armo4e

An ABI for Pointer Authentication

LLVM Developers' Meeting John McCall
October 22nd, 2019 Ahmed Bougacha

What is armb64e?

 armo64e is an ABI for pointer authentication on ARMv8.3

« ARMV8.3 Is an AArcho4 extension provided by the Apple A12 and later
(e.g. IPhone XR/XS, released September 2018)

e Used for all system software on those devices

 Not ABI stable yet — still looking for ways to strengthen it

What is Pointer Authentication?

e Security mitigation technique
* Provides control flow integrity (CFl), limited data integrity

 Basic idea: sign and authenticate pointers to prevent attackers from
escalating memory corruption bugs

Memory Corruption

 Many exploits start with memory corruption bugs
e e.g. buffer overflows, use-after-free
e |deally, these bugs wouldn’t exist
e Safe languages, safe practices, static analysis, thorough code review

* Practically, mitigation still has an important place

Exploitation

 Limited memory corruption is not usually the goal of an attack

e Attacker wants to access sensitive information, make specific system
calls, exfiltrate data over network, etc.

e Escalating an attack often requires corrupting control flow

Code Payloads

e Attacker wants to run some custom code

 Can’t just write new instructions in modern systems

MOV X0, #0x8 ;, Tirst argument: client socket descriptor

MOV X1, #0x1F0174EDO ; second argument: address of password file 1n memory
MOV X2, #8096 ; third argument: Llength

BL write

Gadgets

e Instead, attacker finds gadgets: bits and pieces of existing functions that
collectively do what the attacker wants

MOV X0, #0x8 ; Tirst argument: client socket descriptor

MOV X1, #0x1F0Q174EDO ; second argument: address of password file 1n memory
MOV X2, #8096 ; third argument: Llength

BL write

Gadgets

e Instead, attacker finds gadgets: bits and pieces of existing functions that
collectively do what the attacker wants

_getBitsInByte:

MOV X0, #0x8 ; return number of bits in a byte

RET

~readPasswordHeader:

MOV X177, #O0x1FQ174EDO ; put address of password file 1n scratch register
LDR X0, X17 » load from it (leaving address in register)

Nl

; hext we need a gadget that will move x17 into x1
; etc.

ROP/JOP

o Attacker must call all of these gadgets in the right sequence
 Use memory corruption to redirect indirect branches to gadgets
* Redirecting returns: return-oriented programming (ROP)

* Redirecting calls: jump-oriented programming (JOP)

Pointer Authentication

e Goal: prevent this from working by breaking attempts to redirect
 Add a signhature to every code pointer

* (and some select data pointers)
* Always authenticate signature before doing an indirect branch

* (and some select loads)

ARMv8.3 Pointer Signatures

e Signature is stored in unused high bits of a 64-bit pointer (~25 bits today)

ARMv8.3 Pointer Signatures

 Computed by performing a cryptographic hash of the base pointer

hash(pointer)

ARMv8.3 Pointer Signatures

 Hash also incorporates data from one of several secret 128-bit key
registers, only directly readable by the kernel (a “pepper”)

‘ LARRURNARNURRARNUR RN RURRUR AR

hash(pointer, key)

ARMv8.3 Pointer Signatures

 Hash also incorporates a 64-bit discriminator (a “salt”)

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI
hash(pointer, key,

g HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH'

t H |

Pointer Substitution

e Signing with secret key means attackers can’t forge signed pointers
o Attackers can still overwrite signed pointers with other signed pointers

 Means gadgets have to be whole functions, but apparently that’s not a
serious hurdle

Discriminators

e Substitution only works if all the inputs to the hash are the same

haSh(y key!)

 Small number of keys, so it mostly comes down to discriminators

Discriminators

e |deally, every different “purpose” would use a different discriminator

* A pointer should only authenticate if a human programmer would say
that the pointer was meant to be used there

* Pointer authentication mostly driven automatically by compiler
 Limited by imperfect knowledge

 Limited by language design

Language ABI

 Compiler automatically protects all indirect branches:

e return * C function pointers
e switch e C++ virtual functions
e symbol imports (GOT) ¢ etc.

* ABI rule specifies key and how to compute the discriminator

Discriminators in the ABI

« ARMvVS8.3 allows discriminators to be arbitrary 64-bit values
* For practical reasons, discriminators used in language ABI are restricted
e Combination of two factors:

 whether to use address diversity

e choice of small constant discriminator

Address Diversity

e Discriminator includes storage address of pointer
e Same pointer stored in different places will have a different signature

e Copying requires re-signing, so attackers can’t replace pointers
themselves, have to convince the program to do it for them

* |[ncompatible with memcpy, makes copies much more expensive

Constant Discriminators

* 16-bit constant integer
 Can be derived from declaration:

struct F{intx;} —— hash(“F::x”) 0x107b
e Can be derived from type:

struct F{intx;} ———> hash(“int”) 0x69fe

* Declaration is better, but can’t break abstract, type-based uses

Example: C++ Virtual Functions

* No direct access to v-table in language, ODR provides strong guarantees
» (Can sign virtual function pointers with address diversity
e Can use mangling of method declaration for constant discriminator

