
arm64e
An ABI for Pointer Authentication

John McCall

Ahmed Bougacha

LLVM Developers' Meeting

October 22nd, 2019

What is arm64e?
• arm64e is an ABI for pointer authentication on ARMv8.3

• ARMv8.3 is an AArch64 extension provided by the Apple A12 and later
(e.g. iPhone XR/XS, released September 2018)

• Used for all system software on those devices

• Not ABI stable yet — still looking for ways to strengthen it

What is Pointer Authentication?
• Security mitigation technique

• Provides control flow integrity (CFI), limited data integrity

• Basic idea: sign and authenticate pointers to prevent attackers from
escalating memory corruption bugs

Memory Corruption
• Many exploits start with memory corruption bugs

• e.g. buffer overflows, use-after-free

• Ideally, these bugs wouldn’t exist

• Safe languages, safe practices, static analysis, thorough code review

• Practically, mitigation still has an important place

Exploitation
• Limited memory corruption is not usually the goal of an attack

• Attacker wants to access sensitive information, make specific system
calls, exfiltrate data over network, etc.

• Escalating an attack often requires corrupting control flow

Code Payloads
• Attacker wants to run some custom code

• Can’t just write new instructions in modern systems

MOV X0, #0x8 ; first argument: client socket descriptor
MOV X1, #0x1F0174ED0 ; second argument: address of password file in memory
MOV X2, #8096 ; third argument: length
BL _write

MOV X2, #8096

 ; first argument: client socket descriptor
 ; second argument: address of password file in memory
 ; third argument: length
BL _write

MOV X0, #0x8
MOV X1, #0x1F0174ED0

Gadgets
• Instead, attacker finds gadgets: bits and pieces of existing functions that

collectively do what the attacker wants

_getBitsInByte:
MOV X0, #0x8 ; return number of bits in a byte
RET

_readPasswordHeader:
MOV X17, #0x1F0174ED0 ; put address of password file in scratch register
LDR X0, X17 ; load from it (leaving address in register)
RET

; next we need a gadget that will move x17 into x1
; etc.

MOV X0, #0x8

Gadgets
• Instead, attacker finds gadgets: bits and pieces of existing functions that

collectively do what the attacker wants

ROP/JOP
• Attacker must call all of these gadgets in the right sequence

• Use memory corruption to redirect indirect branches to gadgets

• Redirecting returns: return-oriented programming (ROP)

• Redirecting calls: jump-oriented programming (JOP)

Pointer Authentication
• Goal: prevent this from working by breaking attempts to redirect

• Add a signature to every code pointer

• (and some select data pointers)

• Always authenticate signature before doing an indirect branch

• (and some select loads)

ARMv8.3 Pointer Signatures
• Signature is stored in unused high bits of a 64-bit pointer (~25 bits today)

0 A A

S A A

ARMv8.3 Pointer Signatures
• Computed by performing a cryptographic hash of the base pointer

hash(pointer)

S A A

0 A A

ARMv8.3 Pointer Signatures
• Hash also incorporates data from one of several secret 128-bit key

registers, only directly readable by the kernel (a “pepper”)

K K

S A A

0 A A

hash(pointer, key)

D D

ARMv8.3 Pointer Signatures
• Hash also incorporates a 64-bit discriminator (a “salt”)

K K

S A A

0 A A

hash(pointer, key,
 discriminator)

Pointer Substitution
• Signing with secret key means attackers can’t forge signed pointers

• Attackers can still overwrite signed pointers with other signed pointers

• Means gadgets have to be whole functions, but apparently that’s not a
serious hurdle

Discriminators
• Substitution only works if all the inputs to the hash are the same

• Small number of keys, so it mostly comes down to discriminators

hash(pointer, key, discriminator)

• Ideally, every different “purpose” would use a different discriminator

• A pointer should only authenticate if a human programmer would say
that the pointer was meant to be used there

• Pointer authentication mostly driven automatically by compiler

• Limited by imperfect knowledge

• Limited by language design

Discriminators

Language ABI
• Compiler automatically protects all indirect branches:

• ABI rule specifies key and how to compute the discriminator

• return
• switch
• symbol imports (GOT)

• C function pointers

• C++ virtual functions

• etc.

