Skip to main content

Discovering Most Classificatory Patterns for Very Expressive Pattern Classes

  • Conference paper
Discovery Science (DS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2843))

Included in the following conference series:

Abstract

The classificatory power of a pattern is measured by how well it separates two given sets of strings. This paper gives practical algorithms to find the fixed/variable-length-don’t-care pattern (FVLDC pattern) and approximate FVLDC pattern which are most classificatory for two given string sets. We also present algorithms to discover the best window-accumulated FVLDC pattern and window-accumulated approximate FVLDC pattern. All of our new algorithms run in practical amount of time by means of suitable pruning heuristics and fast pattern matching techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Navarro, G.: Faster approximate string matching. Algorithmica 23(2), 127–158 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  3. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algorithm to find the best subsequence patterns. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 141–154. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 435–440. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering best variable-length-don’t-care patterns. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 86–97. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bulletin of Mathematical Biology 51(1), 5–37 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Navarro, G., Raffinot, M.: Flexible pattern matching in strings: Practical on-line search algorithms for texts and biological sequences. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., Arikawa, S.: Knowledge acquisition from amino acid sequences by machine learning system BONSAI. Trans. of Information Processing Society of Japan 35(10), 2009–2018 (1994)

    Google Scholar 

  9. Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most classificatory patterns for very expressive pattern classes. Technical Report DOI-TR-CS-219, Department of Informatics, Kyushu University (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S. (2003). Discovering Most Classificatory Patterns for Very Expressive Pattern Classes. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds) Discovery Science. DS 2003. Lecture Notes in Computer Science(), vol 2843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39644-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39644-4_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20293-6

  • Online ISBN: 978-3-540-39644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics