Abstract
The goal of the Cluster Editing problem is to make the fewest changes to the edge set of an input graph such that the resulting graph is a disjoint union of cliques. This problem is NP-complete but recently, several parameterized algorithms have been proposed. In this paper we present a surprisingly simple branching strategy for Cluster Editing. We generalize the problem assuming that edge insertion and deletion costs are positive integers. We show that the resulting search tree has size O(1.82k) for edit cost k, resulting in the currently fastest parameterized algorithm for this problem. We have implemented and evaluated our approach, and find that it outperforms other parametrized algorithms for the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach for weighted cluster editing. In: Proc. of Asia-Pacific Bioinformatics Conference (APBC 2008). Series on Advances in Bioinformatics and Computational Biology, vol. 5, pp. 211–220. Imperial College Press (2008)
Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 289–302. Springer, Heidelberg (2008)
Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open problems in parameterized and exact computation — IWPEC 2006. Technical Report UU-CS-2006-052, Department of Information and Computing Sciences, Utrecht University (2006)
Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4), 373–392 (2005)
Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45, 52–96 (1989)
Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)
Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)
Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inform. Process. Lett. 73, 125–129 (2000)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)
Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799 (2003)
van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. of Workshop on Approximation and Online Algorithms (WAOA 2007). LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)
Wittkop, T., Baumbach, J., Lobo, F., Rahmann, S.: Large scale clustering of protein sequences with FORCE – a layout based heuristic for weighted cluster editing. BMC Bioinformatics 8(1), 396 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A. (2008). Going Weighted: Parameterized Algorithms for Cluster Editing. In: Yang, B., Du, DZ., Wang, C.A. (eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture Notes in Computer Science, vol 5165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85097-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-85097-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85096-0
Online ISBN: 978-3-540-85097-7
eBook Packages: Computer ScienceComputer Science (R0)