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Abstract

The goal of this article is to develop a framework for large margin classification in metric spaces.

We want to find a generalization of linear decision functions for metric spaces and define a corre-
sponding notion of margin such that the decision function separates the training points with a large
margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lip-
schitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical
setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz
functions into its dual space. To analyze the resulting algorithm, we prove several representer theo-
rems. They state that there always exist solutions of the Lipschitz classifier which can be expressed
in terms of distance functions to training points. We provide generalization bounds for Lipschitz
classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The gen-
erality of our approach can be seen from the fact that several well-known algorithms are special
cases of the Lipschitz classifier, among them the support vector machine, the linear programming
machine, and the 1-nearest neighbor classifier.

1. Introduction

Support vector machines (SVMSs) construct linear decision boundaries in Hilbert spaces such that
the training points are separated with a large margin. The goal of this article is to extend this
approach from Hilbert spaces to metric spaces: we want to find a generalization of linear decision
functions for metric spaces and define a corresponding notion of margin such that the decision
function separates the training points with a large margin. The reason why we are interested in
metric spaces is that in many applications it is easier or more natural to construct distance functions
between objects in the data space than positive definite kernel functions as they are used for support
vector machines. Examples for this situation are the edit distance used to compare strings or graphs
and the earth mover’s distance on images.

SVMs can be seen from two different points of view. In the regularization interpretation,
for a given positive definite kernel k, the SVM chooses a decision function of the form f(x) =
Yiaik(xi,x) + b which has a low empirical error Remp and is as smooth as possible. According to
the large margin point of view, SVMs construct a linear decision boundary in a Hilbert space #
such that the training points are separated with a large margin and the sum of the margin errors is
small. Both viewpoints can be connected by embedding the sample space X into the reproducing
kernel Hilbert space # via the so called “feature map” and the function space ¥ into the dual #.
Then the regularizer (which is a functional on F) corresponds to the inverse margin (which is a
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norm of a linear operator), and the empirical error corresponds to the margin error (cf. Sections 4.3
and 7 of Scholkopf and Smola, 2002). The benefits of these two dual viewpoints are that the reg-
ularization framework gives some intuition about the geometrical meaning of the norm on %, and
the large margin framework leads to statistical learning theory bounds on the generalization error of
the classifier.

Now consider the situation where the sample space is a metric space (X,d). From the regular-
ization point of view, a convenient set of functions on a metric space is the set of Lipschitz functions,
as functions with a small Lipschitz constant have low variation. Thus it seems desirable to separate
the different classes by a decision function which has a small Lipschitz constant. In this article we
want to construct the dual point of view to this approach. To this end, we embed the metric space
(X,d) in a Banach space ‘B and the space of Lipschitz functions into its dual space B’. Remarkably,
both embeddings can be realized as isometries simultaneously. By this construction, each x € X will
correspond to some my € B and each Lipschitz function f on X to some functional T¢ € B’ such
that f(x) = Tfmy and the Lipschitz constant L( f) is equal to the operator norm ||T¢||. In the Banach
space ‘B we can then construct a large margin classifier such that the size of the margin will be given
by the inverse of the operator norm of the decision functional. The basic algorithm implementing
this approach is

minimize Remp(f)+AL(f)
in regularization language and
minimize L(f)+C Zizi subject to yif(xj) >1—¢&;, & >0

in large margin language. In both cases, L(f) denotes the Lipschitz constant of the function f,
and the minimum is taken over a subset of Lipschitz functions on X. To apply this algorithm in
practice, the choice of this subset will be important. We will see that by choosing different sub-
sets we can recover the SVM (in cases where the metric on X is induced by a kernel), the linear
programming machine (cf. Graepel et al., 1999), and even the 1-nearest neighbor classifier. In par-
ticular this shows that all these algorithms are large margin algorithms. So the Lipschitz framework
can help to analyze a wide range of algorithms which do not seem to be connected at the first glance.

This paper is organized as follows: in Section 2 we provide the necessary functional analytic
background for the Lipschitz algorithm, which is then derived in Section 3. We investigate rep-
resenter theorems for this algorithm in Section 4. It will turn out that the algorithm always has a
solution which can be expressed by distance functions to training points. In Section 5 we compute
error bounds for the Lipschitz classifier in terms of Rademacher complexities. In particular, this
gives valuable information about how fast the algorithm converges for different choices of subsets
of Lipschitz functions. The geometrical interpretation for choosing different subsets of Lipschitz
functions is further discussed in Section 6.

2. Lipschitz Function Spaces

In this section we introduce several Lipschitz function spaces and their properties. For a compre-
hensive overview we refer to Weaver (1999).

A metric space (X,d) is a set X together with a metric d, that is a non-negative, symmetric
function d : X x X — R which fulfills d(x,y) =0 < x =y and the triangle inequality d(x,y) +
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d(y,z) <d(x,z). Afunction f : X — R on a metric space (.X,d) is called a Lipschitz function if there
exists a constant L such that | f(x) — f(y)| < Ld(x,y) for all X,y € X. The smallest constant L such
that this inequality holds is called the Lipschitz constant of f, denoted by L(f). For convenience,
we recall some standard facts about Lipschitz functions:

Lemma 1 (Lipschitz functions) Let (X,d) be a metric space, f,g: X — R Lipschitz functions and
acR ThenL(f+g) <L(f)+L(g), L(af) <|a|L(f)and L(min(f,g)) <max{L(f),L(g)}, where
min( f,g) denotes the pointwise minimum of the functions f and g. Moreover, let f := lim,_., f, the
pointwise limit of Lipschitz functions f, with L(f,) < c for all n € N. Then f is a Lipschitz function
with L(f) <c.

For a metric space (X,d) consider the set
Lip(X) :={f: X — R; f isabounded Lipschitz function}.

It forms a vector space, and the Lipschitz constant L(f) is a seminorm on this space. To define a
convenient norm on this space we restrict ourselves to bounded metric spaces. These are spaces
which have a finite diameter diam(X) := sup, . d(x,y). For the learning framework this is not a
big drawback as the training and test data can always be assumed to come from a bounded region
of the underlying space. For a bounded metric space X we choose the norm

Il = max{L(f),%H&)}

as our default norm on the space Lip(X). It is easy to see that this indeed is a norm. Note that
in the mathematical literature, Lip(X) is usually endowed with the slightly different norm || f|| :=
max{L(f),| f|l}. Butwe will see that the norm || - ||_ fits very naturally in our classification setting,
as already can be seen by the following intuitive argument. Functions that are used as classifiers are
supposed to take positive and negative values on the respective classes and satisfy

]l = sup T ()] < SXUJOIf(X) — f(y)[ < diam(X)L(f), M)

that is || f||L = L(f). Hence, the L-norm of a classification decision function is determined by the
quantity L(f) we use as regularizer later on. Some more technical reasons for the choice of || - ||
will become clear later.

Another important space of Lipschitz functions is constructed as follows. Let (Xp,d) be a metric
space with a distinguished “base point” e which is fixed in advance. (Xp,d,e) is called a pointed
metric space. We define

Lipg(Xo) := { € Lip(X); f(e) =0}.
On this space, the Lipschitz constant L(-) is a norm. However, its disadvantage in the learning
framework is the condition f(e) = 0, which is an inconvenient a priori restriction on our classifier
as e has to be chosen in advance. To overcome this restriction, for a given bounded metric space
(X,d) we define a corresponding extended pointed metric space Xp := X U {e} for a new base
element e with the metric

d(x,y) forx,y e X

) )
diam(x) forxe X,y=e.

i (%,y) = {
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Note that diam(Xp) = diam(X). Then we define the map

f(x) ifxex
0 ifx=e.

- Lip(X) — Lipy(Xo), WUWZ{ 3)

Lemma 2 (Isometry between Lipschitz function spaces)  is an isometric isomorphism between
Lip(X) and Lipy(Xo).

Proof Obviously, W is bijective and linear. Moreover, for fo := Y(f) we have

[fo(x) = fo(y)| [FO) = FW)] g TX) =T (e)]

L(fo) = su = max{ su , =
(fo) x,yeEJ(o dx, (X,Y) {x,yee( d(x,y) xex dx(x,e) J
_ [fllo
= max{L(f), o S = Il
Hence, Y is an isometry. |

In some respects, the space (Lipy(Xo),L(-)) is more convenient to work with than (Lip(X),|| -
|IL). In particular it has some very useful duality properties. Let (Xp,d,e) be a pointed metric space
with some distinguished base element e. A molecule of Xy is a function m : Xy — R such that its
support (i.e., the set where m has non-zero values) is a finite set and ¥, x, m(x) = 0. For x,y € Xo
we define the basic molecules myy := 1, —1y. Itis easy to see that every molecule m can be written
as a (non unique) finite linear combination of basic molecules. Thus we can define

|MMa:m{zmwmmxm:zmmm}

which is a norm on the space of molecules. The completion of the space of molecules with respect
to || - ||ae is called the Arens-Eells space AE(Xp). Denoting its dual space (i.e., the space of all
continuous linear forms on AE (Xp)) by AE(Xp)' the following theorem holds true (cf. Arens and
Eells, 1956; Weaver, 1999).

Theorem 3 (Isometry between AE (Xp)" and Lipy(Xp)) AE(Xp)' is isometrically isomorphic to
Lipo(Xo).

This means that we can regard a Lipschitz function f on Xy as a linear functional T on the space of
molecules, and the Lipschitz constant L( ) coincides with the operator norm of the corresponding
functional T¢. For a molecule m and a Lipschitz function f this duality can be expressed as

(f,m) =3 m(x)f(x). 4)
XEXp

It can be proved that ||myy||ae = d(X,y) holds for all basic molecules myy. Hence, it is possible to
embed Xp isometrically in AE (Xp) via

I Xo — AE(Xp), X — Mye. (5)
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The norm || - ||ae has a nice geometrical interpretation in terms of the mass transportation prob-
lem (cf. Weaver, 1999): some product is manufactured in varying amounts at several factories and
has to be distributed to several shops. The (discrete) transportation problem is to find an optimal
way to transport the product from the factories to the shops. The costs of such a transport are defined
as y;jaijdij where ajj denotes the amount of the product transported from factory i to shop j and dj;
the distance between them. If f; denotes the amount produced in factory i and s; denotes the amount
needed in shop i, the formal definition of the transportation problem is

Lj:mliﬁ‘,nzaijdij subjectto a;j >0, ;aij =j, Zaij = fj. (6)

To connect the Arens-Eells space to this problem we identify the locations of the factories and
shops with a molecule m. The points x with m(x) > 0 represent the factories, the ones with m(x) <0
the shops. It can be proved that ||m||ae equals the minimal transportation costs for molecule m. A
special case is when the given molecule has the form mo = § my,y,. In this case, the transportation
problem reduces to the bipartite minimal matching problem: given 2m points (X1,...,Xn,Y1,---,Yn)
in a metric space, we want to match each of the x-points to one of the y-points such that the sum of
the distances between the matched pairs is minimal. The formal statement of this problem is

min % d (i, Yri)) ()
Ny
where the minimum is taken over all permutations Ttof the set {1,...,n} (cf. Steele, 1997).

In Section 4 we will also need the notion of a vector lattice. A vector lattice is a vector space V
with an ordering < which respects the vector space structure (i.e., forx,y,zeV,a>0: x<y — x+
z<y-+zandax < ay) and such that for any two elements f,g €V there exists a greatest lower bound
inf(f,g). In particular, the space of Lipschitz functions with the ordering f < g < Vx f(x) <g(x)
forms a vector lattice.

3. The Lipschitz Classifier

Let (X,d) be a metric space and (X;,Yi)i=1,..n C X x {£1} some training data. In order to be able
to define hyperplanes, we want to embed (X, d) into a vector space, but without loosing or changing
the underlying metric structure.

3.1 Embedding and Large Margin in Banach Spaces

Our first step is to embed X by the identity mapping into the extended space Xy as described in (2),
which in turn is embedded into AE (Xp) via (5). We denote the resulting composite embedding by

Secondly, we identify Lip(X) with Lipy(Xp) according to (3) and then Lipy(Xo) with AE(Xp)” ac-
cording to Theorem 3. Together this defines the map

W: Lip(X) — AE(Xp)', f— Ts.

Lemma 4 (Properties of the embeddings) The mappings ® and W have the following properties:
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1. @ is an isometric embedding of X into AE (Xp): to every point x € X corresponds a molecule
my € AE(Xp) such that d(x,y) = ||my —my|[ag for all x,y € X.

2. Lip(Xx) is isometrically isomorphic to AE(Xp)’: to every Lipschitz function f on X corre-
sponds an operator Tt on AE (Xp) such that || f||L = || T¢|| and vice versa.

3. It makes no difference whether we evaluate operators on the image of X in AE(Xp) or apply
Lipschitz functions on X directly: Trmy = f(x).

4. Scaling a linear operator is the same as scaling the corresponding Lipschitz function: for
a € R we have aT; = Tas.

Proof All these properties are direct consequences of the construction and Equation (4).
[ |

The message of this lemma is that it makes no difference whether we classify our training data
on the space X with the decision function sgn f (x) or on AE(Xp) with the hyperplane sgn(Tsmy).
The advantage of the latter is that constructing a large margin classifier in a Banach space is a well
studied problem. In Bennett and Bredensteiner (2000) and Zhou et al. (2002) it has been established
that constructing a maximal margin hyperplane between the set X * of positive and X~ of negative
training points in a Banach space V is equivalent to finding the distance between the convex hulls of
X and X~. More precisely, let C*™ and C~ the convex hulls of the sets X ™ and X . In the separable
case, we define the margin of a separating hyperplane H between C* and C~ as the minimal distance
between the training points and the hyperplane:

p(H) = inf nd(xi,H).

i
i=1,...,
The margin of the maximal margin hyperplane coincides with half the distance between the
convex hulls of the positive and negative training points. Hence, determining the maximum margin

hyperplane can be understood as solving the optimization problem

inf T—p |
p%C*,p*eC*Hp P ”
By duality arguments (cf. Bennett and Bredensteiner, 2000) it can be seen that its solution coincides
with the solution of
su inf T,pr—p)/|ITI.
sup L e (TP =P/l

This can be equivalently rewritten as the optimization problem

inf ||T|| subjecttoy;i((T,xi)+b)>1Vi=1,..n. 8)
TeV/ be

A solution of this problem is called a large margin classifier. The decision function has the form
f(x) = (T,x) +b, and its margin is given by 1/||T||. For details we refer to Bennett and Breden-
steiner (2000) and Zhou et al. (2002).
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3.2 Derivation of the Algorithm

Now we can apply this construction to our situation. We embed X isometrically into the Banach
space AE (Xp) and use the above reasoning to construct a large margin classifier. As the dual space
of AE(Xp) is Lipy(Xo) and (f,my) = f(x), the optimization problem (8) in our case is

inf L(fo) subjecttoyi(fo(xi)+b)>1Vi=1,...,n.
focLipo(Xo).be (fo) subj Yi(fo(xi) +b) > )

