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Abstract

This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm
is based on data sets that combine brightness temperatures from the 3.7 um and 10.8 um channels of the meteorological
imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from
the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed thresh-
old values including the brightness temperature difference between the near infrared and infrared. The threshold values
were previously determined from climatological analysis or model simulation. Although this method using predetermined
thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because
they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach,
which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised
learning method employed in this paper is the expectation—maximization (EM) algorithm that is widely used in incomplete
data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the
application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The
algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile
products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical
success index (CSI) of 0.477, respectively.
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1 Introduction

Fog consists of suspended droplets or ice crystals that reduce
visibility to less than 1 km parallel to the surface near the
ground (Gultepe et al. 2007). The formation of fog contributes
to numerous traffic accidents and delays caused by low visi-
bility (Ahn et al. 2003). Furthermore, the loss of life and dam-
age to property caused by fog are comparable to those caused
by tornados and hurricanes (Whiffen 2001; Gultepe et al.
2007, 2009), highlighting the significance of fog monitoring.
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Fog develops over both land and sea. In Korea, sea fog is a
crucial issue because the Korean peninsula is surrounded by
sea on three sides. Although numerous ground observations
have been conducted to reduce the losses due to sea fog, it is
difficult to understand the overall distribution of sea fog be-
cause observation sites are limited to coastlines and islands
(Cermak and Bendix 2007, 2008). The use of satellite
measurements helps to overcome the temporal and spatial
limitations of ground measurements (Ahn et al. 2003).
Geostationary satellites in particular have great potential for
monitoring the development of weather phenomena as they
continually observe the same area with spatial resolution of a
few kilometers, with coverage of one quarter of the Earth’s
surface area. Due to the highly reflective and homogenous
characteristics of the surface of fog, a visible (VIS) channel
with high resolution is very effective in distinguishing fog
from others. However, during nighttime, only infrared chan-
nels are available. This has led to the primary use of the
brightness temperature difference (BTD) between the
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shortwave infrared (SWIR) and infrared (IR) channels to iden-
tify fog (Hunt 1973; Eyre et al. 1984). Because this method is
simple and highly effective for fog detection, it has been wide-
ly applied to polar and geostationary satellites (d’Entremont
1986; d’Entremont and Thomason 1987; Saunders and
Kriebel 1988; Bendix and Bachmann 1991; Ellrod 1995;
Lee et al. 1997; Park et al. 1997; Bendix et al. 2003;
Cermak et al. 2004; Gao et al. 2009; Lee et al. 2011). This
method, however, cannot differentiate between fog and stratus
because they have similar particle size and altitude.

To separate fog from stratus effectively, Ellrod and Gultepe
(2007) proposed an additional threshold combining BTD ob-
served from satellite instrument, with shelter temperatures
from surface observing sites. The temperature difference be-
tween the infrared cloud surface and the ground is relatively
small due to the fact that fog occurs right above the surface of
the sea and land. With this approach, Park and Kim (2012)
separated sea fog from other clouds by using the difference
between infrared cloud top temperature and sea surface tem-
perature (SST), obtained from the Multi-functional Transport
Satellite-1 Replacement (MTSAT-1R) and the Advanced
Microwave Sounding Radiometer for EOS (AMSR-E), re-
spectively. Similarly, Zhang and Yi (2013) suggested a
monthly-dependent dynamic threshold algorithm combining
real time brightness temperature (BT) from the Moderate
Resolution Imaging Spectroradiometer (MODIS) IR channel
(11 um) with climatological monthly SSTs. Heo et al. (2008)
presented a combined method, which includes the BTD, wind
speed from the Quick Scatterometer (QuikSCAT), and
Laplacian computation. Calvert and Pavolonis (2010) utilized
the 3.9 um pseudo-emissivity, in place of the 3.9—-11 um
BTD, which is less sensitive to the scene temperature.
Despite these efforts, the accuracy of nighttime fog detection
remains low because considerable areas of clear sky and other
types of cloud are classified as fog.

Most existing fog detection algorithms are based on super-
vised learning techniques, which apply predetermined fixed
threshold values. It is difficult to adapt these thresholds to take
account of continuously changing atmospheric composition,
particularly water vapor or aerosol, and these lead to uncer-
tainties in fog detection. To overcome this, we have suggested
anew approach that uses threshold values, which are not fixed
but variable according to the atmospheric condition of target
area, determined from unsupervised learning technique. The
Expectation Maximization (EM) method, which is one of the
most common method for data mining from incomplete data
(Dempster et al. 1977; Zhang et al. 2003; McLachlan and Peel
2000), has been adopted to perform the unsupervised learning.
The detailed method will be discussed in Section 4.

