Skip to main content
Log in

Harmonic Tutte polynomials of matroids

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In the present paper, we introduce the concept of harmonic Tutte polynomials of matroids and discuss some of their properties. In particular, we generalize Greene’s theorem, thereby expressing harmonic weight enumerators of codes as evaluations of harmonic Tutte polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. Assmus E.F. Jr., Mattson H.F. Jr.: New 5-designs. J. Comb. Theory 6, 122–151 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachoc C.: On harmonic weight enumerators of binary codes. Des. Codes Cryptogr. 18(1–3), 11–28 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachoc C.: Harmonic weight enumerators of nonbinary codes and MacWilliams identities, codes and association schemes, Piscataway, NJ, 1999. In: DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 56, pp. 1–23. The American Mathematical Society, RI (2001).

  4. Bannai E., Koike M., Shinohara M., Tagami M.: Spherical designs attached to extremal lattices and the modulo \(p\) property of Fourier coefficients of extremal modular forms. Mosc. Math. J. 6, 225–264 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bannai E., Miezaki T.: Toy models for D. H. Lehmer’s conjecture. J. Math. Soc. Jpn. 62(3), 687–705 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bannai E., Miezaki T.: Toy models for D. H. Lehmer’s conjecture II, quadratic and higher degree forms. Dev. Math. 31, 1–27 (2013).

    MATH  Google Scholar 

  7. Bannai E., Miezaki T., Yudin V.A.: An elementary approach to toy models for Lehmer’s conjecture (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 75(6), 3–16 (2011); translation in Izv. Math. 75(6), 1093–1106 (2011).

  8. Britz T., Chakraborty H.S., Ishikawa R., Miezaki T.: Harmonic Tutte polynomials of matroids II. submitted.

  9. Britz T., Shiromoto K.: Designs from subcode supports of linear codes. Des. Codes Cryptogr. 46, 175–189 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. Britz T., Royle G., Shiromoto K.: Designs from matroids. SIAM J. Disc. Math. 23, 1082–1099 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Cameron P.J.: Combinatorics 2: Structure, Symmetry and Polynomials, Lecture note.

  12. Crapo H.H.: The Tutte polynomial. Aequationes Math. 3, 211–229 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  13. Delsarte P.: Hahn polynomials, discrete harmonics, and \(t\)-designs. SIAM J. Appl. Math. 34(1), 157–166 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  14. Greene C.: Weight enumeration and the geometry of linear codes, Studia. Appl. Math. 55, 119–128 (1976).

    MathSciNet  MATH  Google Scholar 

  15. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes, 1st edn. Cambridge University Press, Cambridge (2003).

  16. Jurrius R., Pellikaan R.: Codes, arrangements and matroids. In: Algebraic Geometry Modeling in Information Theory, Series on Coding Theory and Cryptology, vol. 8, pp. 219–325 (2013).

  17. Horiguchi N., Miezaki T., Nakasora H.: On the support designs of extremal binary doubly even self-dual codes. Des. Codes Cryptogr. 72, 529–537 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  19. Miezaki T.: Conformal designs and D.H. Lehmer’s conjecture. J. Algebra 374, 59–65 (2013).

  20. Miezaki T.: Design-theoretic analogies between codes, lattices, and vertex operator algebras. Des. Codes Cryptogr. 89, 763–780 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. Miezaki T., Munemasa A., Nakasora H.: An note on Assmus-Mattson theorems. Des. Codes Cryptogr. 89, 843–858 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. Miezaki T., Nakasora H.: An upper bound of the value of \(t\) of the support \(t\)-designs of extremal binary doubly even self-dual codes. Des. Codes Cryptogr. 79, 37–46 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. Miezaki T., Nakasora H.: The support designs of the triply even binary codes of length \(48\). J. Comb. Des. 27, 673–681 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. Miezaki T., Oura M., Sakuma T., Shinohara H.: A generalization of the Tutte polynomials. Proc. Jpn. Acad. Ser. A 95(10), 111–113 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. Oxley J.C.: Matroid Theory. Oxford University Press, New York (1992).

    MATH  Google Scholar 

  26. Ray-Chaudhuri D.K., Wilson R.W.: On \(t\)-design. Osaka J. Math. 12, 737–744 (1975).

    MathSciNet  MATH  Google Scholar 

  27. Tanabe K.: A new proof of the Assmus-Mattson theorem for non-binary codes. Des. Codes Cryptogr. 22, 149–155 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  28. Tutte W.T.: A contribution to the theory of chromatic polynomial. Can. J. Math. 6, 80–91 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  29. Tutte W.T.: On dichromatic polynomials. J. Comb. Theory 2, 301–320 (1967).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas Britz for helpful discussions. The authors would also like to thank the anonymous reviewers for their beneficial comments on an earlier version of the manuscript. The second author is supported by JSPS KAKENHI (22K03277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Shekhar Chakraborty.

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, H.S., Miezaki, T. & Oura, M. Harmonic Tutte polynomials of matroids. Des. Codes Cryptogr. 91, 2223–2236 (2023). https://doi.org/10.1007/s10623-023-01196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01196-7

Keywords

Mathematics Subject Classification

Navigation