Discriminators in the ABI
• ARMv8.3 allows discriminators to be arbitrary 64-bit values

• For practical reasons, discriminators used in language ABI are restricted

• Combination of two factors:

• whether to use address diversity

• choice of small constant discriminator

Address Diversity
• Discriminator includes storage address of pointer

• Same pointer stored in different places will have a different signature

• Copying requires re-signing, so attackers can’t replace pointers
themselves, have to convince the program to do it for them

• Incompatible with memcpy, makes copies much more expensive

Constant Discriminators
• 16-bit constant integer

• Can be derived from declaration:

• Can be derived from type:

• Declaration is better, but can’t break abstract, type-based uses

struct F { int x; } hash(“F::x”) 0x107b

struct F { int x; } hash(“int”) 0x69fe

Example: C++ Virtual Functions
• No direct access to v-table in language, ODR provides strong guarantees

• Can sign virtual function pointers with address diversity

• Can use mangling of method declaration for constant discriminator

• Abstract uses (member function pointers) can be supported without
weakening basic ABI

• V-table pointer in object also signed

Example: C Function Pointers
• Pointers must be copyable with memcpy, so no address diversity

• Can take address of function-pointer variables, so must use common
discriminator for function-pointer type

• Lots of practical deployment challenges with discriminating by type

• Currently using a common discriminator of 0 for all C function pointers

• Clang provides language features to opt in to better discrimination

Generating Code for arm64e

Core Operations
0 A A

Core Operations

S A A

0 A A

• Sign a raw (unauthenticated) pointer, producing a signed pointerSign

Core Operations

S A A

0 A A

• Sign a raw (unauthenticated) pointer, producing a signed pointer

0 A A

Sign

Auth
• Authenticate a signed pointer, producing a raw pointer

• Verifies the signature, and strips it on success

Core Operations

S A A

0 A A

0 A A

Sign

Auth

%sp = call i64 @llvm.ptrauth.sign.i64(i64 %t1, i32 0, i64 %discriminator)

%ap = call i64 @llvm.ptrauth.auth.i64(i64 %t2, i32 3, i64 %discriminator)

Core Operations

S A A

0 A A

0 A A

Sign

Auth

PACIA Xd, Xn

AUTDB Xd, Xn

Core Operations

0 A A

Auth AUTDB Xd, Xn

• Pointers with an invalid signature can't be authenticated

❌ A A

Core Operations

0 A A

Auth AUTDB Xd, Xn

• Pointers with an invalid signature can't be authenticated

❌ A A

❌ ✅

Core Operations

0 A A

Auth AUTDB Xd, Xn

• Pointers with an invalid signature can't be authenticated

0 P P 0 A

❌ A A

Security Requirements
• Auth: must prevent attackers from bypassing signature verification

• Sign: must prevent attackers from signing pointers they control

• Core operations deal with raw pointers

• Raw pointers are vulnerable, because they aren't verified

• Raw pointers shouldn't be exposed (spilled to memory, ...)

Security Guarantees
• It's hard to reason about arbitrary uses

• No guarantees can be made (e.g., against spilling)

• But we can reason about certain critical, well-defined, uses

• arm64e mainly uses auth/sign to implement Control Flow Integrity

• We must guarantee integrity of pointers used in control flow

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

 (*funptr)();

 obj->method();

Auth Operand Bundle: Call
• "ptrauth" operand bundle on indirect calls

• Guarantees integrity of the intermediate pointer

• On ARMv8.3, guarantees combined instruction codegen:

call void %signed_callee() ["ptrauth"(i32 0, i64 %disc)]

