Skip to main content

Feature Selection with a Genetic Algorithm for Classification of Brain Imaging Data

  • Chapter
  • First Online:
Advances in Feature Selection for Data and Pattern Recognition

Abstract

Recent advances in brain imaging technology, coupled with large-scale brain research projects, such as the BRAIN initiative in the U.S. and the European Human Brain Project, allow us to capture brain activity in unprecedented details. In principle, the observed data is expected to substantially shape our knowledge about brain activity, which includes the development of new biomarkers of brain disorders. However, due to the high dimensionality, the analysis of the data is challenging, and selection of relevant features is one of the most important analytic tasks. In many cases, due to the complexity of search space, evolutionary algorithms are appropriate to solve the aforementioned task. In this chapter, we consider the feature selection task from the point of view of classification tasks related to functional magnetic resonance imaging (fMRI) data. Furthermore, we present an empirical comparison of conventional LASSO-based feature selection and a novel feature selection approach designed for fMRI data based on a simple genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The accuracy for the fitness function of mGA was calculated solely on the training data. In particular we measured the accuracy of a nearest neighbor classifier in an internal 5-fold cross-validation on the training data.

  2. 2.

    We note that \(\lambda = 0.001\) and \(\lambda = 0.0001\) led to very similar classification accuracy. For simplicity, we only show the results in case of \(\lambda = 0.005\) in Sect. 10.3.

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    Google Scholar 

  2. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)

    Article  Google Scholar 

  3. Blautzik, J., Keeser, D., Berman, A., Paolini, M., Kirsch, V., Mueller, S., Coates, U., Reiser, M., Teipel, S.J., Meindl, T.: Long-term test-retest reliability of resting-state networks in healthy elderly subjects and patients with amnestic mild cognitive impairment. J. Alzheimer’s Dis. 34(3), 741–754 (2013)

    Google Scholar 

  4. Blautzik, J., Vetter, C., Peres, I., Gutyrchik, E., Keeser, D., Berman, A., Kirsch, V., Mueller, S., Pöppel, E., Reiser, M., et al.: Classifying fmri-derived resting-state connectivity patterns according to their daily rhythmicity. NeuroImage 71, 298–306 (2013)

    Article  Google Scholar 

  5. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Time-series classification based on individualised error prediction. In: 13th International Conference on Computational Science and Engineering, pp. 48–54. IEEE (2010)

    Google Scholar 

  6. Canuto, A.M.P., Nascimento, D.S.C.: A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2012). https://doi.org/10.1109/IJCNN.2012.6252740

  7. Chang, E.I., Lippmann, R.P.: Using genetic algorithms to improve pattern classification performance. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems 3. NIPS-3, pp. 797–803. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1990)

    Google Scholar 

  8. Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series classification. In: Advances in Neural Information Processing Systems, pp. 1088–1096 (2013)

    Google Scholar 

  9. D’Alessandre, M., Vachtseyanos, G., Esteller, R., Echauz, J., Sewell, D., Litt, B.: A systematic approach to seizure prediction using genetic and classifier based feature selection. In: International Conference on Digital Signal Processing, DSP, vol. 2 (2002). https://doi.org/10.1109/ICDSP.2002.1028162

  10. De Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Bradford Book (2006)

    MATH  Google Scholar 

  11. Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G.: On the strong universal consistency of nearest neighbor regression function estimates. Ann. Stat. 1371–1385 (1994)

    Google Scholar 

  12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer Publishing Company, Incorporated (2015). https://doi.org/10.1007/978-3-662-44874-8

  13. de la Fraga, L.G., Coello Coello, C.A.: A review of applications of evolutionary algorithms in pattern recognition. In: Wang, P.S.P. (ed.) Pattern Recognition, Machine Intelligence and Biometrics, pp. 3–28. Springer Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22407-2_1

  14. Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Foster, N.L., Jack Jr., C.R., Galasko, D.R., Doody, R., et al.: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61(1), 59–66 (2004)

    Google Scholar 

  15. Gwalani, H., Mittal, N., Vidyarthi, A.: Classification of brain tumours using genetic algorithms as a feature selection method (GAFS). In: ACM International Conference Proceeding Series, vol. 25–26, August (2016). https://doi.org/10.1145/2980258.2980318

  16. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Article  Google Scholar 

  17. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  18. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)

    Google Scholar 

  19. de la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl. Based Syst. 71, 322–338 (2014). https://doi.org/10.1016/j.knosys.2014.08.013

    Article  Google Scholar 

  20. Hyvärinen, J., Carlson, S., Hyvärinen, L.: Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci. Lett. 26(3), 239–243 (1981)

    Article  Google Scholar 

  21. de la Iglesia, B.: Evolutionary computation for feature selection in classification problems. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(6), 381–407 (2013). https://doi.org/10.1002/widm.1106

    Article  Google Scholar 

  22. Jalili, M.: Graph theoretical analysis of Alzheimer’s disease: discrimination of AD patients from healthy subjects. Inf. Sci. 384 (2017). https://doi.org/10.1016/j.ins.2016.08.047

  23. Ji, Y., Bu, X., Sun, J., Liu, Z.: An improved simulated annealing genetic algorithm of EEG feature selection in sleep stage. In: 2016, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. APSIPA 2016 (2017). https://doi.org/10.1109/APSIPA.2016.7820683

  24. Kaya, Y., Pehlivan, H.: Feature selection using genetic algorithms for premature ventricular contraction classification. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 1229–1232 (2015). https://doi.org/10.1109/ELECO.2015.7394628

  25. Khan, A., Baig, A.: Multi-objective feature subset selection using non-dominated sorting genetic algorithm. J. Appl. Res. Technol. 13(1), 145–159 (2015). https://doi.org/10.1016/S1665-6423(15)30013-4

    Article  Google Scholar 

  26. Kharrat, A., Halima, M., Ben Ayed, M.: MRI brain tumor classification using Support Vector Machines and meta-heuristic method. In: International Conference on Intelligent Systems Design and Applications, ISDA, vol. 2016, June (2016). https://doi.org/10.1109/ISDA.2015.7489271

  27. Lichtman, J.W., Denk, W.: The big and the small: challenges of imaging the brain’s circuits. Science 334(6056), 618–623 (2011)

    Article  Google Scholar 

  28. Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., Buza, K.: Classification of fmri data using dynamic time warping based functional connectivity analysis. In: Signal Processing Conference (EUSIPCO), 2016 24th European, pp. 245–249. IEEE (2016)

    Google Scholar 

  29. Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., Buza, K.A.: A model for classification based on the functional connectivity pattern dynamics of the brain. In: Third European Network Intelligence Conference, pp. 203–208 (2016)

    Google Scholar 

  30. Meszlényi, R.J., Hermann, P., Buza, K., Gál, V., Vidnyánszky, Z.: Resting state fmri functional connectivity analysis using dynamic time warping. Front. Neurosci. 11, 75 (2017)

    Article  Google Scholar 

  31. Michalewicz, Z., Dasgupta, D. (eds.): Evolutionary Algorithms in Engineering Applications, 1st edn. Springer-Verlag New York Inc, Secaucus, NJ, USA (1997)

    MATH  Google Scholar 

  32. Noori, F., Qureshi, N., Khan, R., Naseer, N.: Feature selection based on modified genetic algorithm for optimization of functional near-infrared spectroscopy (fNIRS) signals for BCI. In: 2016 2nd International Conference on Robotics and Artificial Intelligence, ICRAI 2016 (2016). https://doi.org/10.1109/ICRAI.2016.7791227

  33. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000). https://doi.org/10.1109/4235.850656

    Article  Google Scholar 

  34. Richiardi, J., Altmann, A., Milazzo, A.C., Chang, C., Chakravarty, M.M., Banaschewski, T., Barker, G.J., Bokde, A.L., Bromberg, U., Büchel, C., et al.: Correlated gene expression supports synchronous activity in brain networks. Science 348(6240), 1241–1244 (2015)

    Article  Google Scholar 

  35. Rosa, M.J., Portugal, L., Hahn, T., Fallgatter, A.J., Garrido, M.I., Shawe-Taylor, J., Mourao-Miranda, J.: Sparse network-based models for patient classification using fmri. Neuroimage 105, 493–506 (2015)

    Article  Google Scholar 

  36. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  37. Sanchez, E., Squillero, G., Tonda, A.: Industrial Applications of Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-27467-1

  38. Schroeter, M.L., Stein, T., Maslowski, N., Neumann, J.: Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage 47(4), 1196–1206 (2009)

    Google Scholar 

  39. da Silva, S.F., Ribeiro, M.X., João do E.S. Batista Neto, J., Traina-Jr., C., Traina, A.J.: Improving the ranking quality of medical image retrieval using a genetic feature selection method. Decis. Support Syst. 51(4), 810 – 820 (2011). https://doi.org/10.1016/j.dss.2011.01.015. (Recent Advances in Data, Text, and Media Mining & Information Issues in Supply Chain and in Service System Design)

  40. Stańczyk, U.: On performance of DRSA-ANN classifier. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 172–179. Springer (2011)

    Google Scholar 

  41. Tajik, M., Rehman, A., Khan, W., Khan, B.: Texture feature selection using GA for classification of human brain MRI scans. Lecture Notes in Computer Science, vol. 9713. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  42. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)267–288 (1996)

    Google Scholar 

  43. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314(1165), 1–340 (1986)

    Article  Google Scholar 

  44. Winkler, S.M., Affenzeller, M., Jacak, W., Stekel, H.: Identification of cancer diagnosis estimation models using evolutionary algorithms: a case study for breast cancer, melanoma, and cancer in the respiratory system. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO’11, pp. 503–510. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2001858.2002040

  45. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://doi.org/10.1109/TEVC.2015.2504420

    Article  Google Scholar 

  46. Yaka, R., Yinon, U., Rosner, M., Wollberg, Z.: Pathological and experimentally induced blindness induces auditory activity in the cat primary visual cortex. Exp. Brain Res. 131(1), 144–148 (2000)

    Article  Google Scholar 

  47. Yang, J., Honavar, V.G.: Feature subset selection using a genetic algorithm. IEEE Intell. Syst. 13(2), 44–49 (1998). https://doi.org/10.1109/5254.671091

    Article  Google Scholar 

  48. Yang, J., Pan, P., Song, W., Huang, R., Li, J., Chen, K., Gong, Q., Zhong, J., Shi, H., Shang, H.: Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. J. Neurol. Sci. 316(1), 21–29 (2012)

    Google Scholar 

  49. Ye, C.Q., Poo, M.M., Dan, Y., Zhang, X.H.: Synaptic mechanisms of direction selectivity in primary auditory cortex. J. Neurosci. 30(5), 1861–1868 (2010)

    Google Scholar 

  50. Yoshor, D., Bosking, W.H., Ghose, G.M., Maunsell, J.H.: Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17(10), 2293–2302 (2007)

    Article  Google Scholar 

  51. Zielosko, B., Chikalov, I., Moshkov, M., Amin, T.: Optimization of decision rules based on dynamic programming approach. In: Faucher, C., Jain, L.C. (eds.) Innovations in Intelligent Machines-4: Recent Advances in Knowledge Engineering, pp. 369–392. Springer (2014)

    Google Scholar 

  52. Zuo, X.N., Anderson, J.S., Bellec, P., Birn, R.M., Biswal, B.B., Blautzik, J., Breitner, J.C., Buckner, R.L., Calhoun, V.D., Castellanos, F.X., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1 (2014)

    Google Scholar 

Download references

Acknowledgements

This work partially was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2332 and the National Research, Development and Innovation Office (Hungary), project number: NKFIH 108947 K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamária Szenkovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szenkovits, A., Meszlényi, R., Buza, K., Gaskó, N., Lung, R.I., Suciu, M. (2018). Feature Selection with a Genetic Algorithm for Classification of Brain Imaging Data. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics