Abstract
Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5 and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities.
Similar content being viewed by others
Abbreviations
- CSF:
-
Cerebrospinal fluid
- CNS:
-
Central nervous system
- SAS:
-
Subarachnoid space
- PCMRI:
-
Phase-contrast magnetic resonance imaging
- CFD:
-
Computational fluid dynamics
- FM:
-
Foramen magnum
- TR:
-
Repetition time
- TE:
-
Echo time
- VENC:
-
Encoding velocity
- VNR:
-
Velocity to noise ratio
References
Alleyne, Jr, C. H., C. M. Cawley, D. L. Barrow, and G. D. Bonner. Microsurgical anatomy of the dorsal cervical nerve roots and the cervical dorsal root ganglion/ventral root complexes. Surg. Neurol. 50:213–218, 1998.
Bernstein, M. A., X. J. Zhou, J. A. Polzin, K. F. King, A. Ganin, N. J. Pelc, and G. H. Glover. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn. Reson. Med. 39:300–308, 1998.
Bloomfield, I. G., I. H. Johnston, and L. E. Bilston. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28:246–251, 1998.
Bradley, Jr, W. G., D. Scalzo, J. Queralt, W. N. Nitz, D. J. Atkinson, and P. Wong. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198:523–529, 1996.
Bunck, A. C., J. R. Kroeger, A. Juettner, A. Brentrup, B. Fiedler, G. R. Crelier, B. A. Martin, W. Heindel, D. Maintz, W. Schwindt, and T. Niederstadt. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur. Radiol. 22:1860–1870, 2012.
Bunck, A. C., J. R. Kroger, A. Juttner, A. Brentrup, B. Fiedler, F. Schaarschmidt, G. R. Crelier, W. Schwindt, W. Heindel, T. Niederstadt, and D. Maintz. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21:1788–1796, 2011.
Busch, J., D. Giese, L. Wissmann, and S. Kozerke. Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements. Magn. Reson. Med. 69:200–210, 2013.
Canstein, C., P. Cachot, A. Faust, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Kuffer, J. Hennig, and M. Markl. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn. Reson. Med. 59:535–546, 2008.
Clarke, E. C., D. F. Fletcher, M. A. Stoodley, and L. E. Bilston. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46:1801–1809, 2013.
Giese, D., M. Haeberlin, C. Barmet, K. P. Pruessmann, T. Schaeffter, and S. Kozerke. Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring. Magn. Reson. Med. 67:1294–1302, 2012.
Ha, H., G. B. Kim, J. Kweon, Y.-H. Kim, N. Kim, D. H. Yang, and S. J. Lee. Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement. Magn. Reson. Med., 2015. doi:10.1002/mrm.25715.
Hayashi, N., M. Matsumae, S. Yatsushiro, A. Hirayama, A. Abdullah, and K. Kuroda. Quantitative analysis of cerebrospinal fluid pressure gradients in healthy volunteers and patients with normal pressure hydrocephalus. Neurol. Med. Chir. (Tokyo) 55:657–662, 2015.
Heidari Pahlavian, S., A. C. Bunck, F. Loth, R. Shane Tubbs, T. Yiallourou, J. R. Kroeger, W. Heindel, and B. A. Martin. Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in silico simulations of cerebrospinal fluid dynamics. J Biomech Eng 137:051002, 2015.
Heidari Pahlavian, S., T. Yiallourou, R. S. Tubbs, A. C. Bunck, F. Loth, M. Goodin, M. Raisee, and B. A. Martin. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS ONE 9:e91888, 2014.
Helgeland, A., K. A. Mardal, V. Haughton, and B. A. Reif. Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a Chiari patient. J. Biomech. 47:1082–1090, 2014.
Hsu, Y., H. D. Hettiarachchi, D. C. Zhu, and A. A. Linninger. The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability (vol 115, pg 386, 2012). Anesth. Analg. 115:879–879, 2012.
Iliff, J. J., M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman, E. A. Nagelhus, and M. Nedergaard. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111, 2012.
Jacobs, P. F., D. T. Reid, and Computer and A. S. A. o. SME. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Dearborn: Society of Manufacturing Engineers, 1992.
Jones, C. F., J. H. Lee, B. K. Kwon, and P. A. Cripton. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: laboratory investigation. J. Neurosurg. Spine. 16:624–635, 2012.
