Skip to main content

Going Weighted: Parameterized Algorithms for Cluster Editing

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5165))

Abstract

The goal of the Cluster Editing problem is to make the fewest changes to the edge set of an input graph such that the resulting graph is a disjoint union of cliques. This problem is NP-complete but recently, several parameterized algorithms have been proposed. In this paper we present a surprisingly simple branching strategy for Cluster Editing. We generalize the problem assuming that edge insertion and deletion costs are positive integers. We show that the resulting search tree has size O(1.82k) for edit cost k, resulting in the currently fastest parameterized algorithm for this problem. We have implemented and evaluated our approach, and find that it outperforms other parametrized algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach for weighted cluster editing. In: Proc. of Asia-Pacific Bioinformatics Conference (APBC 2008). Series on Advances in Bioinformatics and Computational Biology, vol. 5, pp. 211–220. Imperial College Press (2008)

    Google Scholar 

  2. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 289–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open problems in parameterized and exact computation — IWPEC 2006. Technical Report UU-CS-2006-052, Department of Information and Computing Sciences, Utrecht University (2006)

    Google Scholar 

  4. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4), 373–392 (2005)

    Article  MATH  Google Scholar 

  7. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45, 52–96 (1989)

    Article  Google Scholar 

  8. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)

    Google Scholar 

  10. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  12. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inform. Process. Lett. 73, 125–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799 (2003)

    Article  Google Scholar 

  15. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. of Workshop on Approximation and Online Algorithms (WAOA 2007). LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Wittkop, T., Baumbach, J., Lobo, F., Rahmann, S.: Large scale clustering of protein sequences with FORCE – a layout based heuristic for weighted cluster editing. BMC Bioinformatics 8(1), 396 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Boting Yang Ding-Zhu Du Cao An Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A. (2008). Going Weighted: Parameterized Algorithms for Cluster Editing. In: Yang, B., Du, DZ., Wang, C.A. (eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture Notes in Computer Science, vol 5165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85097-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85097-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85096-0

  • Online ISBN: 978-3-540-85097-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics