Abstract
We describe NTRU, a new public key cryptosystem. NTRU features reasonably short, easily created keys, high speed, and low memory requirements. NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory. The security of the NTRU cryptosystem comes from the interaction of the polynomial mixing system with the independence of reduction modulo two relatively prime integers p and q.
Preview
Unable to display preview. Download preview PDF.
References
M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption scheme which hides all partial information, Advances in Cryptology: Proceedings of CRYPTO 84, Lecture Notes in Computer Science, vol. 196, Springer-Verlag, 1985, pp. 289–299.
D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Preprint, April 5, 1997; presented at Eurocrypt 97.
W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. on Information Theory 22 (1976), 644–654.
O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction problems, MIT — Laboratory for Computer Science preprint, November 1996.
S. Goldwasser and A. Micali, Probabilistic encryption, J. Computer and Systems Science 28 (1984), 270–299.
J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem, Preprint; presented at the rump session of Crypto 96.
A.K. Lenstra, H.W. Lenstra, L. LovŚz, Factoring polynomials with polynomial coefficients, Math. Annalen 261 (1982), 515–534.
R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL Pasadena, DSN Progress Reports 42–44 (1978), 114–116.
R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM 21 (1978), 120–126.
C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Probability and Computing 3 (1994), 507–522.
C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset sum problems, Mathematical Programing 66 (1994), 181–199.
C.P. Schnorr, H.H. Hoerner, Attacking the Chor Rivest cryptosystem by improved lattice reduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-Verlag, 1995, pp. 1–12.
J.H. Silverman, A Meet-In-The-Middle Attack on an NTRU Private Key, preprint.
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoffstein, J., Pipher, J., Silverman, J.H. (1998). NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054868
Download citation
DOI: https://doi.org/10.1007/BFb0054868
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64657-0
Online ISBN: 978-3-540-69113-6
eBook Packages: Springer Book Archive