* Abstract uses (member function pointers) can be supported without
weakening basic ABI

e \/-table pointer in object also signed

Example: C Function Pointers

* Pointers must be copyable with memcpy, so no address diversity

 Can take address of function-pointer variables, so must use common
discriminator for function-pointer type

* Lots of practical deployment challenges with discriminating by type
* Currently using a common discriminator of O for all C function pointers

* Clang provides language features to opt in to better discrimination

Generating Code for armb64e

Core Operations

Core Operations

Sign e Sign a raw (unauthenticated) pointer, producing a signed pointer

Core Operations

Sign e Sign a raw (unauthenticated) pointer, producing a signed pointer

e Authenticate a signed pointer, producing a raw pointer

Auth
» \erifies the signature, and strips it on success

Core Operations

%sp = call 164 @llvm.ptrauth.sign.i64(i64 %t1, i32 0, i64 %discriminator)

Auth %ap = call i64 @llvm.ptrauth.auth.i64(i64 %t2, i32 3, i64 %discriminator)

Sign

Core Operations

Sign PACIA Xd, Xn

Auth AUTDB Xd, Xn

Core Operations

* Pointers with an invalid signature can't be authenticated
oo (U R

Auth AUTDB Xd, Xn

Core Operations

* Pointers with an invalid signature can't be authenticated
onsordgoscono (U R
<

Auth AUTDB Xd, Xn

Core Operations

* Pointers with an invalid signature can't be authenticated
oo (U R

Auth AUTDB Xd, Xn

Security Requirements

e Auth: must prevent attackers from bypassing signature verification
e Sign: must prevent attackers from signing pointers they control
* Core operations deal with raw pointers

 Raw pointers are vulnerable, because they aren't verified

 Raw pointers shouldn't be exposed (spilled to memory, ...)

Security Guarantees

e |t's hard to reason about arbitrary uses
 No guarantees can be made (e.g., against spilling)

e But we can reason about certain critical, well-defined, uses
 arm64e mainly uses auth/sign to implement Control Flow Integrity

 \We must guarantee integrity of pointers used in control flow

Important Use-cases

e Authenticate a pointer...
e ...used as a branch/call target
o ...that's iImmediately re-signed
e Sign a pointer...
e ...to a constant, as a constant initializer

e ...to aconstant, in code

Important Use-cases

* Authenticate a pointer... (xfunptr) () ;

e ...used as a branch/call target obj—>method();

Auth Operand Bundle: Call

 'ptrauth” operand bundle on indirect calls

%signed_callee() [(0, %disc) 1

 Guarantees integrity of the intermediate pointer

« On ARMVS8.3, guarantees combined instruction codegen:

BLRAAZ Xd

Auth Operand Bundle: IndBr

* indirectbr is also indirect control flow
e Let'sgiveita "ptrauth” operand bundle

e Tedious but straightforward patch

Auth Operand Bundle: Switch?

e Jump tables are created late

 Jump table dispatch only exists in the backend
 We could sign the jJump table entries

e ...would require moving them from text to data

e ...would prevent shrinking them for small offsets

 Joo expensive

Jump Table Hardening

o Jump-table dispatch sequences are hardened using a custom seqguence:

CMP Xindex, #<jt size>

CSEL Xindex, Xindex, XZR, s ;, range—check the 1index

; we don't control the index: 1t could have been spilled across arbitrary blocks
; on 1ndex overflow, 1t's okay to pick any case: 1t's legitimate control flow
ADRP Xjt, _JTO@PAGE

ADD Xj3t, _JTO@PAGEOFF ;, materialize the jump table address
LDRSW Xoffset, [Xjt, Xindex, lsl #2] ; load the offset from the table
ADD Xtarget, Xjt, Xoffset ; compute the target

BR Xtarget ; jump to 1t: no auth, because 1t's safe

Important Use-cases

* Authenticate a pointer... void (kp) (char %);

return ((void) (%) (int *)) p;

o ...that's iImmediately re-signed

Resign

* Authenticate a pointer using key/discriminator A,
and re-sign it using key/discriminator B

@llvm.ptrauth.resign.i64 (164, : :

 Guarantees integrity of the intermediate pointer:

AUTDA X16, Xn
PACDB X16, Xm

Resign

Resign

! —
AUTDA Xd,

Discriminator Ag

Resign

Discriminator Aqg

AUTDA Xd,

PACDB Xd, Xm

Resign

Resign

AUTDA Xd. Xn Broadcast a "selector” bit,
’ used for the kernel address-space

Resign

AUTDA Xd. Xn Broadcast a "selector” bit,
’ used for the kernel address-space

Resign

AUTDA Xd. Xn Broadcast a "selector” bit,
’ used for the kernel address-space

* Jruncates address-space bits into
PACDB Xd, Xm

the selector bit

Resign

AUTDA Xd. Xn Broadcast a "selector” bit,
’ used for the kernel address-space

* Jruncates address-space bits into
PACDB Xd, Xm

the selector bit

+

Resign Failures

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn

the signature is invalid

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn

the signature is invalid

Resign Failures

|
HHHHHHHHIHx\xaxxxxxxxxxx
|

 AUT poisons result pointer, because
AUTDA Xd, Xn

the signature is invalid

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn . g .
the signature is invalid

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn . g .
the signature is invalid

 PAC corrupts result pointer, because
PACDB Xd, Xm poison bits conflict with addrspace bits

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn . g .
the signature is invalid

II » PAC corrupts result pointer, because
PACDB Xd, Xm poison bits conflict with addrspace bits

+

Resign Failures

 AUT poisons result pointer, because
AUTDA Xd, Xn . g .
the signature is invalid

 PAC corrupts result pointer, because
PACDB Xd, Xm poison bits conflict with addrspace bits

“:’;““ +

Resign Problem #1

AUTDA Xd, Xn l * Resigning an invalidly-signed pointer
PACDB Xd, Xnm l produces a validly-signed pointer!

H

Resign Mitigation #1

* Resign sequence should check for AUT failure

* And return a pointer with no leaked signature bits

MOV X17, X16 ; We'll need a copy of the pointer
AUTDA X16, X1 » Authenticate 1t

XPACD X17 ;, But strip the signature from the copy
CMP X160, X17 ; Compare the two

PACDB X16, X2 ; Sign the result

CSEL X16, X16, X17, eq ; On strip/auth mismatch: return the stripped value

Resign Problem #2
ooz R R RN R

MOV X17, X16
AUTDA X16, X1

XPACD X17

CMP X16, X17
PACDB X16, X2 * |f the result signature bits aren't all O

CSEL X16, X16, X17, eq (or all 1), the resign succeeded

 Checked resign can be bruteforced

Resign Problem #2
sssesssssassassassassess | L RERREARARRARRARRARRARRARRARRAREND

MOV X17, X16
AUTDA X1o, X1

 Checked resign can be bruteforced

XPACD X17

CMP X16, X17 | |

PACDB X16, X2 * If the result signature bits aren't all O
CSEL X16, X16, X17, eq (or all 1), the resign succeeded

Resign Mitigation #2

* Resign sequence shouldn't be bruteforceable
 Not a problem for most auths: the result is (really) used immediately

* Resign sequence should trap on auth failure

MOV X17, X16 ; We'll need a copy of the pointer
AUTDA X16, X1 » Authenticate 1t

XPACD X17 ;, But strip the signature from the copy
CMP X16, X17 ; Compare the two

B.EQ Lsuccess » On success, move on

BRK #0xc472 ; On mismatch, trap!

Lsuccess:

PACDB X16, X2 ; Sign the result

Important Use-cases

typedef void (xfnptr_t)(char x);

fnptr_t actions[] = { &f1l, &f2 };

e Sign a pointer...

e ...to a constant, as a constant initializer

Signed Pointer Constant

e 1lvm.ptrauth Authenticated "wrapper" Global (ideally a ConstantExpr)

@f.ptrauth = { 18, , , }
{ 18% (18()% @f to 18x%), <key>, <addr disc>, <disc> },
@signed_f = ()% ({ 18x, , , }x @f.ptrauth to i8()x*)

e | owered to a new mach-o relocation:

signed_f:
.quad _fEAUTH(ia,1234,addr)

Important Use-cases

void f(char x):

return &fT;

e Sign a pointer...

e ...to aconstant, in code

Signed Pointer Materialization

e llvm.ptrauth globals can be used in code too:

()* ({ 18x, , , }x @f.ptrauth to i8()x*)

e \WWhich we lower to:

ADRP X16, T@PAGE
ADD X16, X16, fT@PAGEOFF ; materialize the pointer, the Darwin way
PACIA X16, Xn ; sign 1t

Signed Pointer Materialization

ADRP X16, fT@PAGE
ADD X16, X16, T@PAGEOFF ;, materialize the pointer
PACIA X16, Xn ; sign 1t

* Prevent transforms from exposing the intermediate pointer
 Backend uses combined ops (PtrAuthGA in ISel, pseudo in AArch64)
* Prevent OS exceptions from exposing the intermediate register value
 The compiler always uses x16/x17 for "sensitive registers”

* The kernel guarantees the integrity of x16/x17 on exceptions

Important Use-cases

 Authenticate a pointer...
e ...used as a branch/call target
o ...that's iImmmediately re-signed
e Sign a pointer...
e _..to a constant, as a constant initializer

e ...to aconstant, In code

armo4e

 An ABI for Pointer Authentication
 Extends arm64 language ABIs to provide CFl

e Discriminator choice is constrained, but is the key to hardening
 EXposes interesting compiler problems

e Integrity must be preserved throughout all transformations

 Not ABI stable yet — still looking for ways to strengthen it

armo4e

An ABI for Pointer Authentication

LLVM Developers' Meeting John McCall
October 22nd, 2019 Ahmed Bougacha

