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Shor’s algorithms (1/2)

Hidden subgroup problem (HSP) and its continuous version (CHSP)

e HSP. Assume that f : Z™ — CK is such that there exists a lattice L C Z",

Vel f(x+10)=Ff(x).

Given an algorithm to compute f, find L.

e CHSP : same definition with f : R™ — Ck and additional conditions on f.

History of HSP in quantum algorithms for number theory
e 1994 Simon : polynomial time quantum algorithm to solve HSP
e 1994 Shor : reduce factoring and DLP in abelian groups to HSP
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Shor’s algorithms (2/2)

Shor’s factoring and DLP algorithms

f: Z C
e When factoring N, take a random a € (Z/N)*. The period of _ : . )
i a
is the order of a and, with high probability, the order of (Z/N)*.
. If N = pgq, knowing the order (p — 1)(g — 1) of (Z/N)* is equivalent to
knowing p and q. For general N,

« Bach gave a probabilitic reduction.
e Assume every element of a group G is represented by an element of CX. When
f: 72 Ck
o ~ L has as period set the
(i,J) — &'
lattice generated by (#G,0), (0,#G) and (log, h, —1).

computing log, h, the function
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History

History of HSP in quantum algorithms for number theory
e 1994 Simon: polynomial time quantum algorithm to solve HSP
e 1994 Shor: reduce factoring and DLP in abelian groups to HSP
e 2002 Hallgren: reduce Oy when K is quadratic real to CHSP with n = 2
e 2005 Schmidt and Vollmer || Hallgren: reduce CI(K) in fixed degree to HSP

e 2014 Eisentrager, Hallgren, Kitaev, Song: reduce O} to CHSP

e 2014 Campbel, Groves, Shepherd (Soliloquy): non peer-reviewed claim to reduce
CI(K) of arbitrary degree to HSP

e 2014 Bernstein: blog post stating that the Soliloquy talk was false
e 2015 Biasse and Song: proof that the reduction of CI(K) to HSP is false
e 2016 Biasse and Song: reduction of CI(K) to CHSP

e 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial
time and precise analysis of qubits requirements
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History

History of HSP in quantum algorithms for number theory

e 1994 Simon: polynomial time quantum algorithm to solve HSP

e 1994 Shor: reduce factoring and DLP in abelian groups to HSP

e 2002 2007 Hallgren: reduce O} when K is quadratic real to CHSP with n = 2
2005 Schmidt and Vollmer || Hallgren: reduce CI(K) in fixed degree to HSP

2044 2019 Eisentrager, Hallgren, Kitaev, Song: reduce Oj to CHSP and CHSP

2015 2019 Biasse and Song: proof that the reduction of CI(K) to HSP is false
2016 Biasse and Song: reduction of CI(K) to CHSP

2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial
time and precise analysis of qubits requirements

den Boer et al. proposed a list of open questions
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Plan of the talk

» The continuous hidden subgroup problem
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Some definitions on lattices

Definitions
e SVP(L): the problem of finding the shortest vector;

e )\; is the lenght of the shortest vector by, for k > 1, Ax.1 is the lenght of the
shortest vector by not spanned by (b, ..., bk);

e CVP(x, L): the problem of finding the closes vector;
e BDD(x, L,dA;): it is CVP with the promise to be at distance d\; from the lattice.
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Some properties of lattices

Complexity
e SVP and CVP are believed exponential time on classical and quantum computers

e Babai (1985) solves BDD in polynomial time when § is very small, but in general
it is exponential time.

Canonical basis

e There is no canonical basis of a lattice, so one cannot apply period-finding
algorithms if the image is a lattice.

e Lemma: When dim L = 2, let v; and v, be such that ||v;|| = A\;. Then the datum
(vi, v2) is a canonical representation and can be computed in polynomial time
using Gauss' algorithm.

e in a general lattice L of dimension n, the vectors of lenght A\, ..., A, are unique
up to sign. This suggests a unique representation of lattices in C” but it requires
to solve SVP.

e Hence CI(K) and Oj are easier in fixed degree n because one has canonical
representations of lattices of R".
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Prerequisites about lattices

Definition and properties of the dual of a lattice
o ":={yecR"|Vxelx-yeZ};
o A\ =\ (L)

e if L is generated by the rows of a matrix B then L* is generated by the rows of
(B)~!; in particular det L* = 1/ det L;

e if M C Lthen L* C M* and [L: M] = [M*: L¥].
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Modeling the quantum part of the algorithm

Definition (Dual lattice sampler)

Let ¢ : L* — C be a map such that > ,. . |c 2—=1. Let € and J be two parameters.
An algorithm is a dual lattice sampler of parameters 1/4 >n > 0and 1/2 > 6 > 0 if it
outputs a vector x € R such that, for any finite set S C L*, one has

2_77.