By the isometry stated in Theorem 3, this is equivalent to the problem

inf f i i(F(X >1Vi=1,...n.
o subject o yi(f ) +b) > 1 ¥i=1....n

Next we want to show that the solution of this optimization problem does not depend on the
variable b. To this end, we first set g := f +b € Lip(.X) to obtain

inf —b bjecttovig(x;) >1 Vi=1.....n.
geLml&)?be lg —bl|L subject to yig(xi) > 1 Vi=1,...,n

Then we observe that

19— bll
" diam(X)

19— bl
" diam(X)

19/
>L(g) = L - .
b2 L) = max{L(9): omoey !
Here the last step is true because of the fact that g takes positive and negative values and thus
ll9]l./diam(X) < L(g) as we explained in Equation (1) of Section 2. Hence, under the constraints
yig(xj) > 1 we have inf, ||g — b||L = L(g), and we can rewrite our optimization problem in the final
form

g —bllL = max{L(g —b) } = max{L(g)

inf L(f)subjecttoyif(xj)>1,i=1,...,n.
fGlI_?p(.X) ( )SU JeC oyl (XI)— ) | ’ »N (*)

We call a solution of this problem a (hard margin) Lipschitz classifier. So we have proved:

Theorem 5 (Lipschitz classifier) Let (X,d) be a bounded metric space, (Xi,Yi)i=1,...n C X x {£1}
some training data containing points of both classes. Then a solution f of (x) is a large margin
classifier, and its margin is given by 1/L(f).

One nice aspect about the above construction is that the margin constructed in the space AE (Xp)
also has a geometrical meaning in the original input space X itself: it is a lower bound on the
minimal distance between the “separation surface” S := {s € X; f(s) =0} and the training points.
To see this, normalize the function f such that minj—1__n|f(xi)| = 1. This does not change the set
S. Because of

L<f00)| = [f(x) = f(s)| < L(f)d(xi,9)
we thus get d(x;,s) > 1/L(f).
Analogously to SVMs we also define the soft margin version of the Lipschitz classifier by

introducing slack variables &; to allow some training points to lie inside the margin or even be
misclassified:

n
inf L(f - jecttoy;f(xi)>1-—¢&. & >0.
fell_ri]p(x) ( )—I—Ci;El subject to y; f(x) > &i, &i >0 (%)
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In regularization language, the soft margin Lipschitz classifier can be stated as

it Lt 0) +AL(F)
where the loss function £ is given by ¢(yi f (xi)) = max{0,1 —vy;f(x)}.

In Section 4, we will give an analytic expression for a solution of (x) and show how (xx) can
be written as a linear programming problem. However, it may be sensible to restrict the set over
which the infimum is taken in order to avoid overfitting. We thus suggest to consider the above
optimization problems over subspaces of Lip(X) rather than the whole space Lip(X). In Section 6
we derive a geometrical interpretation of the choice of different subspaces. Now we want to point
out some special cases.

Assume that we are given training points in some reproducing kernel Hilbert space H. As it is
always the case for linear functions, the Lipschitz constant of a linear function in H’ coincides with
its Hilbert space norm. This means that the support vector machine in H chooses the same linear
function as the Lipschitz algorithm, if the latter takes the subspace of linear functions as hypothesis
space.

In the case where we optimize over the subset of all linear combinations of distance functions
of the form f(x) = S, aid(xi,x) + b, the Lipschitz algorithm can be approximated by the linear
programming machine (cf. Graepel et al., 1999):

n n

inf § |aj| subject to yi(Zlaid(xi,x) +b)>1.
ab .

= i=

The reason for this is that the Lipschitz constant of a function f(x) = Y ; aid(xi,x) + b is upper
bounded by Y;|ai|. Furthermore, if we do not restrict the function space at all, then we will see in
the next section that the 1-nearest neighbor classifier is a solution of the Lipschitz algorithm.

These examples show that the Lipschitz algorithm is a very general approach. By choosing
different subsets of Lipschitz functions we recover several well known algorithms. As the Lipschitz
algorithm is a large margin algorithm according to Theorem 5, the same holds for the recovered
algorithms. For instance the linear programming machine, originally designed with little theoretical
justification, can now be understood as a large margin algorithm.

4. Representer Theorems

A crucial theorem in the context of SVMs and other kernel algorithms is the representer theorem
(cf. Scholkopf and Smola, 2002). It states that even though the space of possible solutions of
these algorithms forms an infinite dimensional space, there always exists a solution in the finite
dimensional subspace spanned by the training points. It is because of this theorem that SVMs
overcome the curse of dimensionality and yield computationally tractable solutions. In this section
we prove a similar theorem for the Lipschitz classifiers (x) and (xx). To simplify the discussion, we
denote D :={d(X,-); x € X} U{1} and Dyin := {d(xi, -); x; training point } U {1}, where 1 is the
constant-1 function.

4.1 Soft Margin Case

We first start by recalling a general result which implies the classical representer theorem in the case
of SVMs.
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Lemma 6 (Minimum norm interpolation) Let V be a function of n+ 1 variables which is non-
decreasing in its n 4 1-st argument. Given n points x4,...,X, and a functional Q, any function
which is a solution of the problem

infy (f(xa)..... (), (1)) 9)

is a solution of the minimum norm interpolation problem

inf  Q(f 10
f:Vi,Ifr(]xi):ai () ( )

for some ag,...,a, € R.

Here, f being a solution of a problem of the form infW (f) means f =argminW (f). We learned
this theorem from M. Pontil, but it seems to be due to C. Micchelli.
Proof Let fo be a solution of the first problem. Take a; = fo(x;). Then for any function f such that
f(xi) = a; for all i, we have

V(f(X1),...,T(Xn),Q(f)) >V (fo(x1),..., fo(xn),Q(fo)) =V (f(X1),..., F(Xn),Q(f0)).

Hence, by monotonicity of V we get Q(f) > Q(fo), which concludes the proof. [ |

The meaning of the above result is that if the solutions of problem (10) have specific properties,
then the solutions of problem (9) will also have these properties. So instead of studying the proper-
ties of solutions of (xx) directly, we will investigate the properties of (10) when the functional Q is
the Lipschitz norm. We first need to introduce the concept of Lipschitz extensions.

Lemma 7 (Lipschitz extension) Given a function f defined on a finite subset x4, ..., x, of X, there
exists a function f’ which coincides with f on xy,...,Xy, is defined on the whole space X, and has
the same Lipschitz constant as f. Additionally, it is possible to explicitly construct f’ in the form
f'(x) =a_ min (f(x)-+L(f)d(x,x))+(1-a) rqax (f(xi) —L(f)d(x,x)),
’ 1=

e
for any a € [0,1], with L(f) = max; j—1..n(f(xi) — F(xj))/d(Xi,X;j).
Proof Consider the function g(x) = minj=y,__n(f(xi) +L(f)d(x,x;)). We have

190 ~gy)| < max_[x)+L (1) (xx) = Fx) = L(a(yx) | < LDA()

so that L(g) < L(f). Also, by definition g(x;) < f(xi) + L(f)d(xi,xi) = f(xi). Moreover, if iy de-
notes the index where the minimum is achieved in the definition of g(xi), i.e. g(xi) = f(x;,) +
L(f)d(xi,Xi,), then by definition of L(f) we have g(xi) > f(xi,) + (f(xi) — f(X;,)) = f(xi). Asa
result, forall i=1,...,n we have g(xi) = f(x;), which also implies that L(g) = L(f).

we have f'(x;) = f(x;) for all i. Moreover, L(ag+ (1—a)h) <aL(g)+ (1 —a)L(h) =L(f) and
thus L(f") = L(f), which concludes the proof. [

From the above lemma, we obtain an easy way to construct solutions of minimum norm inter-
polation problems like (10) with Lipschitz norms, as is expressed in the next lemma.
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Lemma 8 (Solution of the Lipschitz minimal norm interpolation problem)
Letas,...,an € R", a € [0,1], Lo = max; j—1...n(ai —a;j)/d(xi,xj), and

fa(X) ;== i:r?in n(ai +Lod(X, %))+ (1 —a) i:r?axn(ai — Lod(X,Xi)).