Kress, B. T., J. J. Iliff, M. Xia, M. Wang, H. S. Wei, D. Zeppenfeld, L. Xie, H. Kang, Q. Xu, J. A. Liew, B. A. Plog, F. Ding, R. Deane, and M. Nedergaard. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:845–861, 2014.
Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.
Lagana, M. M., A. Chaudhary, D. Balagurunathan, D. Utriainen, P. Kokeny, W. Feng, P. Cecconi, D. Hubbard, and E. M. Haacke. Cerebrospinal fluid flow dynamics in multiple sclerosis patients through phase contrast magnetic resonance imaging. Curr. Neurovasc. Res. 11:349–358, 2014.
Markl, M., R. Bammer, M. Alley, C. Elkins, M. Draney, A. Barnett, M. Moseley, G. Glover, and N. Pelc. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn. Reson. Med. 50:791–801, 2003.
Martin, B. A., R. Labuda, T. J. Royston, J. N. Oshinski, B. Iskandar, and F. Loth. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. J. Biomech. Eng. Trans. Asme. (2010). doi:10.1115/1.4000089.
Martin, B. A., T. I. Yiallourou, S. H. Pahlavian, S. Thyagaraj, A. C. Bunck, F. Loth, D. B. Sheffer, J. R. Kroger, and N. Stergiopulos. Inter-operator reliability of magnetic resonance image-based computational fluid dynamics prediction of cerebrospinal fluid motion in the cervical spine. Ann. Biomed. Eng. 43:1–14, 2015.
McCauley, T. R., C. S. Pena, C. K. Holland, T. B. Price, and J. C. Gore. Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J. Magn. Reson. Imaging 5:663–668, 1995.
Nelissen, R. M. Fluid Mechanics of Intrathecal Drug Delivery, Doctoral Thesis. EPFL, Lausanne, Switzerland: Citeseer, 2008.
Ong, F., M. Uecker, U. Tariq, A. Hsiao, M. T. Alley, S. S. Vasanawala, and M. Lustig. Robust 4D flow denoising using divergence-free wavelet transform. Magn. Reson. Med. 73:828–842, 2015.
Papisov, M. I., V. V. Belov, and K. S. Gannon. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 10(5):1522–1532, 2013.
Silverberg, G., M. Mayo, T. Saul, J. Fellmann, and D. McGuire. Elevated cerebrospinal fluid pressure in patients with Alzheimer’s disease. Cerebrospinal. Fluid Res. 3:7, 2006.
Simpson, K., G. Baranidharan, and S. Gupta. Spinal Interventions in Pain Management. UK: Oxford University Press, 2012.
Stadlbauer, A., E. Salomonowitz, C. Brenneis, K. Ungersbock, W. van der Riet, M. Buchfelder, and O. Ganslandt. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. Eur. Radiol. 22:232–242, 2012.
Traber, J., L. Wurche, M. A. Dieringer, W. Utz, F. von Knobelsdorff-Brenkenhoff, A. Greiser, N. Jin, and J. Schulz-Menger. Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients. Eur. Radiol. 26:986–996, 2015.
Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J. Magn. Reson. Imaging 3:521–530, 1993.
Wostyn, P., K. Audenaert, and P. P. De Deyn. More advanced Alzheimer’s disease may be associated with a decrease in cerebrospinal fluid pressure. Cerebrospinal Fluid Res. 6:14, 2009.
Yiallourou, T. I., J. R. Kroger, N. Stergiopulos, D. Maintz, A. C. Bunck, and B. A. Martin. Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS ONE 7:e52284, 2012.
Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.
Acknowledgments
Authors would like to appreciate Conquer Chiari and American Syringomyelia Alliance Project for the support of this work. Authors would also like to acknowledge Dr. Jae-Won Choi and Dr. Morteza Vatani for the helpful discussions and assistance in the rapid-prototyping of the phantom model.
Conflict of interest
Authors have no conflict of interests.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Agata A. Exner oversaw the review of this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Heidari Pahlavian, S., Bunck, A.C., Thyagaraj, S. et al. Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vitro Verification Against Numerical Simulation. Ann Biomed Eng 44, 3202–3214 (2016). https://doi.org/10.1007/s10439-016-1602-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-016-1602-x