There have been some attempts to apply unsupervised
learning methods to satellite remote sensing data
(Pankiewicz 1995; Papin et al. 2002; Li et al. 2012).
However, the limited number of satellite channels and the

@ Springer =) Korean Meteorological Society

complex structure of clouds made it difficult to obtain signif-
icant performance. Our research, which focuses on the sepa-
ration between fog and other clouds, uses a different approach
to obtain better results.

To apply the unsupervised technique, two independent com-
bined data sets (the spaces used for pattern analysis) were con-
structed by combining the BT from the Meteorological Imager
(MI) onboard the Communication, Ocean and Meteorological
Satellite (COMS), with SST from Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA). The unsupervised
analysis using the EM algorithm is conducted on each com-
bined data set separately. The retrieved fog pixels were evalu-
ated using data from the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite. In this
study only nighttime sea fog is considered, for which ground
observations and the VIS channel cannot be used.

This paper is organized as follows. Section 2 describes the
data sets used. Section 3 examines the characteristics of the
combined data sets that are employed for the unsupervised
learning. Section 4 explains the method and procedure of
our algorithm, and section 5 describes the case studies.
Section 6 provides the validation results using CALIPSO
measurements. Finally, a discussion and conclusions can be
found in section 7.

2 Data

COMS is a geostationary satellite that constantly monitors the
same area around the Korean peninsula, producing images at
15 min intervals. It carries a MI with four IR channels (3.7,
6.7, 10.8, 12.0 um) along with the VIS channel (0.67 pum).
The spatial resolution is 4 km for the IR channels and 1 km for
the VIS channel. In this study, BTs from the SWIR (3.7 pum)
and IR (10.8 wm) channels were mainly used for the detection
of fog area.

OSTIA is a global high-resolution (~5 km) reanalysis SST
data set from the UK Met Office that assimilates various
ground observations and satellite data (Stark et al. 2007). It
is provided daily and has a root mean square error of 0.39 °C
(Stark et al. 2007; Xie et al. 2008; Cha et al. 2011).

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) onboard CALIPSO was used to validate and iden-
tify fog pixels. CALIPSO is a polar orbiting satellite with a
revisit time of 16 days. CALIOP is an active lidar sensor
designed to acquire vertical profiles of elastic backscatter at
two wavelengths (1064 nm and 532 nm) from a near-nadir
viewing geometry, and provides vertical profiles of aerosols
and clouds. In this study, we mainly used the CALIOP Level 2
vertical feature mask (VFM) product (version 3) that provides
vertical information regarding cloud phase or feature type.
Additionally, Level 1 attenuated backscatter products were
used to identify the feature of each pixel (such as fog, clear
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sky, and clouds). Kim et al. (2008) showed that the top and
base heights of cloud layers estimated from the spaceborne
CALIOP and ground based lidar are generally in agreement
within 0.10 km.

OSTIA SST and CALIOP profile data were collocated to
the nearest MI-COMS pixel. For validation and analysis, the
collocated pixels were classified into five categories by means
of the CALIOP Level 2 VFM product and Level 1 attenuated
backscatter product: “clear”, “fog”, “single-layer cloud”,
“multi-layer cloud”, and “totally attenuated”. Totally attenuat-
ed refers to a set of pixels that have a profile that is totally
attenuated by thick clouds above the sea surface. The classi-
fication method for fog is that used by Wu et al. (2015). It
examines the CALIOP VFM products, and classifies any
cloud layer which has a base attached to the sea surface
(allowing 2 bins of the CALIOP vertical resolution above
the sea surface, 30 m per bin for low altitudes between —0.5
and 8.2 km) as sea fog. Additionally, pixels with CALIOP
VFM surface/subsurface higher than zero (allowing 2 bins
above the sea surface) and attenuated backscatter greater than
a threshold (0.03 km ' s# ') are also classified as sea fog.
Similarly, other categories are defined by examining cloud
profiles obtained from the CALIOP Level 2 VFM product.

3 Combined Data Sets for Fog Detection

In satellite images, cloudy and clear regions are characterized
by various features (the size, shape and intensity of the re-
gions). In a single channel image, however, fog is difficult to
distinguish from other types. For this reason, combined data
sets that effectively represent the fog are constructed by com-
bining different types of images. The combined data sets in-
clude the brightness temperature difference between SWIR
and IR channels (hereafter BTD only refers to the brightness
temperature between SWIR and IR channels), and the surface
temperature difference between the cloud top and the sea sur-
face located underneath the cloud (STD).

3.1 Brightness Temperature Difference Between SWIR
and IR Channels

The BTD commonly used for fog detection is based on the
emissivity difference of two IR channels with respect to water
droplets. The emissivity of water droplets in the SWIR chan-
nel ranges from 0.8 to 0.9, while it is close to 1.0 in the IR
channel (Hunt 1973). This results in negative BTD values for
fog that mainly consists of water droplets, while BTD values
are nearly zero in cloud-free areas. This can be utilized effec-
tively in extracting fog from cloud-free and higher cloud
areas. However, BTD values are not always consistent be-
cause they depend not only on cloud properties, but also on
other factors such as atmospheric composition, surface

emissivity, solar zenith angle (only in daytime) and the spatial
resolution of the satellite sensor (Ellrod 1995; Bendix et al.
2003, 2004; Cermak and Bendix 2007; Schreiner et al. 2007).
Water vapor makes it particularly difficult to identify fog as it
contaminates the observed signal; while water vapor makes
the BTD biased in the positive direction depending on its
amount (Lee et al. 1997), the distribution of water vapor can
change greatly with time and space and it is also difficult to
measure from limited satellite channels. This can greatly affect
fog detection, owing to the quantitatively minor difference of
BTD between fog and clear sky features. Furthermore, be-
cause stratus have nearly the same BTD as fog, BTD cannot
adequately discriminate fog from stratus.

3.2 Surface Temperature Difference Between Cloud
Top and Sea Surface Located underneath the Cloud

Sea fog occurs more widely and persists for longer than land fog
due to several factors such as its formation process, the presence
of sea-salt particles and water vapor. Since the sea has homoge-
neous surface and small diurnal temperature variation
(Gentemann et al. 2003; Kawai and Wada 2007), daily OSTIA
ocean temperature can be used to infer sea surface temperature
under cloud. The STD is derived by subtracting BT10.8 from
SST, and mainly depends on cloud altitude. Although both STD
and cloud top height have uncertainties in temperature profile,
STD is obtained at all pixels of sea area while cloud top height is
retrieved at the pixel where cloud exists.

For the calculation of STD, reanalysis SST data were
employed as an alternative to the BT measurement of sea
surface located underneath the cloud. When deriving STD,
reanalysis SST should be adjusted towards the BT of the sea
surface, since reanalysis SST and satellite observed BT are
derived in different ways. The adjustment of SST is carried
out via the use of clear pixels that refer to the same area of sea
surface in both data sets. Clear pixels are obtained from the
distribution of BTD and the distribution of STD (using SST
before adjustment). In general, clear pixels, unlike clouds with
varying altitude, make up the largest proportion of all the
pixels due to their homogeneous surface. As a result, the clear
pixels are concentrated around the peak of BTD and STD
distributions of climatological data. Therefore we selected
pixels around the peak of distribution corresponding to 10%
(the value was selected for filtering out non-clear pixels strict-
ly) of the total area, as clear pixels (Fig. 1). In addition, a
minimum temperature of 0 °C, an acceptable value for the
sea surface around Korean peninsula, was applied to both
BT and SST. The pixels satisfying these two conditions were
defined as clear pixels for deriving adjusted SST. Verification
of the clear pixels obtained in this way was performed using
CALIOP profile data, which were found to be more effective
in extracting clear pixels than the Level 2 processed MI-
COMS clear masking product (showing that ~80% of the clear
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Fig. 1 Distribution of (a) SST-BT10.8 and (b) BT3.7-BT10.8 used to select confident clear pixels in a domain around the Korean peninsula during May

to July 2011-2014. The shaded areas correspond to 10% of the total area

pixels obtained using our method corresponds to CALIOP
clear pixels while ~60% for MI-COMS Level 2 product).
The adjusted SST is derived from linear regression between
SST and BT10.8 for the clear pixels, and the STD is obtained
by subtracting BT10.8 from the adjusted SST.

Figure 2 displays the feasibility of using STD for fog detec-
tion. The upper panels represent the altitude distribution of
pixels selected using the BTD threshold value for fog detection,
while the bottom panels use both BTD and STD threshold
values. The threshold values of BTD and STD used were —
1.1 and 6.5 K, respectively, derived from climatological data
analysis. In the upper panels (BTD only) 47.7% of the pixels
selected as fog on the basis of the BTD threshold value are
clouds located above 2 km. When the STD threshold is includ-
ed, the proportion of higher clouds was reduced to 28.5%. This
is because the BTD threshold value only discriminates on the
basis of cloud properties such as particle size while the STD
threshold provides another criterion depending on the altitude
of the cloud. However, uncertainties resulting from the varia-
tion of temperature profiles and the merging process of two
different types of data should also be considered when using
STD, as they might result in some discrepancy in STD between
clouds at the same altitude but located in different areas. The
unsupervised technique described in section 4 suggests a meth-
od for minimizing the uncertainties of BTD and STD.

