Skip to main content

On 2-Clubs in Graph-Based Data Clustering: Theory and Algorithm Engineering

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12701))

Included in the following conference series:

Abstract

Editing a graph into a disjoint union of clusters is a standard optimization task in graph-based data clustering. Here, complementing classic work where the clusters shall be cliques, we focus on clusters that shall be 2-clubs, that is, subgraphs of diameter at most two. This naturally leads to the two NP-hard problems 2-Club Cluster Editing (the editing operations are edge insertion and edge deletion) and 2-Club Cluster Vertex Deletion (the editing operations are vertex deletions). Answering an open question, we show that 2-Club Cluster Editing is W[2]-hard with respect to the number of edge modifications, thus contrasting the fixed-parameter tractability result for the classic Cluster Editing problem (considering cliques instead of 2-clubs). Then, focusing on 2-Club Cluster Vertex Deletion, which is easily seen to be fixed-parameter tractable, we show that under standard complexity-theoretic assumptions it does not have a polynomial-size problem kernel when parameterized by the number of vertex deletions. Nevertheless, we develop several effective data reduction and pruning rules, resulting in a competitive solver, outperforming a standard CPLEX solver in most instances of an established biological test data set.

A. Figiel—Partially supported by DFG project NI 369/18.

A.-S. Himmel—Supported by DFG project NI 369/16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the generalization of Cluster Editing where clusters are requested to be s-plexes (and not cliques); an s-plex is a subgraph where each vertex is connected to all other vertices of the s-plex except for at most \(s-1\) vertices. Notably, a clique is a 1-plex.

  2. 2.

    It has been featured as an open problem whether the edge deletion variant s -Club Cluster Edge Deletion has a polynomial-size problem kernel [7, 25].

  3. 3.

    Given an undirected graph \(G = (V,E)\) and an integer k, the question is whether there is a dominating set \(V' \subseteq V\) (that is, \(N[V'] = V\)) of size at most k.

  4. 4.

    The source code is available at https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip and includes the source code for the ILP formulation using CPLEX.

  5. 5.

    The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster_editing_data.

References

  1. van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying - a problem kernel for \(s\)-plex cluster vertex deletion. Algorithmica 62(3–4), 930–950 (2012). https://doi.org/10.1007/s00453-011-9492-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_5

    Chapter  Google Scholar 

  3. Böcker, S., Briesemeister, S., Bui, Q.B.A., TruĂŸ, A.: Going weighted: parameterized algorithms for cluster editing. Theoret. Comput. Sci. 410(52), 5467–5480 (2009). https://doi.org/10.1016/j.tcs.2009.05.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: evaluation and experiments. Algorithmica 60(2), 316–334 (2011). https://doi.org/10.1007/s00453-009-9339-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240

    Article  MathSciNet  MATH  Google Scholar 

  6. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016). https://doi.org/10.1007/s00224-015-9631-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867 (2020). https://arxiv.org/abs/2001.06867

  8. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

  9. Dondi, R., Lafond, M.: On the tractability of covering a graph with 2-clubs. In: Gasieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_17

  10. Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph Algorithms Appl. 23(2), 271–292 (2019). https://doi.org/10.7155/jgaa.00491

    Article  MathSciNet  MATH  Google Scholar 

  11. Dondi, R., Mauri, G., Zoppis, I.: On the tractability of finding disjoint clubs in a network. Theoret. Comput. Sci. 777, 243–251 (2019). https://doi.org/10.1016/j.tcs.2019.03.045

    Article  MathSciNet  MATH  Google Scholar 

  12. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of the 37th International Symposium on Mathematical Foundations of Computer Science (MFCS 2012). LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://doi.org/10.1007/s00453-011-9492-7

  13. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

    Article  MathSciNet  Google Scholar 

  14. Figiel, A., Himmel, A., Nichterlein, A., Niedermeier, R.: On 2-clubs in graph-based data clustering: theory and algorithm engineering. CoRR, abs/2006.14972 (2020). https://arxiv.org/abs/2006.14972

  15. Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter augmentation. Discrete Appl. Math. 161(10–11), 1626–1631 (2013). https://doi.org/10.1016/j.dam.2013.01.016

    Article  MathSciNet  MATH  Google Scholar 

  16. Gramm, J., Guo, J., HĂ¼ffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005). https://doi.org/10.1007/s00224-004-1178-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: \(s\)-plex cluster editing. SIAM J. Discrete Math. 24(4), 1662–1683 (2010). https://doi.org/10.1137/090767285

    Article  MathSciNet  MATH  Google Scholar 

  18. Hartung, S., Hoos, H.H.: Programming by optimisation meets parameterised algorithmics: a case study for cluster editing. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 43–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_5

    Chapter  Google Scholar 

  19. Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and computational experiments for finding 2-clubs. J. Graph Algorithms Appl. 19(1), 155–190 (2015). https://doi.org/10.1007/978-3-642-33293-7_22

    Article  MathSciNet  MATH  Google Scholar 

  20. HĂ¼ffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). https://doi.org/10.1007/s00224-008-9150-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, S., et al.: Viewing the meso-scale structures in protein-protein interaction networks using 2-clubs. IEEE Access 6, 36780–36797 (2018). https://doi.org/10.1109/ACCESS.2018.2852275

    Article  Google Scholar 

  22. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012). https://doi.org/10.1016/j.dam.2012.05.019

    Article  MathSciNet  MATH  Google Scholar 

  23. Komusiewicz, C., Nichterlein, A., Niedermeier, R.: Parameterized algorithmics for graph modification problems: on interactions with heuristics. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 3–15. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_1

    Chapter  MATH  Google Scholar 

  24. Komusiewicz, C., Nichterlein, A., Niedermeier, R., Picker, M.: Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: theory and experiments. Eur. J. Oper. Res. 275(3), 846–864 (2019). https://doi.org/10.1016/j.ejor.2018.12.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW 2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29700-7_22

  26. Lokshtanov, D., Misra, N., Philip, G., Ramanujan, M.S., Saurabh, S.: Hardness of \(r\)-dominating set on graphs of diameter \((r + 1)\). In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 255–267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_22

    Chapter  Google Scholar 

  27. Misra, N., Panolan, F., Saurabh, S.: Subexponential algorithm for d-cluster edge deletion: exception or rule? J. Comput. Syst. Sci. 113, 150–162 (2020). https://doi.org/10.1016/j.jcss.2020.05.008

  28. Pasupuleti, S.: Detection of protein complexes in protein interaction networks using \(n\)-clubs. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 153–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78757-0_14

    Chapter  Google Scholar 

  29. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., Böcker, S.: Exact and heuristic algorithms for weighted cluster editing. In: Proceedings of the 6th Computational Systems Bioinformatics Conference (CSB 2007), pp. 391–401. World Scientific (2007). https://doi.org/10.1142/9781860948732_0040

  30. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012). https://doi.org/10.1007/s11590-011-0311-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)

    Article  MathSciNet  Google Scholar 

  32. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. CoRR, abs/1901.07609 (2019)

    Google Scholar 

Download references

Acknowledgment

We thank anonymous reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nichterlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Figiel, A., Himmel, AS., Nichterlein, A., Niedermeier, R. (2021). On 2-Clubs in Graph-Based Data Clustering: Theory and Algorithm Engineering. In: Calamoneri, T., CorĂ², F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics