Skip to main content

Dynamical Sampling and Systems from Iterative Actions of Operators

  • Chapter
  • First Online:
Frames and Other Bases in Abstract and Function Spaces

Abstract

In this chapter, we review some of the recent developments and prove new results concerning frames and Bessel systems generated by iterations of the form {A n g: gG, n = 0, 1, 2, }, where A is a bounded linear operator on a separable complex Hilbert space \(\mathscr{H}\) and G is a countable set of vectors in \(\mathscr{H}\). The system of iterations mentioned above was motivated from the so-called dynamical sampling problem. In dynamical sampling, an unknown function f and its future states A n f are coarsely sampled at each time level n, 0 ≤ n < L, where A is an evolution operator that drives the system. The goal is to recover f from these space-time samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Aceska, A. Aldroubi, J. Davis, A. Petrosyan, Dynamical sampling in shift invariant spaces, in Commutative and Noncommutative Harmonic Analysis and Applications, ed. by A. Mayeli, A. Iosevich, P.E.T. Jorgensen, G. Ólafsson. Contemporary in Mathematics, vol. 603 (American Mathematical Society, Providence, RI, 2013), pp. 139–148

    Google Scholar 

  2. A. Aldroubi, A. Baskakov, I. Krishtal, Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255 (7), 1667–1691 (2008). MR 2442078 (2010a:46059)

    Google Scholar 

  3. A. Aldroubi, J. Davis, I. Krishtal, Dynamical sampling: time-space trade-off. Appl. Comput. Harmon. Anal. 34 (3), 495–503 (2013). MR 3027915

    Google Scholar 

  4. A. Aldroubi, J. Davis, I. Krishtal, Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off. J. Fourier Anal. Appl. 21, 11–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Aldroubi, C. Cabrelli, A.F. Çakmak, U. Molter, P. Armenak, Iterative actions of normal operators (2016). arXiv:1602.04527

    Google Scholar 

  6. A. Aldroubi, C. Cabrelli, U. Molter, S. Tang, Dynamical sampling. Appl. Comput. Harmon. Anal. 42 (3), 378–401 (2017). MR CLASS 94A20 (42C15), MR NUMBER 3613395

    Google Scholar 

  7. O. Bratteli, P. Jorgensen, Wavelets Through a Looking Glass: The World of the Spectrum. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2002). MR 1913212 (2003i:42001)

    Google Scholar 

  8. P.G. Casazza, G. Kutyniok, S. Li, Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25 (1), 114–132 (2008). MR 2419707 (2009d:42094)

    Google Scholar 

  9. J.B. Conway, Subnormal Operators. Research Notes in Mathematics, vol. 51. Pitman Advanced Publishing Program (Pitman, Boston, MA, 1981). MR 634507 (83i:47030)

    Google Scholar 

  10. J.B. Conway, A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96 (Springer, New York, 1990). MR 1070713

    Google Scholar 

  11. B. Currey, A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group. Monatsh. Math. 162 (2), 119–142 (2011). MR 2769882 (2012d:42069)

    Google Scholar 

  12. I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992). MR 1162107

    Google Scholar 

  13. B. Farrell, T. Strohmer, Inverse-closedness of a Banach algebra of integral operators on the Heisenberg group. J. Operator Theory 64 (1), 189–205 (2010). MR 2669435

    Google Scholar 

  14. K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10 (2), 105–132 (2004). MR 2054304 (2005f:42086)

    Google Scholar 

  15. K. Gröchenig, M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17 (1), 1–18 (2004). (electronic). MR 2015328 (2004m:42037)

    Google Scholar 

  16. K. Gröchenig, J.L. Romero, J. Unnikrishnan, M. Vetterli, On minimal trajectories for mobile sampling of bandlimited fields. Appl. Comput. Harmon. Anal. 39 (3), 487–510 (2015). MR 3398946

    Google Scholar 

  17. E. Hernández, G. Weiss, A First Course on Wavelets. Studies in Advanced Mathematics (CRC, Boca Raton, FL, 1996). With a foreword by Yves Meyer. MR 1408902 (97i:42015)

    Google Scholar 

  18. A. Hormati, O. Roy, Y.M. Lu, M. Vetterli, Distributed sampling of signals linked by sparse filtering: theory and applications. IEEE Trans. Signal Process. 58 (3), 1095–1109 (2010)

    Article  MathSciNet  Google Scholar 

  19. I. Karabash, Unpublished notes. Private Communication (2016)

    Google Scholar 

  20. Y.M. Lu, M. Vetterli, Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks, in IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2009 (2009), pp. 2249–2252

    Google Scholar 

  21. Y.M. Lu, P.-L. Dragotti, M. Vetterli, Localization of diffusive sources using spatiotemporal measurements, in 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2011), pp. 1072–1076

    Google Scholar 

  22. S. Mallat, A Wavelet Tour of Signal Processing (Academic, San Diego, CA, 1998). MR 1614527 (99m:94012)

    Google Scholar 

  23. Z.M. Nashed, Inverse problems, moment problems, signal processing: un menage a trois, in Mathematics in Science and Technology (World Scientific, Hackensack, NJ, 2011), pp. 2–19. MR 2883419

    Google Scholar 

  24. G. Ólafsson, D. Speegle, Wavelets, wavelet sets, and linear actions on \(\mathbb{R}^{n}\), in Wavelets, Frames and Operator Theory. Contemporary Mathematics, vol. 345 (American Mathematical Society, Providence, RI, 2004), pp. 253–281. MR 2066833 (2005h:42075)

    Google Scholar 

  25. I.Z. Pesenson, Multiresolution analysis on compact Riemannian manifolds, in Multiscale Analysis and Nonlinear Dynamics. Reviews of Nonlinear Dynamics and Complexity (Wiley-VCH, Weinheim, 2013), pp. 65–82. MR 3221687

    Google Scholar 

  26. I.Z. Pesenson, Sampling, splines and frames on compact manifolds. GEM Int. J. Geomath. 6 (1), 43–81 (2015). MR 3322489

    Google Scholar 

  27. A. Petrosyan, Dynamical sampling with moving devices. Proc. Yerevan State Univ. Phys. Math. Sci. (1), 31–35 (2015)

    MATH  Google Scholar 

  28. F. Philipp, Unpublished notes. Private Communication (2016)

    Google Scholar 

  29. J. Ranieri, A. Chebira, Y.M. Lu, M. Vetterli, Sampling and reconstructing diffusion fields with localized sources, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), pp. 4016–4019

    Google Scholar 

  30. G. Reise, G. Matz, K. Gröchenig, Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces. IEEE Trans. Signal Process. 60 (10), 5426–5439 (2012). MR 2979004

    Google Scholar 

  31. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, MA, 1996). MR 1411910 (98b:94003)

    Google Scholar 

  32. Q. Sun, Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28 (4), 301–329 (2008). MR 2390281 (2009c:42093)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by NSF/DMS grant 1322099. Akram Aldroubi would like to thank Charlotte Avant and Barbara Corley for their attendance to the comfort and entertainment during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Aldroubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aldroubi, A., Petrosyan, A. (2017). Dynamical Sampling and Systems from Iterative Actions of Operators. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Frames and Other Bases in Abstract and Function Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55550-8_2

Download citation

Publish with us

Policies and ethics