3.3 Climatological Analysis of BTD and STD
Clear sky, low cloud (including fog and stratus) and middle/

high cloud have distinguishing features in BTD and STD dis-
tribution. Figure 3 demonstrates the characteristics of each
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scene classified by altitude obtained from MI-COMS cloud
top height product. In the BTD distribution (Fig. 3a), low
cloud modes are located in the negative area where BTD is
less than 0, which corresponds to the aforementioned charac-
teristic of low cloud (including fog and stratus). Clear mode is
concentrated around 0 with high density. Ideally, clear scene
should be near 0, but it shows slightly positively biased be-
cause of water vapor absorption by 10.8 um (Lee et al. 1997).
On the other hand, middle and high clouds are distributed over
a broad range of BTD. It is clearly seen that middle and high
cloud scene cannot be separated from other features in BTD
distribution due to their overlapped distribution range. In con-
trast, the STD distributions of each scene show a different
pattern from BTD distribution (Fig. 3b). The middle and high
cloud located at a higher value of STD while clear mode stays
around 0 as in the BTD distribution. Furthermore, low cloud
below 0.5 km and that above 0.5 km are divided into a mode
with lower STD around 0 and a mode with higher STD. In
other words, low cloud below 0.5 km has almost same loca-
tion with clear mode while low cloud above 0.5 km has farther
position from clear scene. As a result, low cloud with compar-
atively higher altitude can be identified in STD distribution. In
addition, higher clouds tend to have larger standard deviations
due to widely ranging altitudes. These characteristics are uti-
lized to identify modes of each scene.

4 Method

As mentioned above, traditional methods for fog detection
using predetermined thresholds are inadequate when
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Fig. 4 Overview of the sea fog detection algorithm based on the EM-GMM technique

4.1 EM Algorithm for Gaussian Mixture Model

The EM algorithm searches for the optimal Gaussian mixture
model (GMM) through an iteration process (Zhang et al.
2003; McLachlan and Peel 2000). In this study, it was used
to find the optimized thresholds as a function of the target
domain. This algorithm structuralizes data obtained from the
target domain, and represents the data with a GMM. The
GMM enables a more practical description of data by reducing
the limitation of a unimodal Gaussian distribution. It charac-
terizes data as a combination of several Gaussian models. A
Gaussian model centered at mean p with covariance X' and
dimension D can be written as:
NGl ®) =t wep{ Lo e ). (1)
’ 2m)" 2 det(x)'/? 2

Each Gaussian component has its own weighting (w,,) sat-

isfying Eq. (2):

M
mzl wn, = 1. (2)
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The GMM is composed of the weighted sum of normal
distributions, which allows the GMM to be treated as a prob-
ability density function identical to a unimodal normal distri-
bution. When the parameters of each component are written as
0, = {ltm> L}, the GMM with M components can be
expressed as:

p(x‘@) = mg N (x|0m) Wi, (3)

where the parameter, © = {0, 0,, ..., Opp, Wi, Wa, ..., Wiy}

The EM algorithm is a technique that finds the maximum
likelihood estimate, and consists of the E-Step (Expectation)
and M-Step (Maximization). In E-step, the posterior probabil-
ities of each mode with respect to X'= {x;, x5, ..., x;} are de-
rived from the given Gaussian parameter (©) as described in

Eq. (4):
N(xk|9m<t>)wm(t)
ZﬁlN(ka;(t))w[(f) ’

P(m|xk; @<t>> (4)
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where © denotes the estimated Gaussian parameter ob-
tained after iteration ¢. The largest Gaussian component at
point x can be identified on the basis of the posterior prob-
abilities of each mode. At the end of this step, the expected
complete data log-likelihood function Q = (O, ©) to be
maximized is calculated as:

K M
0(6,0) = X 3 {logwup(xl0)}P(mpw:07).  (5)
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Fig.6 BTD distribution (gray) and the Gaussian mixture distribution
(blue) in a domain around the Korean peninsula on 15 June 2012.
Low cloud, clear and other cloud (noise) modes are shown by
violet, green and black lines, respectively. The vertical dotted lines
represent the low cloud threshold derived from the EM algorithm
(EM-LCL-threshold, violet), and the threshold between clear and
other clouds (Clear-CLD-threshold, green)
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Fig. 5 BTD distribution (black) and the Gaussian mixture distribution (blue) obtained from the EM algorithm for increasing numbers of Gaussian
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Fig. 7 STD distribution (grey) and the Gaussian mixture distribution
(blue) for the case in Fig. 6. Fog and other cloud (noise) modes are
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represents the threshold between fog and stratus (FG-CLD-threshold)
derived from the analysis of the STD distribution
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The obtained estimates serve as input values for E-Step, and are
used to calculate the new expected log-likelihood function. This
process is repeated until the log-likelihood function is converged to
get maximized. The EM algorithm is considerably sensitive to the
initial values of the parameters, since it tends to converge to the
local maximum. Therefore, in order to obtain reasonable initial
values, k-means clustering was employed. This speeds up the
convergence of the EM algorithm and avoids convergence at local
maxima (Hartigan and Wong 1979; Zhang et al. 2003).
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determined from CALIOP vertical profile analysis. ¢ CALIOP feature
type profile of the track depicted in (a) and (b) over the sea only

4.2 Preprocessing

The EM algorithm is most effective when the target feature
is dominant. For this reason, pixels corresponding to as-
sured high clouds where no fog is possible are ruled out
prior to implementing the EM algorithm. The elimination
of high clouds is carried out by applying threshold values
of BTD and STD. Any pixels outside the threshold values
are regarded as assured high cloud pixels based on the fact
that high cloud shows large positive values in both BTD
and STD. The positive values of high clouds are caused by
the radiative properties of cirrus clouds for the BTD (Turk
and Miller 2005), and the altitudes of high clouds for the
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Fig. 9 Procedure of BTD and STD analysis for the fog algorithm with
EM-GMM applied to the sea fog event on 29 June 2011 shown in Fig. 8.
(a) and (b) are the first step analyzing BTD. (¢) and (d) are the second step
analyzing STD. (a) and (c) are the distribution of BTD and STD that are

STD. The threshold values should be set to contain suffi-
cient number of clear and low cloudy pixels to avoid the
over-partition of the fog mode. In this study, we used 6.0
and 15.0 K as the threhold of BTD and STD, respectively,
to satisfy this condition as much as possible.

To implement the EM algorithm, the number of com-
ponents should first be selected. As shown in Fig. 5,
having more components in the Gaussian mixture distri-
bution leads to a better fit to the original distribution of
the original data. However, more components make it
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analyzed as in Figs. 6 and 7, respectively. The pixels identified as low
cloud in (a) and the pixels identified as fog in (¢) are shown in violet in (b)
and (d), respectively

difficult to find the modes of the feature as it generates
more meaningless components. Therefore, the appropri-
ate selection of the number of modes is required. In our
algorithm, the number is determined on the basis of the
fitting residual between the Gaussian mixture distribu-
tion and the original distribution. To obtain the optimal
number of modes, the fitting residual is continuously
calculated as the number of modes increases, and the
optimal number corresponds to the fitting residual fall-
ing below a predetermined value of 0.02. Ideally, it has
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Fig. 10 Final fog area detected from an algorithm using (a) the EM-GMM technique and (b) climatological thresholds of BTD and STD on 29 June 2011

best performance when the residual value is the
smallest. However, in reality, it does not give good re-
sults because of overfitting. In this process, the best per-
formance was found when the residual value was 0.02 and
the number of modes was between 3 and 5. When the
number of modes is overfitted, multiple fog modes can
be found by the following conditions in Step 1 and 2.
On the other hand, when the number of components is
underfitted, it becomes highly difficult to separate the
merged features. In order to avoid underestimation, and
to maximize calculation efficiency, the numbers are limit-
ed between 3 and 5.

4.3 Step 1: Low Cloud Selection from BTD Distribution

The algorithm consists of two steps. The first step is to
separate low cloudy (including fog and stratus) from
clear pixels using the BTD distribution, and the second
is to filter out stratus from fog using the STD distribu-
tion. As demonstrated in section 3, a threshold between
low cloud and clear sky modes in the Gaussian mixture
distribution can be extracted easily in the BTD distribu-
tion, while fog and stratus are difficult to separate owing
to their similarity in particle size. Conversely, in the STD
distribution, it is relatively easy to discriminate fog from
stratus based on the altitude difference, while clear and
foggy pixels located near or adjacent to ocean surface are
hard to separate.

The first step focuses on the discrimination of low
cloudy from clear pixels. Figure 6 indicates the process
of analyzing the BTD distribution. The blue line
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represents the Gaussian mixture distribution obtained
from the EM algorithm while the violet, green and
black lines indicate the modes of fog, clear sky, and
noise (or other clouds), respectively. Since all Gaussian
components are grouped on the basis of unsupervised
learning technique without any prior information, a pro-
cedure that identifies interesting modes, post processing,
is required. The following processes of post processing
are constructed on the basis of the characteristics of
each features including fog, clear sky and other clouds
with regard to BTD and STD as seen in Fig. 3. In step
1, the threshold value between low cloud and clear sky
modes (EM-LCL-threshold) is determined along with
the assured clear sample that will be used in step 2.
These processes can be summarized as follows.

(1) Firstly, the EM-LCL-threshold, the local minimum
with the largest value of BTD of the Gaussian
mixture distribution smaller than zero should be
found. Modes located on the negative side of the
EM-LCL-threshold are then determined as low
cloud mode. Additionally, a local minimum be-
tween BTD values of 0 and 1 is used as the EM-
LCL-threshold when the BTD value of the center
of the Gaussian mode nearest to the local minimum
is smaller than the Clim-LCL-threshold (a threshold
between low cloud and clear sky modes derived
from the climatological BTD distribution). If there
is no local minimum that satisfies these conditions,
the Clim-LCL-threshold is used instead of EM-
LCL-threshold.
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Fig. 11 As Fig. 8 but for the sea fog event on 24 June 2012

(2) Clear mode is defined as the nearest Gaussian com-
ponent to EM-LCL-threshold on the positive side.
In order to select assured clear samples, the maxi-
mum boundary of clear samples (referred to as the
Clear-CLD-threshold) is determined as the sum of
the mean and standard deviation of the clear mode.
In the analysis of the STD distribution, because it
is significant to include assured clear samples along
with the smallest amount of high clouds for effec-
tive clear mode selection, pixels located in a large
STD are excluded from clear sample. Accordingly,
pixels between EM-LCL-threshold and Clear-CLD-
threshold satisfying STD below 2.5 are chosen as
assured clear samples.

Pixels with BTD smaller than EM-LCL-threshold are
classified as first candidates for fog.

3)

The thresholds determined in this step are shown as dotted
lines in Fig. 6. In the next step, stratus pixels are excluded by
the analysis of the STD distribution.

4.4 Step 2: Fog Selection from STD Distribution

The analysis of the STD distribution is performed only with
pixels belonging to the Clear-CLD-threshold in the previous
step. They mainly consist of fog, clear sky and stratus samples
because most of middle and high clouds have been removed in
step 1. In this step, the stratus which could not be separated in
step 1 and the remained middle/high clouds are filtered out by
analyzing STD distribution. The assured clear samples are
used to estimate clear modes, as the STD can vary greatly
depending on time and space owing to the uncertainties
mentioned in section 3.2. In general, the clear mode has a
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Fig. 12 As Fig. 9 but for the sea fog event on 24 June 2012

well-defined Gaussian distribution with small standard de-
viation around 0 in a given domain and therefore it can be
used for a more reasonable identification of fog and stratus.
Fog mode is very close to the clear mode, and sometimes
form a single mode combined with clear pixels in STD
distribution. Therefore fog modes are not distinguished
from clear sky modes in STD distribution. Figure 7 shows
the process of analyzing the STD distribution. The first
mode with the smallest STD and the second mode adjacent
to the first one can be seen as clear sky and fog modes,
respectively. They can also be interpreted as an over-
partitioned clear mode. In step 2, however, it is unneces-
sary to distinguish between fog and clear sky modes as
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mentioned above. This step only focuses on the elimina-
tion of clouds except fog, which is conducted as follows.

(1) Firstly, clear modes are determined as the mode con-
taining the greatest number of the assured clear pixels,
or the mode exceeding the assured clear sample ratio
of 1/ (the number of mode + 1), or the mode with a
negative STD center.

(2) Fog modes are identified as a Gaussian component with
center located within 2.5 °C of the largest clear sky or fog
mode on the positive side. If the clear sky or fog modes
have a peak lower than 0.1, that component is regarded
as cloud or noise mode. Lastly the mode with the largest
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Fig. 13 Final fog area detected from an algorithm using (a) the EM-GMM technique and (b) climatological thresholds of BTD and STD on 24 June 2012

G)

value of STD of the clear sky or fog modes is selected as
the fog mode from the analysis.

The Gaussian component with a center STD value great-
er than the fog mode is classified as a stratus mode. The
point of intersection between the probabilities of the fog
and stratus modes is referred to as the FG-CLD-thresh-
old. If the sample size after high cloud elimination is
lower than 5% of the original data, the climatological
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Fig. 14 Domains used for validation (D1: [30-50 °N, 115-142 °E], D2:
[35-44 N, 128-138 E], D3: [35-38 N, 128-134 E], D4: [31-35 N, 123~
131 E], D5: [34-38 N, 122-127 E])

STD threshold value of 6.5 is employed as the FG-
CLD-threshold.

(4) All pixels that have a smaller STD than the FG-CLD-
threshold are classified as second candidates for sea fog.
Finally, the pixels that belong to both the first and second
candidates for fog are determined as fog.

5 Case Studies
5.1 Case 1: 29 June 2011

A widespread area of negative BTD is located over the sea
west of the Korean peninsula (Fig. 8a). Around the region
under the CALIPSO track, Fig. 8b shows that the negative
BTD area was divided into two zones by stratus with higher
STD. The CALIOP profile verified that the sea fog zones were
separated by an area of stratus (Fig. 8c). In the BTD analysis,
the upper fog zone around latitude 38°N was included in the
first candidates for sea fog, whereas the lower fog zone around
latitude 35°N was excluded due to its higher BTD (Fig. 9b). In
addition, the stratus crossing the fog zones was not distin-
guished from fog in the BTD (Fig. 9a, b). The stratus was
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Table 1  Contingency table for fog pixel verification using CALIOP data
CALIOP Yes CALIOP No

Algorithm Yes Hits (H) False alarms (F)

