allows the PM core to react to wakeup events signaled during system
suspend if it is asked to do so by user space and if the kernel subsystems that detect wakeup events use either
pm_stay_awake () or pm_wakeup_event () to let the PM core know about them@ Arguably, it may be used
to implement opportunistic suspend based on a power manager in user space, which is discussed in more
detail below. Still, its support for collecting statistics related to wakeup events is not comparable to the one
provided by the wakelocks framework by any means. Moreover, it assumes that wakeup events will always
be associated with devices, or at least with entities represented by device objects, which need not be the case
in all situations. The need to address these shortcomings led to a kernel patch introducing wakeup source
objects and adding some flexibility to the existing framework [26].

The new patcl“@ leaves the interfaces described in a few previous paragraphs basically untouched, with
one exception. Namely, it makes the pm_relax() function take a struct device pointer argument and allows
it to be used for canceling timers set up by pm_wakeup_event (). More precisely, if pm_wakeup_event () is
used to report a wakeup event for certain device object, there’s no need to wait until the timer set up by it
expires. If it is known in advance that the kernel processing of the event has been completed, pm_relax()
may be called directly for the given device and the timer set up by pm_wakeup_event () will be canceled. Of
course, events_in_progress and event_count will be updated as appropriate in that case.

Under the hood, however, quite a lot is being changed. Most importantly, the new patch introduces
objects of type struct wakeup_source to represent entities that can generate wakeup events. Each wakeup
source object contains, among other things, several fields holding statistical information, a timer used by
prn_wakeup_event (), a name and the flag called active that is set whenever wakeup events associated
with this object are being processed. Wakeup source objects are created automatically for devices that
are enabled to signal wakeup. Specifically, when device_set_wakeup_enable() is called for a given device
with the second argument equaling true, a wakeup source object is created and added to the system-wide
list of wakeup source objects. Its address is stored in the device’s power.wakeup_source field and used
internally by pm_wakeup_event (), pm_stay_awake() and pm_relax() called for that device. It is destroyed
when device_set_wakeup_enable() is called for its device with the second argument equal to false. The
statistical information stored in a device’s wakeup source object is accessible by user space via sysfs as the
contents of several new files in the /sys/devices/.../power/ directory corresponding to the given devic

Although the highest-level interfaces are still designed to report wakeup events relative to devices, which is
particularly convenient to device drivers and subsystems that generally deal with device objects, like the PCI
bus type, the new framework makes it possible to use wakeup source objects directly for reporting wakeup
events. “Standalone” wakeup source objects are created using wakeup_source_create() and added to the

3"This file may be used by user space to check the number of wakeup events associated with the given device.

38 An inquiring reader may wonder why to complicate things this way. It seems that it might be sufficient to simply read from
/sys/power/wakeup_count to “snapshot” the current value of event_count and then try to suspend, so the required write operation
appears to be redundant. However, it sometimes is necessary to suspend without taking wakeup events signaled during suspend to
account. Namely, suppose that user space has already written to /sys/power/wakeup_count and then it wants to change its mind and
ignore wakeup events occurring during the subsequent suspend. In that case it only needs to read from /sys/power/wakeup_count,
which resets events_check_enabled, and start the suspend afterwards. Another reason why it is done this way is that the hibernate
code can check for wakeup events too and it may be run from the ioctl() interface of /dev/snapshot, in which case it’s better to
avoid opening /dev/snapshot if some wakeup events are known to have been signaled beforehand instead of opening it and calling
ioctl() on it just to learn that it failed.

39The PCI subsystem is the only one doing that at the moment.

49Currently scheduled for inclusion into the 2.6.37 kernel after receiving favorable reviews.

“I'The wakeup_count field corresponding to one of these files has been moved from the power.wakeup_count member of struct
device to the struct wakeup_source object pointed to by the power.wakeup_source member of struct device.

