Skip to main content
Log in

Stochastic models for risk estimation in volatile markets: a survey

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Portfolio risk estimation in volatile markets requires employing fat-tailed models for financial returns combined with copula functions to capture asymmetries in dependence and an appropriate downside risk measure. In this survey, we discuss how these three essential components can be combined together in a Monte Carlo based framework for risk estimation and risk capital allocation with the average value-at-risk measure (AVaR). AVaR is the average loss provided that the loss is larger than a predefined value-at-risk level. We consider in some detail the AVaR calculation and estimation and investigate the stochastic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1998). Coherent measures of risk. Mathematical Finances, 6, 203–228.

    Google Scholar 

  • Bibby, B. M., & Sorensen, M. (2003). Hyperbolic processes in finance. In S. Rachev (Ed.), Handbook of heavy-tailed distributions in finance (pp. 212–248). Amsterdam: Elsevier.

    Google Scholar 

  • Bradley, B., & Taqqu, M. S. (2003). Financial risk and heavy tails. In S. Rachev (Ed.), Handbook of heavy-tailed distributions in finance (pp. 35–103). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Dokov, S., Stoyanov, S., & Rachev, S. (2008). Computing VaR and AVaR of skewed t distribution. Journal of Applied Functional Analysis, 3, 189–209.

    Google Scholar 

  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. In M. Dempster (Ed.), Risk management: Value at risk and beyond (vol. 10(3), pp. 341–352). Cambridge: Cambridge University Press.

    Google Scholar 

  • Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In S. Rachev (Ed.), Handbook of heavy-tailed distributions in finance (pp. 329–384). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Fama, E. (1963). Mandelbrot and the stable Paretian hypothesis. Journal of Business, 36, 420–429.

    Article  Google Scholar 

  • Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105.

    Article  Google Scholar 

  • Hurst, S. H., Platen, E., & Rachev, S. (1997). Subordinated market index models. A comparison. Financial Engineering and the Japanese Markets, 4, 97–124.

    Article  Google Scholar 

  • Janicki, A., & Weron, A. (1994). Simulation and chaotic behavior of alpha-stable stochastic processes. New York: Marcel Dekker.

    Google Scholar 

  • Kim, Y., Rachev, S., Bianchi, M., & Fabozzi, F. (2008). Financial market models with Lévy processes and time-varying volatility. Journal of Banking and Finance, 32(7), 1363–1378.

    Article  Google Scholar 

  • Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 26, 394–419.

    Google Scholar 

  • Mittnik, S., & Rachev, S. (1999). Stable non-Gaussian models in finance and econometrics. Mathematical and Computer Modeling, 10–12.

  • Pflug, G. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev (Ed.), Probabilistic constrained optimization: Methodology and applications. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Platen, E., & Rendek, R. (2007), Empirical evidence on Student-t log-returns of diversified world stock indices. Research paper series 194, Quantitative Finance Research Centre, University of Technology, Sydney.

  • Rachev, S. (Ed.) (2003). Handbook of heavy-tailed distributions in finance. Amsterdam: Elsevier.

    Google Scholar 

  • Rachev, S., & Mittnik, S. (2000). Stable Paretian models in finance. Series in financial economics. Chichester: Wiley.

    Google Scholar 

  • Rachev, S., Fabozzi, F., & Menn, C. (2005). Fat tails and skewed asset returns distributions. New York: Wiley Finance.

    Google Scholar 

  • Rachev, S., Stoyanov, S., Biglova, A., & Fabozzi, F. (2006). An empirical examination of daily stock return distributions for U.S. stocks. In Data analysis and decision making. Berlin: Springer.

    Google Scholar 

  • Rachev, S., Martin, D., Racheva-Iotova, B., & Stoyanov, S. (2007). Stable ETL optimal portfolios and extreme risk management. In G. Bol, S. Rachev, & R. Wuerth (Eds.), Risk assessment: Decisions in banking and finance. Berlin: Springer.

    Google Scholar 

  • Rachev, S., Stoyanov, S., & Fabozzi, F. (2008). Advanced stochastic models, risk assessment, and portfolio optimization: The ideal risk, uncertainty, and performance measures. New York: Wiley Finance.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes. New York/London: Chapman & Hall.

    Google Scholar 

  • Sklar, A. (1996). Random variables, distribution functions and copulas—a personal look backward and forward. In L. Rüschendorf, B. Schweizer, & M. D. Taylor (Eds.), Distributions with fixed marginals and related topics (pp. 1–14). Hayward: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  • Stoyanov, S., & Rachev, S. (2008a). Asymptotic distribution of the sample average value-at-risk. Journal of Computational Analysis and Applications, 10, 465–483.

    Google Scholar 

  • Stoyanov, S., & Rachev, S. (2008b). Asymptotic distribution of the sample average value-at-risk in the case of heavy-tailed returns. Journal of Applied Functional Analysis, 3, 443–461.

    Google Scholar 

  • Stoyanov, S., Samorodnitsky, G., Rachev, S., & Ortobelli, S. (2006). Computing the portfolio conditional value-at-risk in the α-stable case. Probability and Mathematical Statistics, 26, 1–22.

    Google Scholar 

  • Sun, W., Rachev, S., Stoyanov, S., & Fabozzi, F. (2008). Multivariate skewed student’s t copula in the analysis of nonlinear and asymmetric dependence in the German equity market. Studies in Nonlinear Dynamics and Econometrics, 12(2), 3.

    Google Scholar 

  • Zhang, Y., & Rachev, S. (2006). Risk attribution and portfolio performance measurement. Journal of Applied Functional Analysis, 4(1), 373–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Fabozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoyanov, S.V., Racheva-Iotova, B., Rachev, S.T. et al. Stochastic models for risk estimation in volatile markets: a survey. Ann Oper Res 176, 293–309 (2010). https://doi.org/10.1007/s10479-008-0468-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0468-1

Keywords

Navigation