Algorithm No Misses (M) Correct negatives (C)
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Table 2 Verification scores of fog detection algorithms by domain Table 3 CALIOP classification of pixels detected as fog by the three
algorithms
POD POFD FAR sl
Fog Clear Cloud Total
Domain 1 (D1, Regional)
BTD_STD 0.701 0.073 0.606 0337  Domain I (DI, Regional)
COMS_THS 0.307 0.027 0.569 0218 BTD_STD 2711 311 3967 7055
EM_FOG 0.592 0.043 0.517 0362 COMS_THS 1215 37 1565 2817
Domain 2 (D2, Regional) EM FOG 2347 285 2232 4864
BTD STD 0.838 0.091 0.557 0408  Domain 2 (D2, Regional)
COMS_THS 0.387 0.036 0.515 0.274 BTD_STD 1256 120 1458 2834
EM FOG 0.738 0.055 0.465 0.450 COMS_THS 596 10 606 1195
Domain 3 (D3, Local) EM _FOG 1105 93 866 2064
BTD STD 0.801 0.054 0.603 0361  Domain 3 (D3, Local)
COMS_THS 0.367 0.029 0.639 0.223 BTD_STD 133 15 187 335
EM _FOG 0.753 0.026 0.434 0.477 COMS_THS 61 2 106 169
Domain 4 (D4, Local) EM FOG 125 9 87 221
BTD STD 0.611 0.062 0.679 0266  Domain 4 (D4, Local)
COMS_THS 0.245 0.016 0.571 0.185 BTD_STD 217 37 423 677
EM_FOG 0.561 0.028 0.509 0.355 COMS_THS 87 4 112 203
Dormain 5 (DS, Local) EM_FOG 199 21 185 405
BTD_STD 0.794 0.112 0.650 0321  Domain 5 (DS, Local)
COMS_THS 0.392 0.057 0.659 0.223 BTD_STD 235 24 412 671
EM FOG 0.736 0.081 0.593 0.355 COMS_THS 116 7 217 340
EM _FOG 218 21 297 536
clearly distinguished in the STD analysis. Figure 9c shows 6 Validation

that the threshold between fog and stratus mode was properly
identified, which allowed for the elimination of stratus from
the final fog area (Fig. 9d). Finally, our method correctly de-
tected the upper fog zone but missed the lower fog zone.
Meanwhile, the climatological threshold values of STD and
BTD neither eliminated the stratus crossing the fog area nor
detected the lower fog stack (Fig. 10).

5.2 Case 2: 24 June 2012

Similar to the situation in Case 1, a widespread area of nega-
tive BTD occurred over the sea southeast of the Korean pen-
insula (Fig. 11a). However, Fig. 11c shows that fog existed
only around latitude 31°N in the area of negative BTD. In
Fig. 12, the BTD analysis showed two dominant modes for
fog and clear sky, and they were properly separated by a
threshold derived from the algorithm with EM-GMM tech-
nique. In addition, the STD analysis found dominant modes
of fog located at lower STD, which resulted in the effective
removal of stratus from the second candidates for sea fog. In
contrast, a method using climatological thresholds of BTD
and STD overestimated the fog area due to the relatively lower
STD of stratus caused by unusual atmospheric conditions or
inaccurate data at that time (Fig. 13).

@ Springer =) Korean Meteorological Society

The EM-GMM based fog detection algorithm is validated
against the CALIOP profile data during the period of May
to July of 2011-2014, when sea fog occurrence is most
frequent around the Korean peninsula (Cho et al. 2000).
The validation is performed on two regional and three
local domains. The two regional domains each cover the
seas surrounding the Korean peninsula, and a wide area of
the East Sea. The three local domains include parts of the
sea surrounding the Korean peninsula (Fig. 14). To quan-
titatively evaluate the fog detection algorithm, a 2 x 2
contingency table of hits (H), misses (M), false alarms
(F), and correct negatives (C) is constructed (Table 1).
On the basis of the table, verification statistics including
the probability of detection (POD), probability of false
detection (POFD), false alarm ratio (FAR) and critical

Fig. 15 STD distribution analysis (step 2) for 7 July 2012, over the area P>
of latitude 35-40°N and longitude 128—136°E. (a) Gaussian components
overlapped on the distribution of the original data. (b) Latitude—longitude
STD distribution showing the fog/clear mode in violet. The black line on
the map is a CALIPSO track, and the colored points on the track indicate
fog pixels obtained from CALIOP vertical profile analysis. (¢) and (d) is
the same with (a) and (b), respectively, but with slightly different
longitude of 129-136° E. (e) is CALIOP feature type profiles of the track
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Fig. 16 Fog probability derived from EM algorithm for the analysis of (a) BTD distribution and (b) STD distribution. (c¢) is an overall probability

combined (a) with (b)

success index (CSI) are calculated as follows (Bendix
et al. 2004; Cermak and Bendix 2007, 2011):

POD = H/(H + M), (9)
POFD = F/(F + C), (10)
FAR = F/(H + F), (11)
CSI = H/(H + F + M). (12)

All these indices range from 0 to 1. Larger values of POD
and CSI indicate better detection performance, whereas small-
er values are better in POFD and FAR.

For intuitive comparison, the same validation is con-
ducted for two kinds of traditional algorithm. One algo-
rithm, BTD STD, applies BTD and STD threshold values
derived from climatological analysis, after the same pre-
processing as in our algorithm. Another algorithm,
COMS_THS, uses a set of thresholds (IR1, IRI-IR2,
IR1-WV, SWIR-IR1) for MI-COMS (National Institute
of Meteorological Research 2009). Our algorithm is re-
ferred to below as EM_FOG for convenience. The valida-
tion results of the three algorithms for the five domains are
summarized in Table 2. Additionally, for a detailed analy-
sis, the fog pixels detected by each algorithm are examined
and categorized using CALIOP profile data (Table 3).

In all domains, COMS_THS shows mostly poor POD and
CSI as it underestimates fog. It seems that unnecessary or
inappropriate thresholds are applied too strictly. Meanwhile,
BTD_STD has higher levels of POD along with higher FARs
than others (except for Domain 5), because it involves not
only fog but also a significant numbers of clear sky and other
cloud pixels. Lastly, the EM_FOG algorithm has even lower
FAR than BTD_STD as it eliminates more non-fog pixels. On
the other hand, the EM_FOG algorithm sometimes filters out
unexpected fog pixels in company with the non-fog pixels,
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which results in lower POD than the BTD STD algorithm.
In domain 1 (D1), the largest domain, the EM_FOG algorithm
had significantly fewer hits, corresponding to only ~85% of
those obtained with the BTD_STD algorithm. Similarly, in
domain 2 (D2), EM_FOG algorithm had fewer hits coupled
with lower POD than the BTD_STD algorithm. However,
unlike in the regional domains, in the local domains 3, 4,
and 5 (D3, D4 and DS5), EM_FOG detected almost the
same number of fog pixels as the BTD STD algorithm.
Therefore, it has an almost identical level of POD as the
BTD_STD algorithm. In addition, CSI and FAR are large-
ly improved in EM_FOG algorithm as seen in the remark-
able decrease in the number of non-fog pixels. This is
apparent in domain 3, where FAR falls below 0.5 and
CSI almost reaches 0.45. In a local domain, the spatial
variation of atmospheric conditions is limited. On the con-
trary, a regional domain is likely to have spatially incon-
sistent atmospheric conditions, not reflected in analysis
data, which can lead to uncertainties in sea fog detection
using thresholds, particularly in such a large domain.

7 Discussion and Conclusions

As seen in the previous section, results from the EM_FOG
algorithm are promising, especially on local domains.
However, this method should be used with care for the
following reasons. Firstly, in the selection of the optimal
domain size, it is still difficult to present a clear criterion.
Figure 15 depicts the second step of the EM_FOG algo-
rithm on July 7 2012, but for slightly different domains. In
Fig. 15a and b, only the first mode with the lowest central
value of STD was selected as the fog/clear sky mode. On
the other hand, in Fig. 15¢ and d, both first and second
modes were selected as fog/clear sky modes owing to the
increased proportion of clear samples caused by the change
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of domain. This demonstrates that a small difference in
domain can lead to a substantial difference in the final
fog pixel selection. Secondly, cases with ambiguous cloud
features such as developing clouds can cause some confu-
sion for our algorithm. As seen in Fig. 15e, which depicts
CALIOP VFM profiles of the case shown in Fig. 15a and
b, the fog is a monolithic stack united with stratus. This
kind of fog is difficult to distinguish from stratus because
there is no distinct threshold between them. This makes an
accurate analysis of distribution difficult. For this reason,
the EM_FOG algorithm was not able to detect fog effec-
tively in both Fig. 15a, b and c, d compared with other
cases.

These problems occur because the properties of the
feature are not adequately reflected in the data. The
observed data only contain partial information regarding
the feature. The missing information leads to uncer-
tainties in the final results. Since there are no perfect
data, it is significant to extract available information as
much as possible from incomplete data. In addition,
along with the increasing amount of data accompanied
by the advance of technology, extraction of the desired
information from enormous data mountains has also
emerged as a crucial issue. Accordingly, a number of
techniques for extracting meaningful information from
the data have continuously been developed. This em-
phasizes the significance of selecting an appropriate
technique corresponding the purpose of research. In this
context, we have presented a successful application of
an unsupervised learning technique to nighttime sea fog
detection. Our algorithm can provide not only as the
presence of fog, but also the probability of foggy infor-
mation in a given pixel (Fig. 16). Above all, this study
is significantly different from the previous studies with
fixed threshold values from supervised learning by uti-
lizing varying threshold values through unsupervised
learning, which is appropriately applied to the changing
atmospheric condition. Furthermore the presented algo-
rithm has a potential for future application, and which is
not confined to fog detection. In particular, in satellite
remote sensing applications that employ various thresh-
old values, it is likely that there will be many opportu-
nities for the application of unsupervised techniques.
Accordingly, on the basis of our results, it is expected
to be continued further researches and challenges.
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