14



kernel’s global list of wakeup sources by calling wakeup_source_add(). The wakeup_source_register()
function can be used to carry out these two operations in one shot. Afterwards one can use three new interfaces,
__pm_wakeup_event (), __pm_stay_awake() and __pm_relax(), completely analogous to the functions with
corresponding names described above, except that they take a pointer to struct wakeup_source instead of
a pointer to a device object. When a wakeup source object is not necessary any more, it may be removed
from the global list of wakeup sources by calling wakeup_source_remove() and then deleted with the help
of wakeup_source_destroy(). Alternatively, these two operations can be carried out together by calling
wakeup_source_unregister (). Thus reported wakeup events need not be associated with any device objects
any more. Moreover, at the kernel level, wakeup source objects may be used to replace Android’s wakelocks
on a one-for-one basis, because the interfaces for manipulating them are completely analogous to the ones
introduced by the wakelocks framework. This ought to make it easier to port device drivers from Android to
the mainline kernel code base without merging the entire wakelocks, or suspend blockers, frameworklzﬂ

The infrastructure described earlier in this section has been introduced to make it possible to avoid
races between wakeup events and a typical suspend process started by user space. It is not designed with
opportunistic or even less aggressive automatic suspend in mind, but in theory it may be used for implementing
such power management techniques. Of course, since it doesn’t make the kernel decide when to suspend the
system, a user space power manager is necessary for this purpose. In general, it will talk to the kernel through
the sysfs files in /sys/power/ and will exchange information with other user space processes using some kind
of IPC. In principle it may use arbitrary heuristics in making its decisions, but one special case seems to be
particularly worth considering. Namely, it is instructive to check if the Android’s opportunistic suspend can
be emulated with the help of it.

First, all wakelocks in the Android kernel can be replaced with wakeup source objects thanks to the
correspondence between them mentioned above. Then, if the /sys/power/wakeup_count interface is used
correctly, the resulting kernel will be able to abort suspend in progress in reaction to wakeup events in the
same circumstances in which the original Android kernel would do that. Yet, user space cannot access wakeup
source objects, so the part of the wakelocks framework allowing user space to manipulate them has to be
replaced with a different mechanics implemented entirely in user space, involving a power manager process
and a suitable IPC interface for the processes that would use wakelocks on Android.

The IPC interface in question may be implemented using three components, a shared memory location
containing a counter variable referred to as the “suspend counter” in what follows, a mutex, and a conditional
variable associated with that mutex [27]. Then, a process wanting to prevent the system from suspending
will acquire the mutex, increment the suspend counter and release the mutex. In turn, a process wanting
to permit the system to suspend will acquire the mutex and decrement the suspend counter. If the suspend
counter happens to be equal to zero at that point, the processes waiting on the conditional variable will be
unblocked. The mutex will be released afterwards. These two procedures are referred to, respectively, as the
“block suspend” and “unblock suspend” operations below. They ensure that only one process at a time can
access the suspend counter and possibly unblock processes waiting on the conditional variable.

With the above IPC interface in place the power manager process can perform the following steps in a
loop:

1. Read from /sys/power/wakeup_count. This will block until the kernel’s events_in_progress variable
is equal to zero.

2. Acquire the mutex. This prevents the power manager from accessing the suspend counter while any
block suspend or unblock suspend operations are in progress. It also prevents any suspend block and
unblock operations from updating the suspend counter when the power manager is reading its value.

3. Check if the suspend counter is equal to zero. If that’s not the case, block on the conditional variable
(that will automatically release the mutex). When unblocked, go to step 2.

4. Release the mutex.

5. Write the value read from /sys/power/wakeup_count in step 1 back to this file. If the write fails, go
to step 1.

420ne of the main problems stemming from differences between the mainline kernel and the Android’s one is that device drivers
developed for Android are generally required to use wakelocks. In consequence, they cannot be submitted for inclusion into the
mainline kernel in the form in which they are actually used, because it doesn’t include the wakelocks framework. Although one can
argue that it should be possible to remove all references to wakelocks from them and submit them in that form, that would require
their developers to maintain two different versions of every driver at the same time, the Android one actually used and the mainline
one without wakelocks. Keeping them in sync would be troublesome to put it lightly and it is no wonder that no one is willing to
do that. On the other hand, if the mainline kernel provides interfaces analogous to the wakelocks’ ones, the whole “porting” will

boil down to renaming a few functions and data types.