Then fq is a solution of the minimal norm interpolation problem (10) with Q(f) = L(f). Moreover,
when o = 1/2 then fq is a solution of the minimal norm interpolation problem (10) with Q(f) =
Il

Proof Given that a solution f of (10) has to satisfy f(x;) = aj, it cannot have L(f) < Lo. Moreover,
by Lemma 7 fy satisfies the constraints and has L(f) = Lo, hence it is a solution of (10) with
Q(f) =L(f).

When one takes Q(f) = ||f||., any solution f of (10) has to have L(f) > Lo and || f||c >
max; |aj|. The proposed solution fq with a = 1/2 not only satisfies the constraints fy(x;) = a;
but also has L(f) = Lo and || f||. = max;|ai|, which shows that it is a solution of the considered
problem.

To prove that || f||.. = max;|ai|, consider x € X and denote by i; and i, the indices where the mini-
mum and the maximum, respectively, are achieved in the definition of f4(x). Then one has

1 1
1:1/2 (X) < E (aiz + Lod(X,Xiz)) + E (aiz —Lod (Xaxiz)) =aj,,

and similarly fy > (x) > aj; . |

Now we can formulate a general representer theorem for the soft margin Lipschitz classifier.

Theorem 9 (Soft margin representer theorem) There exists a solution of the soft margin Lip-
schitz classifier (xx) in the vector lattice spanned by Dy.in which is of the form

f(x) = %min(ai +Lod (x,Xi)) + ; max (a; — Lod (X, Xi))
for some real numbers ag,...,an with Lo := max; j(aj —a;j)/d(xi,xj). Moreover one has || f||L =
L(f) = Lo.

Proof The first claim follows from Lemmas 6 and 8. The second claim follows from the fact that a
solution of () satisfies || f||L = L(f). [ |

Theorem 9 is remarkable as the space Lip(.X') of possible solutions of (xx) contains the whole
vector lattice spanned by 9. The theorem thus states that even though the Lipschitz algorithm
searches for solutions in the whole lattice spanned by 9 it always manages to come up with a
solution in the sublattice spanned by Dyin.

4.2 Algorithmic Consequences

As a consequence of the above theorem, we can obtain a tractable algorithm for solving problem
(xx). First, we determine the coefficients a; by solving

(ai —a;)
m|n Zlé yiai) +)\n?a}x a)
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which can be rewritten as a linear programming problem

n
min ZEiH\p,

ay,...an.€1,-..6n,PE §

under the constraints &; > 0, yia; > 1 —&;, p > (ai —a;)/d(xi,x;j). Once a solution is found, one can
simply take the function f; , defined in Theorem 9 with the coefficients a; determined by the linear
program. Note, however, that in practical applications, the solution found by this procedure might
overfit as it optimizes (xx) over the whole class Lip(X).

4.3 Hard Margin Case

The representer theorem for the soft margin case clearly also holds in the hard margin case, so that
there will always be a solution of (x) in the vector lattice spanned by Dy,in. But in the hard margin
case, also a different representer theorem is valid. We denote the set of all training points with
positive label by X, the set of the training points with negative label by X —, and for two subsets
A,B C X we define d(A,B) := infacapeg d(a,b).

Theorem 10 (Hard margin representer theorem) Problem (x) always has a solution which is a
linear combination of distances to sets of training points.

To prove this theorem we first need a simple lemma.

Lemma 11 (Optimal Lipschitz constant) The Lipschitz constant L* of a solution of (x) satisfies
L* > 2/d(X*,X7).

Proof For a solution f of (x) we have

_ [F(x) —f(y)l [ F(xi) — F(xj)]
L(f) = :yu;;( d(x,y) ZLJT&).(.,n d(xi,xj)

Vi—yjl 2 2

Li=Lond(Xi, X)) Mingexsgex-d(Xi,Xj)  d(X+,X7)

Vv

Lemma 12 (Solutions of (x)) Let L* =2/d(X*,X™). For all a € [0,1], the following functions
solve (x):
fa(X) :=a miin(yi +L*d(x,xi) + (1 —0a) miax(yi —L*d(x,xi))

_d(x,X7) —d(x,XT)
(x) = d(X+,X)

Proof By Lemma 7, fy has Lipschitz constant L* and satisfies fq(Xi) = yi. Moreover, it is easy to
see that yjg(xi) > 1. Using the properties of Lipschitz constants stated in Section 2 and the fact that
the function d(x, -) has Lipschitz constant 1 we see that L(g) < L*. Thus fy and g are solutions of
(*) by Lemma 11. |
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The functions fq and g lie in the vector lattice spanned by Dyin. As g is a linear combination
of distances to sets of training points we have proved Theorem 10.

It is interesting to have a closer look at the functions of Lemma 12. The functions fy and
f1 are the smallest and the largest functions, respectively, that solve problem (x) with equality
in the constraints: any function f that satisfies f(x;) =y; and has Lipschitz constant L* satisfies
fo(x) < f(x) < f1(x). The functions g and f; /, are especially remarkable:

Lemma 13 (1-nearest neighbor classifier) The functions g and f;, defined above have the sign
of the 1-nearest neighbor classifier.

Proof Itis obviousthatg(x) >0 <= d(x,X*) <d(x,X ") and g(x) <0 <= d(x,X ") >d(x,X 7).
For the second function, we rewrite f; , as follows:
f1/0(x) = %(min(L*d(x,X*)+1,L*d(x,X‘)—1)—min(L*d(x,X*)—1,L*d(x,X‘)—|—1)).
Consider x such that d(x,X*) >d(x,X ™). Thend(x,X")+1 > d(x,X ) — 1 and thus
f1/2(x) = % (L*d(x,X7) —1—min(L*d(x,X") = 1,L*d(x,X ") +1)) <0.

The same reasoning applies to the situation d(x,X ") < d(x,X ) to yield f, /,(x) > 0 in this case. B

Note that g needs not reach equality in the constraints on all the data points, whereas the func-
tion f;/, always satisfies equality in the constraints. Lemma 13 has the surprising consequence that
according to Section 3, the 1-nearest neighbor classifier actually is a large margin classifier.

4.4 Negative Results

So far we have proved that (x) always has a solution which can be expressed as a linear combination
of distances to sets of training points. But maybe we even get a theorem stating that we always find a
solution which is a linear combination of distance functions to single training points? Unfortunately,
in the metric space setting such a theorem is not true in general. This can be seen by the following
counterexample:

Example 1 Assume four training points X1, X2, X3, X4 with distance matrix

0211
2 011
D=11 10 2
1120

and label vector y = (1,1,—1,—1). Then the set

{f: X —=>Rlyif(x) >1, f(x)= iaid(xi,x)er}
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is empty. The reason for this is that the distance matrix is singular and we have d(x1,-) +d(Xz,-) =
d(x3,-) = d(x4,-). Hence, in this example, (x) has no solution which is a linear combination of
distances to single training points. But it still has a solution as linear combination of distances to
sets of training points according to Theorem 10.

