Skip to main content
Log in

A Combination of a Special Hermite Finite Element with Collocation for a Reaction-Diffusion Type Equation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the paper, we propose an efficient method based on the use of a bicubic Hermite finite element coupled with collocation for the reaction-diffusion equation with a variable coefficient. This enables one to reduce the dimension of the system of equations in comparison with the standard finite element scheme. Numerical experiments confirm a theoretical convergence estimate and demonstrate the advantage of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ciarlet, The Finite Element Method for Elliptic Problems (North Holland, Amsterdam, Netherlands, 1978).

    MATH  Google Scholar 

  2. S. Zhang, “On the full C 1-Q k finite element spaces on rectangles and cuboids,” Adv. Appl. Math. Mech. 2, 701–721 (2010).

    Article  MathSciNet  Google Scholar 

  3. F. K. Bogner, R. L. Fox, and L. A. Schmit, “The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas,” in Proceedings of the Conference on Matrix Methods in Structural Mechanics (Wright Patterson A. F. Base, Ohio, 1965), pp. 397–444.

    Google Scholar 

  4. J. T. Holdeman, “A Hermite finite element method for incompressible fluid flow,” Int. J. Numer. Meth. Fluids 64, 376–408 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Buscaglia and V. Ruas, “Finite element methods for the Stokes system based on a Zienkiewicz type N-simplex,” Comput. Methods Appl. Mech. Eng. 272, 83–99 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Ruas, D. Brandao, and M. Kischinevsky, “Hermite finite elements for diffusion phenomena,” J. Comput. Phys. 235, 542–564 (2013).

    Article  MathSciNet  Google Scholar 

  7. V. Ruas and F. A. Radu, “Hermite analogues of the lowest order Raviart-Thomas mixed method for convection-diffusion equation,” Comp. Appl. Math. 37, 2693–2713 (2018).

    Article  MATH  Google Scholar 

  8. V. Girault and L. R. Scott, “Hermite interpolation of nonsmooth functions preserving boundary conditions,” Math. Comp. 71, 1053–1074 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Shaidurov, S. Shut, and L. Gileva, “Some properties of Hermite finite elements on rectangles,” AIP Conf. Proc. 1629, 32–43 (2014).

    Article  Google Scholar 

  10. V. Ruas, “Hermite finite elements for second order boundary value problems with sharp gradient discontinuities,” J. Comput. Appl. Math. 246, 234–242 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Gileva, E. Karepova, and V. Shaidurov, “New Hermite Finite Elements on Rectangles,” AIP Conf. Proc. 1773, 100005–1–100005–7 (2016).

    Article  Google Scholar 

  12. L. Gileva, E. Karepova, and V. Shaidurov, “The application of a special Hermite finite element coupled with collocation to the diffusion equation,” Lect. Notes Comput. Sci. 11386, 44–55 (2018).

    Google Scholar 

  13. L. Gileva and V. Shaidurov, “Bicubic hermite elements in a domain with the curved boundary,” Lobachevskii J. Math. 39 (7), 893–903 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Adams and I. Fournier, Sobolev Spaces (Academic, New York, USA, 2003).

    MATH  Google Scholar 

  15. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Method (Springer, Berlin, Heidelberg, New York, 1994).

    Book  MATH  Google Scholar 

  16. V. Shaidurov, Multigrid Method for Finite Elements (Kluwer Academic, Netherlands, 1995).

    Book  MATH  Google Scholar 

  17. A. Samarskii, The Theory of Difference Schemes (CRC, Boca Raton, FL, 2001).

    Book  MATH  Google Scholar 

  18. R. S. Varga, Matrix Iterative Analysis (Springer, Berlin, Heidelberg, 2000).

    Book  MATH  Google Scholar 

  19. M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, Natl. Bureau of Standards, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Gileva, E. D. Karepova or V. V. Shaidurov.

Additional information

Submitted by A. V. Lapin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gileva, L.V., Karepova, E.D. & Shaidurov, V.V. A Combination of a Special Hermite Finite Element with Collocation for a Reaction-Diffusion Type Equation. Lobachevskii J Math 40, 459–468 (2019). https://doi.org/10.1134/S1995080219040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219040085

Keywords and phrases

Navigation