Prob [y € | B(",6X}) | =) lew
A €S

It means morally that the probability of drawing a vector close to [* € L* is
approximately |c;<|? : these quantities act as a probability distribution. We add also
two technical conditions for the map c:

1. Uniformity property : there exists ¢ < 1/4 such that, for every strict sublattice

NCL:
> e

xeN

1

2

< = )
2+5

2. Concentration property : There exists R = R(m) and 0 < p < % — & — 1 such

that :
> e

|*|>R

2 < p.
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Preparation: random vectors to generate a lattice

Examples
e Bost and Mestre (1988) : complex AGM to compute periods in genus 1 and 2
e Hafner and Buchmann (1989) : classical class group
e den Boer et al. (2019) : CHSP

Lemma (dBDF 2019)

We note k = a(m + mlog, R + logy(det L)), for an absolute constant oz > 1. Let
Y1, Y2, ..., Yk be the first k vectors output by a dual basis sampler. For i =1, k put
y; = CVP(y;, L). Then for any value of the absolute constant o > 2 we have

Prob(y, ..., yx generate L) > 1 — c™,

where ¢ < 1 is an explicitly computable constant.
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The CHSP algorithm

Input 7 and approximations at one bit of precision of R, A] and det L;
Output a basis of L with absolute error 7

1. k < mlog, R — log,(det L)); 0 = %‘?ﬁgl

2. fori=1,2,..., kdo > Step 1 - Quantum

3: y; < output(dual lattice sampler(9))

a; pass

5. end for

6: Use Buchmann-Pohst algorithm on (y,. .., yx) to find a basis (y1,. .., ym) of L*;
call B the square matrix they form > Step 2 - Classical

7. Output (B71)t (here B is the matrix a basis of L*). > Step 3 - Classical
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (1/3)

The case dim L = 1: given ka and (o with absolute error §, find a € R

e Theorem (Dirichlet): For any 8 € R\Q there exists a sequence (p,, g,), such that

g, — oo and
1

/3—— .
q

n

e Let p/q be a Dirichlet approximation of koz/ﬁoz Put 6y := |ka — l?o/z\ and similarly
for 9. If max(dx, d¢) < and g > / then

a(p+ )
p/q=k/L.
Indeed,
ka + O P 1
b+, ¢ q?
implies that % qu Pt which is possible only if kg — p¢ = 0.
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (2/3)

The general case

i \ |

1529] | -+ | | be2] el o e Gl - &

LLL

K | 1 ) \ m.l,k m.n,k /

Theorem (Buchmann-Pohst)

If g > q(L), an explicite expression depending only on L, the LLL-reduction of the
above matrix is such that

® c1,...,8k_n have norm bounded by an explicit constant;
e my,...,m_,€L"
e 279cy,...,Cy) Is a an approximation of a basis of L.
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (3/3)

The particular case of Q((,) when 4 | p(n)
o Oy is a Z|Gal(K)]-module, in particular a Z[i]-module

e Poulalion: Buchmann-Pohst extends to Z[i]

LLL over Z vs. LLL over Z]i]
e Fieker-Stehlé (2010): to reduce a Z[i]-module one can forget the Z[i]-structure,
Z-reduce and retrieve the Z][i]-structure;

e Kim-Lee (2017): LLL over Z[(x]| works in practice even when Z[(y] is not
Euclidean;

e Camus (2018): implementation of LLL over Z[i] faster than the best
implementation of LLL over Z.
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Space complexity of CHSP (1/2)

Definition (Continuous Hidden Subgroup Problem - CHSP)

Let f : R™ — S, where S = @ic(0,13-C]|i) is the space of states of n qubits.
The function f is an (a, r, ¢)-oracle hiding the full-rank lattice L if and only if it
verifies the following technical conditions:

1. L is the period of f, i.e. VXV/ € L, f(x + ¢) = f(x). (periodicity)
2. The function f is a-Lipschitz. (Lipschitz condition)

3. Vx,y € R™ such that dist(x — y, L) > r, we have |[(f(x) | f(y))| < e. (strong
periodicity)
Given an efficient quantum algorithm to compute f, compute the hidden lattice of
periods L.