15



6. Start suspend or hibernation (e.g. by writing the appropriate string to /sys/power/state) and go to
step 1 when it returns.

This way it cannot deadlock with the processes carrying out the block suspend and unblock suspend op-
erations, because it never goes to sleep with the mutex held and the other processes don’t do that either.
Moreover, if they do the right things, the system will not be suspended at a wrong time. Namely, if a
wakeup event is reported at the kernel level, the application receiving it from the kernel should carry out
a suspend block operation before the kernel thread processing the event calls __pm_relax() for its wakeup
source. Then, if __pm_stay_awake() was called for that wakeup source after the power manager had read
from /sys/power/wakeup_count in step 1, either the write in step 5, or the attempt to suspend in step 6 will
fail, because the kernel’s variable event_count has changed in the meantime. In turn, if __pm_stay_awake ()
had been called before the power manager attempted to read from /sys/power/wakeup_count, the read
operation can only complete after __pm_relax() is called for the given event’s wakeup source. In that case
the power manager will see that the suspend was blocked in step 3 and it will go to sleep. It will be woken up
when the suspend counter goes back to zero and the write operation in step 5 will allow it to verify if more
wakeup events were reported at the kernel leveﬁ

Of course, the above design will cause the system to be suspended very aggressively. Although it is not
entirely equivalent to the opportunistic suspend feature on Android, it appears to be close enough to yield
the same level of energy savings. It doesn’t include any facilities for recording statistical information related
to the user space’s usage of the suspend block and suspend unblock operations, but they may be added to
it relatively easily. However, it also suffers from a number of problems affecting the Android’s opportunistic
suspend implementation. Some of them may be addressed by adding complexity to the power manager and
the IPC interface between it and the processes permitted to block and unblock suspend. For example, the
power manager can maintain a list of instants of time when system should be woken by the RTC wake alarm
and can program the RTC as appropriate every time before suspending the system, as suggested in Section [3]
Still, some other issues, like the appearance of inaccuracies of the kernel’s monotonic clock resulting from
every suspend-resume cycle, also discussed in Section |3 are not really avoidable. For this reason, it may
be better to use system suspend less aggressively, but in combination with some techniques described in
Section [l

Overall, while the idea of suspending the system extremely aggressively may be controversial, it doesn’t
seem reasonable to entirely dismiss automatic suspending of it as a valid power management measure. Many
different operating systems do that and they achieve good battery life with the help of it [5]. In the not
so humble opinion of yours truly, there are no valid reasons why Linux-based systems shouldn’t do that,
especially if they are battery-powered. As far as desktop and similar (e.g. laptop or netbook) systems are
concerned, it makes sense to configure them to suspend automatically in specific situations so long as system
suspend is known to work reliably on the given configuration of hardware. The new interfaces and ideas
presented above may be used to this end.

That said, automatic or even opportunistic suspend should never be the only way to suspend the system,
because there are situations in which the user simply wants to suspend it right away regardless of whether
or not there are any outstanding wakeup events to process. Two quite common examples of that come to
mind. First, the user may be in a hurry and may be packing the device into a bag or a pocket without any
intention to look into it any time soon. In such a situation a refusal to suspend the system because of some
wakeup events appearing at a wrong time may be very annoying. Second, imagine that the system’s battery
is almost completely exhausted and the only way to protect it from a surprise powering off is to hibernate it
as quickly as possible. In that case a refusal to do what the user is asking for may even lead to data loss, so
it’s better to discard all wakeup events until the system actually enters the sleep state. Thus it always is nice
if the user can order the system to suspend or hibernate and ignore wakeup events signaled in the process.
One has to wonder, though, if that’s not too much to ask system designers for.

6 Conclusion

The Android’s wakelocks framework, described in Section [2} was designed so that system suspend could be
used as an aggressive energy-saving measure, essentially instead of runtime power management. Admittedly,
at the time the first version of Android was released this opportunistic suspend approach was practically
the only reliable way to achieve good battery life on a Linux-based system like the Google G1. The kernel’s
support for runtime power management was then totally focused on CPUs, I/O runtime PM features were

43This doesn’t protect the power manager from racing with “wakeup events” originating in user space, but it’s rather difficult to
imagine a valid usage scenario in which that would really matter.
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ad hoc if they existed at all for the hardware platform of interest and the available hardware could not be
put into sufficiently deep low-power states with the help of the cpuidle framework alone. On the other hand,
the system suspend framework was basically usable, so it was more convenient to choose as the basis for the
new system’s power management infrastructure, notwithstanding some problems mentioned in Section

Opportunistic suspend still works rather nicely on Android today, which most probably is why its devel-
opers are not really interested in any alternatives. Yet, the mainline kernel has evolved since the first Android
release and it is now offering much better support for runtime power management than ever before. Moreover,
the hardware that newer versions of Android usually run on also is more sophisticated, so in many cases it
may be powered down almost completely as a result of a transition initiated by cpuidle. While transitions of
this kind need not occur sufficiently often in general, that situation may be improved by reducing the “bulk”
applications’ ability to keep the CPUs busy all the time, as described in Section[d} Unfortunately, though, the
system may not be able to stay in the energy-saving state reached as a result of a cpuidle-initiated transition
long enough, mostly because of kernel timers and interrupts generated whenever they expire. This problem
is rather difficult to tackle. Seemingly, it may be mitigated by optimizing the usage of timers in the kernel
rather than by adding complexity to the cpuidie framework’s code paths. Anyway, things should get better
over time in that area too.

By far the most controversial aspect of the Android’s opportunistic suspend infrastructure is that it starts
system suspend from kernel space, basically taking over an interface that was intended for use by (privileged)
user space processes. Because of that it requires applications to interact with the kernel in a very unusual
way and the interface provided by it for this purpose doesn’t really match other interfaces between the
kernel and user space. At the same time, though, it addresses the problem of possible races between the
suspend process and wakeup events which is real and affects the mainline kernel’s suspend and hibernation
subsystem. It also provides means for collecting statistics related to wakeup events, which generally is a useful
feature. Undoubtedly it would be good if the mainline kernel could do that too, but the existing suspend
and hibernation interfaces also should be able to benefit from that without far-reaching modifications of user
space. Hopefully the new wakeup events framework outlined in Section [5| will help to make that happen.

From the perspective of kernel subsystems outside of the PM core the wakeup events framework is anal-
ogous to the Android’s wakelocks framework, but it allows one to report wakeup events relative to devices
rather than relative to abstract entities such as wakelocks. Thus the parts of the kernel that already use device
objects need not create and maintain additional data structures just for reporting wakeup events. Moreover,
to take advantage of the user space interface introduced by the wakeup events framework it only is necessary
to modify the part of user space that drives the suspend process. The other parts of user space need not
be changed for this purpose in general, although it may be worthwhile to change them too, depending on
the specific needs of the system. In particular, if the system needs to use an opportunistic suspend feature
analogous to the Android’s one, it may be implemented with the help of the wakeup events framework, a user
space power manager and a special IPC interface, as described in Section [} This means, however, that the
most controversial parts of the Android’s opportunistic suspend infrastructure are not really necessary and
therefore they should not be included into the mainline kernel.

Furthermore, because of the similarities between the new mainline kernel’s wakeup events framework and
the Android’s wakelocks framework, it should be possible to convert the vast majority of the Android device
drivers using wakelocks to the mainline kernel code base. In consequence, it ought to be relatively easy to
merge these drivers into the mainline kernel without the necessity to create special versions of them devoid
of wakelocks, which from the mainline kernel developers’ standpoint is a sufficient outcome. It remains to
be seen whether Android developers decide to use the new wakeup events framework or they prefer to stick
to the kernel-based opportunistic suspend and carry a patch against the mainline kernel for that. As far as
the mainline kernel is concerned, what matters is the possibility to merge the Android device drivers without
major modifications.
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