BLRAAZ Xd

Auth Operand Bundle: IndBr
• indirectbr is also indirect control flow

• Let's give it a "ptrauth" operand bundle

• Tedious but straightforward patch

Auth Operand Bundle: Switch?
• Jump tables are created late

• Jump table dispatch only exists in the backend

• We could sign the jump table entries

• ...would require moving them from text to data

• ...would prevent shrinking them for small offsets

• Too expensive

Jump Table Hardening
• Jump-table dispatch sequences are hardened using a custom sequence:

CMP Xindex, #<jt size>
CSEL Xindex, Xindex, XZR, ls ; range-check the index
; we don't control the index: it could have been spilled across arbitrary blocks
; on index overflow, it's okay to pick any case: it's legitimate control flow
ADRP Xjt, _JT0@PAGE
ADD Xjt, _JT0@PAGEOFF ; materialize the jump table address
LDRSW Xoffset, [Xjt, Xindex, lsl #2] ; load the offset from the table
ADD Xtarget, Xjt, Xoffset ; compute the target
BR Xtarget ; jump to it: no auth, because it's safe

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

 void (*p)(char *);

 return ((void)(*)(int *)) p;

Resign
• Authenticate a pointer using key/discriminator A, 

and re-sign it using key/discriminator B

• Guarantees integrity of the intermediate pointer:

declare i64 @llvm.ptrauth.resign.i64(i64, i32, i64, i32, i64)

AUTDA X16, Xn
PACDB X16, Xm

Resign
S A A

Resign
S A A

0 A A

AUTDA Xd, Xn
Discriminator Ad

Key Ak

Resign
S A A

0 A A

s A A

AUTDA Xd, Xn

PACDB Xd, Xm

Discriminator Ad

Key Ak

Discriminator Bd

Key Bk

Resign
S S S S S S S S +

- S S S S S S S S S S S S S S S A+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

0 A A

Resign
S S S S S S S S +

- S S S S S S S S S S S S S S S A

AUTDA Xd, Xn

+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

• Broadcast a "selector" bit, 
used for the kernel address-space

0 A A

Resign
S S S S S S S S +

- S S S S S S S S S S S S S S S A

AUTDA Xd, Xn

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

• Broadcast a "selector" bit, 
used for the kernel address-space

0 A A

Resign
S S S S S S S S +

- S S S S S S S S S S S S S S S A

AUTDA Xd, Xn

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

s A A

PACDB Xd, Xm

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

• Broadcast a "selector" bit, 
used for the kernel address-space

• Truncates address-space bits into
the selector bit

s A A

0 A A

Resign
S S S S S S S S +

- S S S S S S S S S S S S S S S A

AUTDA Xd, Xn

PACDB Xd, Xm

• Broadcast a "selector" bit, 
used for the kernel address-space

• Truncates address-space bits into
the selector bit

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn

+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

• AUT poisons result pointer, because
the signature is invalid

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn • AUT poisons result pointer, because
the signature is invalid

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn • AUT poisons result pointer, because
the signature is invalid

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn • AUT poisons result pointer, because
the signature is invalid

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-P PP P

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn • AUT poisons result pointer, because
the signature is invalid

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

s A A

PACDB Xd, Xm

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-P PP P

• PAC corrupts result pointer, because
poison bits conflict with addrspace bits

s ‼
‼

s ss A A

❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn

PACDB Xd, Xm

• AUT poisons result pointer, because
the signature is invalid

• PAC corrupts result pointer, because
poison bits conflict with addrspace bits

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

P P

P P

s ‼
‼

s ss A A

❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

0 A A

Resign Failures
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

AUTDA Xd, Xn

PACDB Xd, Xm

• AUT poisons result pointer, because
the signature is invalid

• PAC corrupts result pointer, because
poison bits conflict with addrspace bits

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-

P P

‼

‼

Resign Problem #1

AUTDA Xd, Xn

PACDB Xd, Xm

• Resigning an invalidly-signed pointer
produces a validly-signed pointer!

❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

s ‼
‼

s s

Resign Mitigation #1
• Resign sequence should check for AUT failure

• And return a pointer with no leaked signature bits

MOV X17, X16 ; We'll need a copy of the pointer
AUTDA X16, X1 ; Authenticate it
XPACD X17 ; But strip the signature from the copy
CMP X16, X17 ; Compare the two
PACDB X16, X2 ; Sign the result
CSEL X16, X16, X17, eq ; On strip/auth mismatch: return the stripped value

0 A A

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌
+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

Resign Problem #2

• Checked resign can be bruteforced

• If the result signature bits aren't all 0
(or all 1), the resign succeeded

❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

MOV X17, X16
AUTDA X16, X1
XPACD X17
CMP X16, X17
PACDB X16, X2
CSEL X16, X16, X17, eq

0 A A

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌
+

-
❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ A

Resign Problem #2

• Checked resign can be bruteforced

• If the result signature bits aren't all 0
(or all 1), the resign succeeded

❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

0 00 10 1 00 1 10 1 0 0

✅❌

S S

s s

MOV X17, X16
AUTDA X16, X1
XPACD X17
CMP X16, X17
PACDB X16, X2
CSEL X16, X16, X17, eq

Resign Mitigation #2
• Resign sequence shouldn't be bruteforceable

• Not a problem for most auths: the result is (really) used immediately

• Resign sequence should trap on auth failure
 MOV X17, X16 ; We'll need a copy of the pointer
 AUTDA X16, X1 ; Authenticate it
 XPACD X17 ; But strip the signature from the copy
 CMP X16, X17 ; Compare the two
 B.EQ Lsuccess ; On success, move on
 BRK #0xc472 ; On mismatch, trap!
Lsuccess:
 PACDB X16, X2 ; Sign the result

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

 typedef void (*fnptr_t)(char *);

 fnptr_t actions[] = { &f1, &f2 };

Signed Pointer Constant
• llvm.ptrauth Authenticated "wrapper" Global (ideally a ConstantExpr)

• Lowered to a new mach-o relocation:

@f.ptrauth = private constant { i8*, i32, i64, i64 }
 { i8* bitcast (i8()* @f to i8*), i32 <key>, i64 <addr disc>, i64 <disc> },
 section "llvm.ptrauth"

@signed_f = constant i8()* bitcast ({ i8*, i32, i64, i64 }* @f.ptrauth to i8()*)

_signed_f:

 .quad _f@AUTH(ia,1234,addr)

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

 void f(char *);

 return &f;

Signed Pointer Materialization
• llvm.ptrauth globals can be used in code too:

• Which we lower to:

 ret i8()* bitcast ({ i8*, i32, i64, i64 }* @f.ptrauth to i8()*)

ADRP X16, _f@PAGE
ADD X16, X16, _f@PAGEOFF ; materialize the pointer, the Darwin way
PACIA X16, Xn ; sign it

Signed Pointer Materialization

• Prevent transforms from exposing the intermediate pointer

• Backend uses combined ops (PtrAuthGA in ISel, pseudo in AArch64)

• Prevent OS exceptions from exposing the intermediate register value

• The compiler always uses x16/x17 for "sensitive registers"

• The kernel guarantees the integrity of x16/x17 on exceptions

ADRP X16, _f@PAGE
ADD X16, X16, _f@PAGEOFF ; materialize the pointer
PACIA X16, Xn ; sign it

Important Use-cases
• Authenticate a pointer...

• ...used as a branch/call target

• ...that's immediately re-signed

• Sign a pointer...

• ...to a constant, as a constant initializer

• ...to a constant, in code

arm64e
• An ABI for Pointer Authentication

• Extends arm64 language ABIs to provide CFI

• Discriminator choice is constrained, but is the key to hardening

• Exposes interesting compiler problems

• Integrity must be preserved throughout all transformations

• Not ABI stable yet — still looking for ways to strengthen it

arm64e
An ABI for Pointer Authentication

John McCall

Ahmed Bougacha

LLVM Developers' Meeting

October 22nd, 2019