Representing a lattice in CX with k < co (EHKS 2014)

e (straddle encoding):
|str, (x)) = cos(5t)|k) +sin(5t)|k 4 1), where k = |x/v|, t = x/v — k

o |Strn,l/(X17 R 7Xn)> — ®7:1|Stry(x,-)>
o f(L) = 7*1/2 S el e*7F||x||2/S\strn7V(X)> with y=>" e—2mIx[?/s*
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Space complexity of CHSP (2/2)

Theorem (dBDF 2019)

CHSP can be solved with a quantum algorithm with the following complexities:
o time: O(km>Q?)
e space: mQR + n with

Q = O(mk)+ O(log /\%) + O(log TIT)’
k = O(mlog(y/ma(det L)}™)).

k is the expectancy of the number of random vectors to generate L*.
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Reduction of the O}, computation to CHSP (1/2)

Lemma (The example of totally real fields)

f: R R
Let K C R be an embedding of K. Then the function ( — PR) > has the
X = eXC’)K

period log Oj.

Proof.
Ok =0 & 70k = Ok
& eV eKand () =0k
& £(x—y) € log(Ok)
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Reduction of the O}, computation to CHSP (1/2)

Lemma (The example of totally real fields)

f: R R
Let K C R be an embedding of K. Then the function ( — PR) ) has the
X = eX(’)K

period log Oj.

Modify f to be used in CHSP

e log O is not discret (not a lattice). Let K C R be an embedding and set
o1 =1id. Let 01, o, be field automorphisms of R which extend the real
embeddings of K and let 7,1, 7,11, ... be some complex embeddings of R which

extend the complex embeddings of K. Put o1 = \/m and r=n+n — 1.
f: Rnt" — P(R) 1
(x1, %0, ..., Xp41) +— (€M01(Ok), €202(0k), ..., e 0,11(0Ok))
the period log O .
e encode any lattice of R™!, e.g. Oy, by R? C CY for a large enough q.

has

One actually finds {uw | u € O} }

e if only wants the regulator or O} /(O% )¢ for a large primel then we are done.
e For all O} use n embeddings. For the roots of unity one factors the discriminant.?

2Eisentrager et al. prove that if F has domain G x ZX x R™ and is continuous on R one can construct a
continuous function whose period is the same. (HSP reduces to CHSP)
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Space complexity of the algorithm for Oy

EHKS 2014 long version (2019)
e m= 0O(n) and n = O(m) where n = deg K

e Theorem 5.5 and D.4: f is an
(a=+/7/bc(v/m/\)"+1,R = O(m?® + mlog D), e = 3/4)-oracle for CHSP

e Theorem B.3: \; > 1/2
e Equation (D.11): \j = Q(1/4/m)

Comparison between HSP and CHSP when computing O}
Notations: m = O(n) = O(deg K) and D = discK.
e When inserted in the dBDF space complexity we get

space = O(m"*log m 4+ m>log D + mlog 7).

e For comparison, the space of HSP is dominated by that of HNF:
Micianccio and Warinschi 2001 : space(HNF) = O(m? log D).

Question: can we find particular cases without Buchmann-Pohst ?
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Cyclotomic units
Definition
In K = Q(¢) with ¢ an mth root of unity, the group of cyclotomic units is the
subgroup C of O} generated by the roots of unity and ¢}, — 1 with i € N.

Properties whem m = p¢ (see e.g. Cramer, Ducas, Peikert, Regev 2015)
e (Whashington) C is generated by +( and

_¢-1
with j € (Z/m)*/{x1}, j # 1.
e (Whashington) [LogOj : LogC] = h™(m) := h(Q(¢ + 1/¢)).
o (CDPR15)® We set b; = Logf; where Log = (log 01, log oy, ..., logo,). Let {b}};

2
be the dual basis of {b;}. Then ‘ bi|| =Q(m™! log®> m). and in particular

1/M\(M*) = O(m/ log> m).

aCramer, Ducas, Peikert, Regev (2015) only treat the case m = p® but the general can be treated as in Lemma
3.5 of Cramer ducas Wesolowski (2021).

M := LogC is a sublatice of L := LogOj
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The checker-corrector (1/2)

When CVP(M*) brings points in L*
McC Lsol*C M*

M=
N YY
e e e
- QWP
o o | @
e - - @

If d(x, L*) < 3A1(M*) then CVP(x, M*) returns a point of L*.
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The checker-corrector (1/2)

When CVP(M*) brings points in L*
McC Lsol*C M*

M=
N YY
e e e
- QWP
o o | @
e - - @

If d(x, L*) < 3A1(M*) then CVP(x, M*) returns a point of L*.

Do the quantum part in low percision and correct it before Buchmann-Pohst.
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The checker-corrector (2/2)

Lemma
Let M C L be a lattice generated by By, (a matrix for L is not necessarily known). If
y € R" is such that d(y, L*) < 3\1(M*) then one can solve CVP(y, L*) in polynomial

time.

Proof.

The following algorithm has a polynomial time complexity:
1. compute z := B},y;
2. round z = (z1,...,2,) = (|z1], .-, |Zn]);?
3. return y 1= (B,’f,,)
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The checker-corrector (2/2)

Lemma

Let M C L be a lattice generated by By, (a matrix for L is not necessarily known). If
y € R" is such that d(y, L*) < 3\1(M*) then one can solve CVP(y, L*) in polynomial
time.

Proof.
The following algorithm has a polynomial time complexity:
1. compute z := B},y;

2. round z = (z1,...,2,) = (2], .- -, [Z0]);?
3. return y 1= (B,’f,,)
ly =¥ = ||(Bi) Mz = 2)|
< ||[(BW)H|Ilz =2l = I1Bu-llllz = Z]|
< (M)

Let y, = CVP(y, L*). Then

== V4 1 * 1 * *
Iye =yl <llye =yl +lly =yl < §A1(M ) + §A1(M ) = A(M7).

Sincey, e L*CM*, yy —ye Msoy=y. O

?If d(y, L*) < A1(M*) and ||z — Z]| > 1/4 we can discard y. The algoritms is a " checker".

Razvan Barbulescu — The particular case of cyclotomic fields when computing unit groups by quantum algorithms 22 / 25



Solving CHSP in the cyclotomic case

Input 7 and approximations at one bit of precision of R, A] and det L;
Output a basis of L with absolute error 7

1. k < mlog, R — log,(det L)); 6= (jpdetl o 5 (M)

T 20(mk)|| B”;njl 7

2. fori=1,2,...,kdo > Step 1 - Quantum

3: y; < output(dual lattice sampler(9))

4 pass correct (y1, ..., yk) from error %)\1(I\/I*) to error %

5. end for h

6: Use Buchmann-Pohst algorithm on (y1, ..., yx) to find a basis (yi, ..., ym) of L*;
call B the square matrix they form > Step 2 - Classical

7. Output (B~1)t (here B is the matrix a basis of L*). >

Space complexity of the quantum step
e without the corrector: From slide " Space complexity”:

~

space — mlog T = O(m*log m + m*log D) = O(m*log m) = O(m")

because D = disc(Q((n)) = O(m™).
e with the corrector:

space — mlogT = O(m(log §)) = O(mlog A\ (M*)) = O(m?/ log® m) = O(m?).
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A different point of view

Input 7 and approximations at one bit of precision of R, A7 and det L;
Output a basis of L with absolute error 7

1. k < mlog, R — log,(det L)); 0 = (A{)*det L*

20 B|I 7
2. fori=1,2,...,kdo > Step 1 - Quantum
y; < output(dual lattice sampler(9))
pass correct (y1,. .., yx) with an error small enough to obtain (yi, ..., y,) with
integer coordinates in a basis of M*.
5. end for

v @

ey s e ¥m

Compute a Hermite normal form (HNF) to obtain the exact value of [L : M]. >
Step 2 - Classical

7. Output (B71)t € [L}—M]Matm(Z), where B € Mat,(Z) is the matrix of (y1,...,¥n)
written in a basis of M*. >

Instead of a complexity analysis

The time complexity of HNF is heuristic O(m*) so the decrease of precision is O(m*).
Hence HNF on cyclotomic fields is faster than CHSP on arbitrary fields.
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Conclusion

Reduction of number theory problems to (C)HSP

factoring and DLP in abelian groups: HSP

Ok and CI(K) of fixed degree: HSP

Ok and CI(K) of arbitrary degree: CHSP

O} of cyclotomic fields: at least as fast as HSP
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