Skip to main content
Log in

An improved parameterized algorithm for the p-cluster vertex deletion problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In the p-Cluster Vertex Deletion problem, we are given a graph \(G=(V,E)\) and two parameters k and p, and the goal is to determine if there exists a subset X of at most k vertices such that the removal of X results in a graph consisting of exactly p disjoint maximal cliques. Let \(r=p/k\). In this paper, we design a branching algorithm with time complexity \(O(\alpha ^k+|V||E|)\), where \(\alpha \) depends on r and has a rough upper bound \(\min \{1.618^{1+r},2\}\). With a more precise analysis, we show that \(\alpha =1.28\cdot 3.57^{r}\) for \(r\le 0.219\); \(\alpha =(1-r)^{r-1}r^{-r}\) for \(0.219< r<1/2\); and \(\alpha =2\) for \(r\ge 1/2\), respectively. Our algorithm also works with the same time complexity for the variant that the number of clusters is at most p. Our result improves the previous best time complexity \(O^*(1.84^{p+k})\) and implies that for fixed p the problem can be solved as efficiently as Vertex Cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Run-length_encoding, Wikipedia.

References

  • Abu-Khzam FN (2010) A kernelization algorithm for \(d\)-hitting set. J Comput Syst Sci 76(7):524–531

    Article  MathSciNet  MATH  Google Scholar 

  • Böcker S, Briesemeister S, Bui Q, Truss A (2009) Going weighted: Parameterized algorithms for cluster editing. Theor Comput Sci 410(52):5467–5480

    Article  MathSciNet  MATH  Google Scholar 

  • Böcker S, Damaschke P (2011) Even faster parameterized cluster deletion and cluster editing. Inf Process Lett 111(14):717–721

    Article  MathSciNet  MATH  Google Scholar 

  • Boral A, Cygan M, Kociumaka T, Pilipczuk M (2015) A fast branching algorithm for cluster vertex deletion. Theory Comput Syst. doi:10.1007/s00224-015-9631-7

  • Chen J, Kanj IA, Xia G (2010) Improved upper bounds for vertex cover. Theor Comput Sci 411(40–42):3736–3756

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Meng J (2012) A \(2k\) kernel for the cluster editing problem. J Comput Syst Sci 78(1):211–220

    Article  MathSciNet  MATH  Google Scholar 

  • Chen LH, Chang MS, Wang CC, Wu BY (2013) On the min-max 2-cluster editing problem. J Inf Sci Eng 29:1109–1120

    MathSciNet  Google Scholar 

  • Damaschke P (2009) Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen J, Fomin F (eds) Parameterized and exact computation, lecture notes in computer science, vol 5917. Springer, Berlin Heidelberg, pp 98–109

    Chapter  Google Scholar 

  • Damaschke P (2010) Fixed-parameter enumerability of cluster editing and related problems. Theory Comput Syst 46:261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Fellows MR, Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2011) Graph-based data clustering with overlaps. Discret Optim 8(1):2–17

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin FV, Gaspers S, Kratsch D, Liedloff M, Saurabh S (2010) Iterative compression and exact algorithms. Theor Comput Sci 411(7–9):1045–1053

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin FV, Grandoni F, Kratsch D (2009) A measure & conquer approach for the analysis of exact algorithms. J ACM 56(5):25:1–25:32

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin FV, Kratsch S, Pilipczuk M, Pilipczuk M, Villanger Y (2014) Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J Comput Syst Sci 80(7):1430–1447

    Article  MathSciNet  MATH  Google Scholar 

  • Gramm J, Guo J, Hüffner F, Niedermeier R (2005) Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput Syst 38(4):373–392

    Article  MathSciNet  MATH  Google Scholar 

  • Gramm J, Guo J, Hüffner F, Niedermeier R (2004) Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39:321–347

    Article  MathSciNet  MATH  Google Scholar 

  • Guo J (2009) A more effective linear kernelization for cluster editing. Theor Comput Sci 410(8–10):718–726

    Article  MathSciNet  MATH  Google Scholar 

  • Hüffner F, Komusiewicz C, Moser H, Niedermeier R (2010) Fixed-parameter algorithms for cluster vertex deletion. Theory Comput Syst 47:196–217

    Article  MathSciNet  MATH  Google Scholar 

  • Komusiewicz C, Uhlmann J (2012) Cluster editing with locally bounded modifications. Discret Appl Math 160(15):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  • Niedermeier R, Rossmanith P (2000) A general method to speed up fixed-parameter-tractable algorithms. Inf Process Lett 73(3–4):125–129

    Article  MathSciNet  MATH  Google Scholar 

  • Shamir R, Sharan R, Tsur D (2004) Cluster graph modification problems. Discret Appl Math 144(1–2):173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Wu BY, Chen LH (2015) Parameterized algorithms for the 2-clustering problem with minimum sum and minimum sum of squares objective functions. Algorithmica 72:818–835

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSC 101-2221-E-194-025-MY3 and MOST 103-2221-E-194-025-MY3 from Ministry of Science and Technology, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Ye Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B.Y., Chen, LH. An improved parameterized algorithm for the p-cluster vertex deletion problem. J Comb Optim 33, 373–388 (2017). https://doi.org/10.1007/s10878-015-9969-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9969-4

Keywords

Navigation