Abstract
We present a numerical algorithm of seismic wave propagation in anisotropic fractured fluid-saturated porous media and estimation of seismic attenuation. The algorithm is based on numerical solution of anisotropic Biot equations of poroelasticity. We use finite-difference approximation of Biot equations on the staggered grid. We perform a set of numerical experiments of wave propagation in fractured media. Fractures in the media are connected and filled with anisotropic material providing wave induced fluid flow within connected fractures. Numerical estimations of inverse quality factor demonstrate the effect of fracture-filling material anisotropy on seismic wave attenuation.
The work is supported by Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)
Biot, M.A.: Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)
Carcione, J.M., Morency, C., Santos, J.E.: Computational poroelasticity – a review. Geophysics 75(5), 75A229–75A243 (2010)
Cheng, A.H.D.: Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 342, 199–205 (1997)
Guo, J., Rubino, J.G., Glubokovskikh, S., Gurevich, B.: Effects of fracture intersections on seismic dispersion: theoretical predictions versus numerical simulations. Geophys. Prospect. 65(5), 1264–1276 (2017)
Huang, F., et al.: The first post-injection seismic monitor survey at the Ketzin pilot CO\(_2\) storage site: results from time-lapse analysis. Geophysical Prospect. 66(1), 62–84 (2018)
Hunziker, J., et al.: Seismic attenuation and stiffness modulus dispersion in porous rocks containing stochastic fracture networks. J. Geophys. Res. Solid Earth 123(1), 125–143 (2018)
Kong, L., Gurevich, B., Zhang, Y., Wang, Y.: Effect of fracture fill on frequency-dependent anisotropy of fractured porous rocks. Geophys. Prospect. 65(6), 1649–1661 (2017)
Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)
Lisitsa, V.: Optimal discretization of PML for elasticity problems. Electron. Trans. Numer. Anal. 30, 258–277 (2008)
Martin, R., Komatitsch, D., Ezziani, A.: An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics 73(4), T51–T61 (2008)
Marty, N.C.M., Hamm, V., Castillo, C., Thiery, D., Kervevan, C.: Modelling waterrock interactions due to long-term cooled-brine reinjection in the dogger carbonate aquifer (paris basin) based on in-situ geothermal well data. Geothermics 88, 101899 (2020)
Masson, Y.J., Pride, S.R.: Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2), N33–N41 (2010)
Mavko, G., Mukerj, T., Dvorkin, J.: The Rock Physics Handbook, 2nd edn. Cambridge University Press, Cambridge (1999)
Menke, H.P., Reynolds, C.A., Andrew, M.G., Pereira Nunes, J.P., Bijeljic, B., Blunt, M.J.: 4D multi-scale imaging of reactive flow in carbonates: assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. Chem. Geol. 481, 23–37 (2018)
Moczo, P., Kristek, J., Galis, M.: The Finite-Difference Modelling of Earthquake Motion: Waves and Ruptures. Cambridge University Press, Cambridge (2014)
Muller, T.M., Gurevich, B., Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – a review. Geophysics 75(5), 75A147–75A164 (2010)
Novikov, M.A., Lisitsa, V.V., Bazaikin, Y.V.: Wave propagation in fractured porous media with different percolation length of fracture systems. Lobachevskii J. Math. 41(8), 1533–1544 (2020)
Rubino, J.G., Muller, T.M., Guarracino, L., Milani, M., Holliger, K.: Seismoacoustic signatures of fracture connectivity. J. Geophys. Res. Solid Earth 119(3), 2252–2271 (2014)
Salaun, N., et al.: High-resolution 3D seismic imaging and refined velocity model building improve the image of a deep geothermal reservoir in the Upper Rhine Graben. Lead. Edge 39(12), 857–863 (2020)
Samarskii, A.A.: The Theory of Difference Schemes. (Pure and Applied Mathematics), vol. 240. CRC Press, Bosa Roca (2001)
Tran, N.: Simulated annealing technique in discrete fracture network inversion: optimizing the optimization. Comput. Geosci. 11, 249–260 (2007)
Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)
Xu, C., Dowd, P.: A new computer code for discrete fracture network modelling. Comput. Geosci. 36(3), 292–301 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Novikov, M., Lisitsa, V., Khachkova, T., Reshetova, G., Vishnevsky, D. (2021). Numerical Algorithm of Seismic Wave Propagation and Seismic Attenuation Estimation in Anisotropic Fractured Porous Fluid-Saturated Media. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)