Abstract
Editing a graph into a disjoint union of clusters is a standard optimization task in graph-based data clustering. Here, complementing classic work where the clusters shall be cliques, we focus on clusters that shall be 2-clubs, that is, subgraphs of diameter at most two. This naturally leads to the two NP-hard problems 2-Club Cluster Editing (the editing operations are edge insertion and edge deletion) and 2-Club Cluster Vertex Deletion (the editing operations are vertex deletions). Answering an open question, we show that 2-Club Cluster Editing is W[2]-hard with respect to the number of edge modifications, thus contrasting the fixed-parameter tractability result for the classic Cluster Editing problem (considering cliques instead of 2-clubs). Then, focusing on 2-Club Cluster Vertex Deletion, which is easily seen to be fixed-parameter tractable, we show that under standard complexity-theoretic assumptions it does not have a polynomial-size problem kernel when parameterized by the number of vertex deletions. Nevertheless, we develop several effective data reduction and pruning rules, resulting in a competitive solver, outperforming a standard CPLEX solver in most instances of an established biological test data set.
A. Figiel—Partially supported by DFG project NI 369/18.
A.-S. Himmel—Supported by DFG project NI 369/16.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is the generalization of Cluster Editing where clusters are requested to be s-plexes (and not cliques); an s-plex is a subgraph where each vertex is connected to all other vertices of the s-plex except for at most \(s-1\) vertices. Notably, a clique is a 1-plex.
- 2.
- 3.
Given an undirected graph \(G = (V,E)\) and an integer k, the question is whether there is a dominating set \(V' \subseteq V\) (that is, \(N[V'] = V\)) of size at most k.
- 4.
The source code is available at https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip and includes the source code for the ILP formulation using CPLEX.
- 5.
The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster_editing_data.
References
van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying - a problem kernel for \(s\)-plex cluster vertex deletion. Algorithmica 62(3–4), 930–950 (2012). https://doi.org/10.1007/s00453-011-9492-7
Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_5
Böcker, S., Briesemeister, S., Bui, Q.B.A., TruĂŸ, A.: Going weighted: parameterized algorithms for cluster editing. Theoret. Comput. Sci. 410(52), 5467–5480 (2009). https://doi.org/10.1016/j.tcs.2009.05.006
Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: evaluation and experiments. Algorithmica 60(2), 316–334 (2011). https://doi.org/10.1007/s00453-009-9339-7
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240
Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016). https://doi.org/10.1007/s00224-015-9631-7
Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867 (2020). https://arxiv.org/abs/2001.06867
Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3
Dondi, R., Lafond, M.: On the tractability of covering a graph with 2-clubs. In: Gasieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_17
Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph Algorithms Appl. 23(2), 271–292 (2019). https://doi.org/10.7155/jgaa.00491
Dondi, R., Mauri, G., Zoppis, I.: On the tractability of finding disjoint clubs in a network. Theoret. Comput. Sci. 777, 243–251 (2019). https://doi.org/10.1016/j.tcs.2019.03.045
Doucha, M., KratochvĂl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of the 37th International Symposium on Mathematical Foundations of Computer Science (MFCS 2012). LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://doi.org/10.1007/s00453-011-9492-7
Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)
Figiel, A., Himmel, A., Nichterlein, A., Niedermeier, R.: On 2-clubs in graph-based data clustering: theory and algorithm engineering. CoRR, abs/2006.14972 (2020). https://arxiv.org/abs/2006.14972
Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter augmentation. Discrete Appl. Math. 161(10–11), 1626–1631 (2013). https://doi.org/10.1016/j.dam.2013.01.016
Gramm, J., Guo, J., HĂ¼ffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005). https://doi.org/10.1007/s00224-004-1178-y
Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: \(s\)-plex cluster editing. SIAM J. Discrete Math. 24(4), 1662–1683 (2010). https://doi.org/10.1137/090767285
Hartung, S., Hoos, H.H.: Programming by optimisation meets parameterised algorithmics: a case study for cluster editing. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 43–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_5
Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and computational experiments for finding 2-clubs. J. Graph Algorithms Appl. 19(1), 155–190 (2015). https://doi.org/10.1007/978-3-642-33293-7_22
HĂ¼ffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). https://doi.org/10.1007/s00224-008-9150-x
Jia, S., et al.: Viewing the meso-scale structures in protein-protein interaction networks using 2-clubs. IEEE Access 6, 36780–36797 (2018). https://doi.org/10.1109/ACCESS.2018.2852275
Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012). https://doi.org/10.1016/j.dam.2012.05.019
Komusiewicz, C., Nichterlein, A., Niedermeier, R.: Parameterized algorithmics for graph modification problems: on interactions with heuristics. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 3–15. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_1
Komusiewicz, C., Nichterlein, A., Niedermeier, R., Picker, M.: Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: theory and experiments. Eur. J. Oper. Res. 275(3), 846–864 (2019). https://doi.org/10.1016/j.ejor.2018.12.006
Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW 2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29700-7_22
Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of \(r\)-dominating set on graphs of diameter \((r + 1)\). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22
Misra, N., Panolan, F., Saurabh, S.: Subexponential algorithm for d-cluster edge deletion: exception or rule? J. Comput. Syst. Sci. 113, 150–162 (2020). https://doi.org/10.1016/j.jcss.2020.05.008
Pasupuleti, S.: Detection of protein complexes in protein interaction networks using \(n\)-clubs. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 153–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78757-0_14
Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., Böcker, S.: Exact and heuristic algorithms for weighted cluster editing. In: Proceedings of the 6th Computational Systems Bioinformatics Conference (CSB 2007), pp. 391–401. World Scientific (2007). https://doi.org/10.1142/9781860948732_0040
Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012). https://doi.org/10.1007/s11590-011-0311-5
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)
Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. CoRR, abs/1901.07609 (2019)
Acknowledgment
We thank anonymous reviewers for their valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Figiel, A., Himmel, AS., Nichterlein, A., Niedermeier, R. (2021). On 2-Clubs in Graph-Based Data Clustering: Theory and Algorithm Engineering. In: Calamoneri, T., CorĂ², F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-75242-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75241-5
Online ISBN: 978-3-030-75242-2
eBook Packages: Computer ScienceComputer Science (R0)