Another negative result is the following. Assume that instead of looking for solutions of (x) in
the space of all Lipschitz functions we only consider functions in the vector space spanned by D. Is
it in this case always possible to find solution in the linear span of Dy4in? The answer is no again.
An example for this is the following:

Example 2 Let X = {xy,...,Xs} consist of five points with distance matrix

02111
2 0111
D=1 10 2 1
1120 2
11120

Let the first four points be training points with the label vector y = (—1,—1,—1,1). As above there
exists no feasible function in the vector space spanned by Dain. But as the distance matrix of all
five points is invertible, there exist feasible functions in the vector space spanned by D.

In the above examples the problem was that the distance matrix on the training points was
singular. But there are also other sources of problems that can occur. In particular it can be the case
that the Lipschitz constant of a function restricted to the training set takes the minimal value L*, but
the Lipschitz constant on the whole space X is larger. Then it can happen that although we can find
a linear combination of distance functions that satisfies f(xj) =y;, the function f has a Lipschitz
constant larger than L* and thus is no solution of (x). An example for this situation is the following:

Example 3 Let X = {xy,...,Xs} consist of five points with distance matrix

01111
10112
D=1 10 2 1
11201
12110

Let the first four points be training points with the label vector y = (1,1,—1,—1). The optimal
Lipschitz constant in this problem is L* = 2/d(X*,X~) = 2. The function f(x) = —2d(xz,x) —
2d(x2,x) + 3 has this Lipschitz constant if we evaluate it on the training points only. But if we also
consider xs, the function has Lipschitz constant 4.

These examples show that, in general, Theorem 10 cannot be improved to work in the vector
space instead of the vector lattice spanned by Dyqin. This also holds if we consider some subspaces
of the set of Lipschitz functions. Thus we are in the interesting situation that it is not enough to
consider distance functions to single training points — we have to deal with distances to sets of
training points.
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5. Error Bounds

In this section we compute error bounds for the Lipschitz classifier using Rademacher averages.
This can be done following techniques introduced for example in Chapter 3 of Devroye and Lu-
gosi (2001) or in Bartlett and Mendelson (2002). The measures of capacity we consider are the
Rademacher average R, and the related maximum discrepancy R,. For an arbitrary class ¥ of
functions, they are defined as

RalF) = E (3 sup |3 oif<xi>|) S (15up| S (1(%) f(X{))) = 2Ra()

Nicy & Nicy &

where o; are iid Rademacher random variables (i.e., Prob(o; = +1) = Prob(o; = —1) = 1/2), X;
and X/ are iid sample points according to the (unknown) sample distribution, and the expectation is
taken with respect to all occurring random variables. Sometimes we also consider the conditional
Rademacher average R,, where the expectation is taken only conditionally on the sample points
X1, ...,Xn. For decision function f, consider the loss function ¢(f(x),y) =1ifyf(x) < —-1,1—-yf(x)
if0<yf(x)<1,and0ifyf(x) > 1. Let F be aclass of functions, denote by E the expectation with
respect to the unknown sample distribution and by E,, the expectation with respect to the empirical
distribution of the training points.

Lemma 14 (Error bounds) With probability at least 1 — & over the iid drawing of n sample points,
every f € F satisfies

E((F(X),Y)) < En(£(F(X),Y)) +2Rn(F) + 48'09512/5),

Proof The proof is based on techniques of Devroye and Lugosi (chap. 3 of 2001) and Bartlett and
Mendelson (2002): McDiarmid’s concentration inequality, symmetrization and contraction prop-
erty of Rademacher averages. [ |

A similar bound can be obtained with the maximum discrepancy (see Bartlett and Mendelson, 2002).

We will describe two different ways to compute Rademacher averages for sets of Lipschitz
functions. One way is a classical approach using entropy numbers and leads to an upper bound on
Rn. For this approach we always assume that the metric space (X, d) is precompact (i.e., it can be
covered by finitely many balls of radius € for every € > 0).

The other way is more elegant: because of the definition of || - || and the resulting isometries,
the maximum discrepancy of a || - ||_-unit ball of Lip(X) is the same as of the corresponding unit
ball in AE (Xp)'. Hence it will be possible to express R;, as the norm of an element of the Arens-Eells
space. This norm can then be computed via bipartite minimal matching. In the following, B always
denotes the unit ball of the considered function space.
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5.1 The Duality Approach

The main insight to compute the maximum discrepancy by the duality approach is the following
observation:

n n
sup |y F(xi)—f(xi)|= sup [ Temy —Timy|=
Ifl<1 & ITel<1 iE
n n
= sup [(Ts, Zlmxi —my)| = || ZmXix;HAE
[T¢I<1 i= i=

Applying this to the definition of the maximum discrepancy immediately yields
~ 10
Rn(B) = =E My.x’||AE - 11
n(B) =~ ||iZ1 xx/ | A€ (11)

As we already explained in Section 2, the norm || 1, My ||ag can be interpreted as the costs of
a minimal bipartite matching between {X1,...,Xp} and {X{,...,X}}. To compute the right hand side
of (11) we need to know the expected value of random instances of the bipartite minimal matching
problem, where we assume that the points X; and X/ are drawn iid from the sample distribution.
In particular we want to know how this value scales with the number n of points as this indicates
how fast we can learn. This question has been solved for some special cases of random bipartite
matching. Let the random variable C,, describe the minimal bipartite matching costs for a matching
between the points Xy, ..., Xy and X{,..., X, drawn iid according to some distribution P. In Dobric
and Yukich (1995) it has been proved that for an arbitrary distribution on the unit square of RY with
d > 3 we have limC,/(nd~/9) = ¢ > 0 a.s. for some constant c. The upper bound EC, < cy/nlogn
for arbitrary distributions on the unit square in R? was presented in Talagrand (1992). These results,
together with Equation (11), lead to the following maximum discrepancies:

Theorem 15 (Maximum discrepancy of unit ball of Lip([0,1]9)) Let X = [0,1]¢ ¢ RY with the
Euclidean metric. Then the maximum discrepancy of the || - ||_-unit ball B of Lip(X) satisfies

Rn(B) < c2+/logn/y/n forallne N ifd=2
lim Ry(B) ¢/n=¢q >0 ifd >3

Nn—oo

where cq (d > 2) are constants which are independent of n but depend on d.

Note that this procedure gives (asymptotically) exact results rather than upper bounds in cases
where we have (asymptotically) exact results on the bipartite matching costs. This is for example
the case for cubes in RY,d > 3 as Dobric and Yukich (1995) gives an exact limit result, or for R?
with the uniform distribution.

5.2 Covering Number Approach

To derive the Rademacher complexity in more general settings than Euclidean spaces we use an
adapted version of the classical entropy bound of Dudley based on covering numbers. The covering
number N (X, €,d) of a totally bounded metric space (X,d) is the smallest number of balls of radius
€ with centers in X which can cover X completely. The proof of the following theorem can be found
in the appendix.
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Theorem 16 (Generalized entropy bound) Let ¥ be a class of functions and X, ..., X, iid sample
points with empirical distribution p,. Then, for every € > 0,

A~

R (f)<2£+—/ V10gN(F,u,La(pn)) du.

To apply this theorem we need to know covering numbers of spaces of Lipschitz functions. This
can be found for example in Kolmogorov and Tihomirov (1961), pp.353-357.

Theorem 17 (Covering numbers for Lipschitz function balls) For a totally bounded metric space
(X,d) and the unit ball B of (Lip(X),||-||L),

1 N(Xu%vd)
NOC4Ed) < N(B,e, | - [Jo) < (z [Zd%m(x)] +1) .

If, in addition, X is connected and centered (i.e., for all subsets A C X with diam(A) < 2r there
exists a point x € X such that d(x,a) <r for all a € A),

IN(X2ed) < N (B, g, || - [lor) < < [Zdlam -‘ > oN(x.5.d)
<N

Combining Theorems 16 and 17 and using N(F,u,L2(Hn))
the Rademacher complexity of balls of Lip(X):

(F,u,] - |l») Nnow gives a bound on

Theorem 18 (Rademacher complexity of unit ball of Lip(.X)) Let (X, d) be a totally bounded met-
ric space with diameter diam(X) and B the ball of Lipschitz functions with || f||. < 1. Then, for
every € > 0,

Rn(B) <2s+—/4d'am \/ 7:)log (2 Fd""‘fm(x)w +1> du.

If, in addition, X is connected and centered, we have

Ra(B) < 2¢ + I/Zd'am \/ (X ,;,d)log2+log(2 {%MWJAMU.

In our framework this is a nice result as the bound on the complexity of balls of Lip(X) only uses
the metric properties of the underlying space X. Now we want to compare the results of Theorems
15 and 18 for two simple examples.

Example 4 (d-dimensional unit square, d > 3) Let X = [0,1]¢ ¢ RY,d > 3, with the Euclidean
metric || - ||2. This is a connected and centered space. In Theorem 15 we showed that R,(B) asymp-
totically scales as 1//n, and this result cannot be improved. Now we want to check whether The-
orem 18 achieves a similar scaling rate. To this end we choose € = 1/¢n (as we know that we
cannot obtain a rate smaller than this) and use that the covering numbers of X have the form
N(X,&,| - |l2) = c/€? (e.g., page 1 of Mendelson and Vershynin, 2003). After evaluating the second
integral of Theorem 18 we find that R, (B) indeed scales as 1/ J/n.
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Example 5 (2-dimensional unit square) Let X = [0,1]? ¢ R? with the Euclidean metric. Applying
Theorem 18 similar to Example 4 yields a bound on R,,(B) that scales as logn//n.

In case of Example 4 the scaling behavior of the upper bound on R, (B) obtained by the cov-
ering number approach coincides with the exact result for ﬁn(B) derived in Theorem 15. In case
of Example 5 the covering number result logn/+/n is slightly worse than the result /log(n)/\/n
obtained in Theorem 15.

5.3 Complexity of Lipschitz RBF Classifiers

In this section we want to derive a bound for the Rademacher complexity of radial basis function
classifiers of the form

Fror :={f 1 X = R| f(x Zakgk (Pk;X)), Gk € G, | < oo}, (12)

where px € X, a € R, and G C Lip(X) is a (small) set of || - ||»-bounded Lipschitz functions on R
whose Lipschitz constants are bounded from below by a constant ¢ > 0. As an example, consider
G =1{9:R — R| g(x) = exp(—x%/0?),0 > 1}. The special case G = {id} corresponds to the
function class which is used by the linear programming machine. It can easily be seen that the
Lipschitz constant of an RBF function satisfies L(Saxgk(d(pk,-))) < Sklak|L(gk). We define a

norm on Frpt by
| f bt i= inf{% lak|L(gk); f= Zakgk(d(pka'))}

and derive the Rademacher complexity of a unit ball B of ( Frps, || - ||t ). Substituting ax by ¢k /L(gk)
in the expansion of f we get

n

n
sup| S oif(xi)| = sup Zi akgk (Pk,Xi))|
g

feB = S lak|L(gk) <1,pkeX ke
n

= sup Zl lz

d(pk,Xi))|

> Ik <L pkEX,GkEG i

= sup Z Zl d(pk. i)

¥ lewl<1, kaX %&eG k=1

= sup
peXgeg’. [(g)®

g(d(p,xi))l- (13)

For the last step observe that the supremum in the linear expansion in the second last line is
obtained when one of the ci is 1 and all the others are 0. To proceed we introduce the notations
hpg(X) :=9(d(p,xi))/L(9), # = {hpg; P € X,g € G}, and G1 = {g/L(9); g € G}. We rewrite
the right hand side of Equation (13) as

n
sup | Oi 7 9(d(Pxi))| = sup |5 Gihpg(xi)]
peX.geG iE L@)"° hpgedl i

and thus obtain R, (B) = Rn(H). To calculate the latter we need the following:
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Lemma 19 N(.‘]‘[,ZS, H ’ H°°) < N(x787d)N(g1787 || ’ ||°°)
Proof First we observe that for hy, ¢,,hp, g, € H

91(d(p1,X))  g2(d(p2,X))

”hpLgl - hp2,92||°° = fg}e‘ L(Ql) - L(gZ) ’
91(d(p1,X))  91(d(p2,X)),  (192(d(p2,X)) g2(d(p2,X))
< i’é’fﬁ(' L(go e T ey L ‘)
02
< d(p1,p2) 92 Hoo::d}[(hpl.,glahpz,gz) (14)

L(gl) L(92)

For the step from the second to the third line we used the Lipschitz property of g1. Finally, it is easy
to see that N(#(,2¢,d,,) < N(X,&,d)N(G1,&, ]| - [|)- [ |

Plugging lemma 19 in Theorem 16 yields the following Rademacher complexity:

Theorem 20 (Rademacher complexity of unit ball of Fp) Let B be the unit ball of (Fps,]| -
llrof ), G1 the rescaled functions of G as defined above, and w := max{diam(X,d),diam(G1, || - ||»)}-
Then, for every € > 0,

R (B) < 2¢ +—/£4\/ 4) +10gN(G1, 5. |- [l+) d

This theorem is a huge improvement compared to Theorem 18 as instead of the covering num-
bers we now have log-covering numbers in the integral. As an example consider the linear program-
ming machine on X = [0,1]9. Because of G = {id}, the second term in the square root vanishes,
and the integral over the log-covering numbers of X can be bounded by a constant independent of
€. As result we obtain that in this case Rn(B) scales as 1/+/n.

6. Choosing Subspaces of Lip(.X)

So far we always considered the isometric embedding of the given metric space into the Arens-
Eells space and discovered many interesting properties of this embedding. But there exist many
different isometric embeddings which could be used instead. Hence, the construction of embedding
the metric space isometrically into some Banach space and then using a large margin classifier in
this Banach space is also possible with different Banach spaces than the Arens-Eells space. For
example, Hein and Bousquet (2003) used the Kuratowski embedding, which maps a metric space
X isometrically in the space of continuous functions (C(X),| - ||~) (see Example 6 below). Now
it is a natural question whether there are interesting relationships between large margin classifiers
constructed by the different isometric embeddings, especially with respect to the Lipschitz classifier.

A second question concerns the choice of subspaces of Lip(X). At the end of Section 3 we
already explained that we have to work on some “reasonable” subspace of Lipschitz functions to
apply the Lipschitz classifier in practice. This is justified by complexity arguments, but does the
large margin interpretation still hold if we do this? Is there some geometric intuition which could
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help choosing a subspace?

It will turn out that both questions are inherently related to each other. We will show that there
is a correspondence between embedding X into a Banach space V and constructing the large margin
classifier onV on the one hand, and choosing a subspace F of Lip(X) and constructing the Lipschitz
classifier from F on the other hand. Ideally, we would like to have a one-to-one correspondence be-
tween V and F. In one direction this would mean that we could realize any large margin classifier
on any Banach space V with the Lipschitz classifier on an appropriate subspace F of Lipschitz func-
tions. In the other direction this would mean that choosing a subspace F of Lipschitz functions
corresponds to a large margin classifier on some Banach space V. We could then study the geomet-
rical implications of a certain subspace F via the geometric properties of V.

Unfortunately, such a nice one-to-one correspondence between V and F is not always true, but
in many cases it is. We will show that given an embedding into some vector space V, the hypothesis
class of the large margin classifier on V always corresponds to a subspace F of Lipschitz functions
(Lemma 24). In general, this correspondence will be an isomorphism, but not an isometry. The other
way round, given a subspace F of Lipschitz functions, under some conditions we can construct a
vector space V such that X can be isometrically embedded into V and the large margin classifiers
onV and F coincide (Lemma 25).

The key ingredient in this section is the fact that AE (Xp) is a free Banach space. The following
definition can be found for example in Pestov (1986).

Definition 21 (Free Banach space) Let (Xp,d,e) be a pointed metric space. A Banach space (E, ||-
|le) is a free Banach space over (Xp,d,e) if the following properties hold:

1. There exists an isometric embedding @ : Xo — E with ®(e) =0, and E is the closed linear
span of ®(Xp).

2. For every Banach space (V, || - |lv) and every Lipschitz map W : X — V with L(¥) =1 and
W(e) = 0 there exists a linear operator T : E — V with | T|| =1suchthat T o® = W.

It can be shown that the free Banach space over (X,d,e) always exists and is unique up to iso-
morphism (cf. Pestov, 1986).

Lemma 22 (AE is a free Banach space) For any pointed metric space (Xp,d,e), AE(Xp) is a free
Banach space.

Proof Property (1) of Definition 21 is clear by construction. For a proof of property (2), see for
example Theorem 2.2.4 of Weaver (1999). |

We are particularly interested in the case where the mapping W : Xo — V of Definition 21 is
an isometric embedding of X into some vector space V. Firstly we want to find out under which
conditions its dual V' is isometric isomorphic to some subspace F of Lip(X). Secondly, given a
subspace F of Lip(X) the question is whether there exists a Banach space V such that Xy can be
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embedded isometrically into V and simultaneously V' is isometric isomorphic to F. Both questions
will be answered by considering the mapping T of Definition 21 and its adjoint T’. The following
treatment will be rather technical, and it might be helpful to have Figure 1 in mind, which shows
which relations we want to prove.

AE ’ AE =Lip

isometry J exists ==> T’ isometry?

Figure 1: Relations between Banach spaces and subspaces of Lipschitz functions. The left part
shows the commutative diagram corresponding to the free Banach space property of
AE(Xp). The right part shows the adjoint mapping T’ of T. The dotted arrows in the
middle show the relationships we want to investigate.

Now we want to go into detail and start with the first question. For simplicity, we make the
following definition.

Definition 23 (Dense isometric embedding) Let (Xp,d) a metric space and V a normed space. A
mapping W : Xo — V is called a dense isometric embedding if W is an isometry and if V is the
norm-closure of span{¥(x);x € Xp}.

Lemma 24 (Construction of F for given V) Let (Xp,d) be a pointed metric space, (V,| - |v) a
normed space and W : Xy — V a dense isometric embedding. Then V' is isomorphic to a closed
subspace F C Lipy(Xo), and the canonical injection i : F — Lipy(Xo) satisfies ||if| < 1.

Proof Recall the notation my := ®(x) from Section 3 and analogously denote vy := W(x). Let
T : AE(Xp) — V the linear mapping with T o ® = W as in Definition 21. As W is an isome-
try, T satisfies ||T| = 1, and maps AE(Xp) on some dense subspace of V. Consider the adjoint
T :V' — AE(Xp)'. Itis well known (e.g., Chapter 4 of Rudin, 1991) that ||T|| = ||T’|| and that T’
is injective iff the range of T is dense. Thus, in our case T’ is injective. As by construction also
(Tmy, V') = (T'V/,my), we have a unique correspondence between the linear functions in V' and
some subspace F :=T'V/ C AE(Xp)": forg eV’ and f =T’g € Lipy(Xo) we have g(vx) = f(my)
for every x € Xp. The canonical inclusion i corresponds to the adjoint T". [ |

Lemma 24 shows that the hypothesis space V'’ constructed by embedding X intoV is isomorphic
to asubset F C Lipy(Xp). Butitis important to note that this isomorphism is not isometric in general.
LetgeV'and f € Lipg(Xo) be corresponding functions, that is f = T'g. Because of ||T'|| =1 we
know that || f ||ae < ||g]|v, but in general we do not have equality. This means that the margins ||g||v
and || f ||ag’ of corresponding functions are measured with respect to different norms and might have
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different sizes. As a consequence, the solutions of the two large margin problems

min||g||v/ subject to yig(vy,) > 1
gev’

and

min || f||L subject to y; f (xj) > 1
feF
might be different, even though the sets of feasible functions are the same in both cases.

To illustrate this we will consider two examples. The first one shows how the large margin
classifier in V can give different results than the one constructed by using the corresponding sub-
space for the Lipschitz classifier. In the second example we show a situation where both classifiers
coincide.

Example 6 (Kuratowski embedding) Let (xX,d) be an arbitrary compact metric space and
(C(X),]| - |l») the space of continuous functions on X. Define W: X — C(X), x — d(x,-). This
mapping is an isometric embedding called Kuratowski embedding, and it has been used in Hein
and Bousquet (2003) to construct a large margin classifier. We want to compare the large margin
classifiers resulting from the Kuratowski embedding and the embedding in the Arens-Eells space.
As an example consider the finite metric space X = {x1,...,X4} with distance matrix

05 3 6
50 4 1
P=13 405
6 1 5 0

LetV =span{d(x,-); X € X} C C(X), endowed with the norm || - [|». V is a 4-dimensional vector
space. Let V' its dual space. Via the mapping T’, each linear operator g € V' corresponds to the
linear operator f € Lipy(Xp) with f(x;) = (g,d(xi,-)) =: ¢;. Now we want to compare the norms of
ginV’and f in Lip(X).The norm of g in V'’ can be computed as follows:

lgllv: =sup{(g,v) : veV,|vlv <1}
4

4
= SUP{<9,_Z‘aid(Xi,')> rai R, || _Zaid(xi,-)Hoo <1}

4 4
=sup{) aici: e R, -1 <Y ad(x,xj) <1lforall j=1,....4}.
i; iti i iZl i iyAj

For given function g € V' (that is, for given values c;) this norm can be computed by a linear pro-
gram. Consider the two functions g1, € V/ with values on x,X2,X3,X4 given as (—1,—1,—1,—1)
and (1,0,1,0), respectively, and let f1, f, € Lipy(Xo) be the corresponding Lipschitz functions. Then
we have || f1||L =0.166 < 0.25 = || f2||. and ||g1||v» = 0.366 > 0.28 = ||gz2|lv’. So the norms || - ||y~
and | - || do not coincide, and moreover there is no monotonic relationship between them. If the
maximal margin algorithm had to choose between functions f; and f,, it would come to different
solutions, depending whether the underlying normis || - ||y as for the large margin classifier in V'’
or || - || as for the Lipschitz classifier in T'V'.
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Example 7 (Normed space) Let (X,]|-||x) be a normed vector space with dual (X', || - ||x/). As the
norm of linear functions coincides with their Lipschitz constant, X’ is isometrically isomorphic to a
subspace of Lipy(Xp). This means that it makes no difference whether we construct a large margin
classifier on the normed space X directly or ignore the fact that X is a normed space, embed X
into AE(Xp) and then construct the Lipschitz classifier on AE(Xp) with the subspace T'X’. We
already mentioned this fact in Section 3 when we stated that the SVM solution is the same one as
the Lipschitz classifier on X’

Now we want to investigate our second question: given some subspace F C Lipy(Xo), is F the
dual space of some Banach space V such that X, can be embedded isometrically intoV andV’ ~ F?
To answer this question we have to deal with some technical problems. First of all, F has to possess
a pre-dual, that is a vector space V whose dual V' coincides with F. In general, not every Banach
space possesses a pre-dual, and if it exists, it needs not be unique. Secondly, it turns out that the
canonical injection T’ : F — Lipy(Xp) has to have a pre-adjoint, that is a mapping T : AE(Xp) — V
whose adjoint coincides with T’. Pre-adjoints also not always exist. In general, neither the existence
of a pre-dual nor the existence of pre-adjoints are easy to prove. One situation where both can be
handled is the case where F is closed under pointwise convergence:

Lemma 25 (Construction of V for given F) Let Xy be a bounded metric space, and F a subspace
of (Lipy(Xo),L(+)) which is closed under pointwise convergence and satisfies the condition

sup  [f(x) — f(y)| =d(x,y) (15)
feF L(f)<1

for all X,y € Xo. Then there exists a normed space V such that Xy can be isometrically embedded
intoV and its dual V' is isometrically isomorphic to F.

Before we can start with the proof we need two more definitions: Let M be a subspace of
some Banach space V and N a subspace of the dual space V’. Then the annihilator M-+ and the
pre-annihilator ~N are defined as M+ = {T €V’; Tm=0forallmec M} and ‘N ={e € V; Te=
Oforall T € N}. As the proof is a bit technical, we refer to Megginson (1998) for background
reading.

Proof For a bounded metric space Xp, the topology of pointwise convergence on Lip,(Xp) coincides
with its weak* topology. Thus by assumption, F is weak*-closed, which implies that *F is a
closed subspace of AE(Xp). Hence, the quotient space V := AE(Xp)/*F exists, and there exists
an isometric isomorphism between V’ and (+F)+. As F is weak*-closed, (*F)* =F. SoV isa
pre-dual of F. Let T’ : F — Lip,(Xp) be the canonical inclusion. It has a pre-adjoint, namely the
quotient mapping Tt: AE(Xp) — V. Define the mapping W : Xp — V, X — 1y =: vx. We have

<faVX> = <f7T[mX> = <T/f7mX> = <famX> = f(X)
Hence, by assumption (15), W is an isometry:

W) =®W)llv="sup {[{(fwx=w)[} = sup {[f(x)—F(y)[} =d(xy).
feF L(f)<1 feF L(f)<1
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Lemma 25 gives a nice interpretation of what it means geometrically to choose a subspace F
of Lipschitz functions: the Lipschitz classifier with hypothesis space F corresponds to embedding
X isometrically into the pre-dual V of F and constructing the large margin classifier on V directly.
Condition (15), which F has to satisfy to allow this interpretation, intuitively means that F has to
be a “reasonably large” subspace.

Example 8 (Linear combination of distance functions) Let F be the subspace of Lip(X) consist-
ing of functions of the form f(x) = ¥;a;d(x;,x) +b, and F C Lip(X) its closure under pointwise
convergence. As norm on F we take the Lipschitz constant. On F, condition (15) is satisfied:
trivially, we always have < in (15), and for given x,y € X, equality is reached for the function
f =d(x,-). So we can conclude by Lemma 25 that the Lipschitz classifier on F has the geometrical
interpretation explained above.

7. Discussion

We derived a general approach to large margin classification on metric spaces which uses Lipschitz
functions as decision functions. Although the Lipschitz algorithm, which implements this approach,
has been derived in a rather abstract mathematical framework, it boils down to an intuitively plau-
sible mechanism: it looks for a decision function which has a small Lipschitz constant. This agrees
with the regularization principle that tries to avoid choosing functions with a high variation. The
solution of the Lipschitz algorithm is well behaved as, by the representer theorems of Section 4, it
can always be expressed by distance functions to training points. For some special cases, the solu-
tion corresponds to solutions of other well known algorithms, such as the support vector machine,
the linear programming machine, or the 1-nearest neighbor classifier. We provide Rademacher
complexity bounds for some of the involved function classes which can be used to bound the gen-
eralization error of the classifier.

In spite of all those nice properties there are several important questions which remain unan-
swered. To apply the Lipschitz algorithm in practice it is important to choose a suitable subspace of
Lipschitz functions as hypothesis space. In Section 6 we found a geometrical explanation of what
the choice of certain subspaces F means: it is equivalent to using a different isometric embedding
of the metric space into some Banach space. But this explanation does not solve the question of
which subspace we should choose in the end. Moreover, there exist isometric embeddings in certain
Banach spaces which have no such interpretation in terms of subspaces of Lipschitz functions. For
example, Hein and Bousquet (2003) studied the Kuratowski embedding of a metric space into its
space of continuous functions to construct a large margin algorithm. As we explained in Example
6, the large margin classifier resulting from this embedding can be different from the Lipschitz clas-
sifier. It is an interesting question how different embeddings into different Banach spaces should be
compared. One way to do this could be comparing the capacities of the induced function spaces.
An interesting question in this context is to find the “smallest space” (for instance, in terms of the
Rademacher complexities) in which a given data space can be embedded isometrically.

There is also a more practical problem connected to the choice of the subspace of Lipschitz
functions. To implement the Lipschitz algorithm for a given subspace of Lipschitz functions, we
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need to know some way to efficiently compute the Lipschitz constants of the functions in the chosen
subspace. For example, in case of the linear programming machine it was possible to bound the Lip-
schitz constants of the functions in the parameterized subspace of functions ¥ ; aid(Xi,-) +b in terms
of their parameters by Yj|ai|. But in many cases, there is no obvious parametric representation of
the Lipschitz constant of a class of functions. Then it is not clear how the task of minimizing the
Lipschitz constant can be efficiently implemented.

An even more heretic question is whether isometric embeddings should be used at all. In our
approach we adopted the point of view that a meaningful distance function between the training
points is given by some external knowledge, and that we are not allowed to question it. But in prac-
tical applications it is often the case that distances are estimated by some heuristic procedure which
might not give a sensible result for all the training points. In those cases the paradigm of isometric
embedding might be too strong. Instead we could look for bi-Lipschitz embeddings or low distor-
tion embeddings of the metric space into some Banach space, or even into some Hilbert space. We
would then loose some (hopefully unimportant) information on the distances in the metric space,
but the gain might consist in a simpler structure of the classification problem in the target space.

Finally, many people argue that for classification only “local properties” should be considered.
One example is the assumption that the data lies on some low dimensional manifold in a higher
dimensional space. In this case, the meaningful information consists of the intrinsic distances be-
tween points along the manifold. In small neighborhoods, those distances are close to the distances
measured in the enclosing space, but for points which are far away from each other this is not true
any more. In this setting it is not very useful to perform an isometric embedding of the metric space
into a Banach space as the additional linear structure the Banach space imposes on the training data
might be more misleading than helpful. Here a different approach has to be taken, but it is not clear
how a large margin algorithm in this setting can be constructed, or even whether in this case the
large margin paradigm should be applied at all.
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Appendix A. Proof of Theorem 16

The idea of the proof of Theorem 16 is the following. Instead of bounding the Rademacher com-
plexity on the whole set of functions F, we first consider a maximal e-separating subset ¥ of F.
This is a maximal subset such that all its points have distance at least € to each other. To this special
set we will apply the classical entropy bound of Dudley (1987):

Theorem 26 (Classical entropy bound) For every class F of functions there exists a constant C
such that

C [«
< —
Ra() < [ VIOGNCT 0 Loli)) do
where Wy, is the empirical distribution of the sample.
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As a second step we then bound the error we make by computing the Rademacher complexity of
Fe instead of F. This will lead to the additional offset of 2€ in Theorem 16. The following lemma
can be found as Lemma 3.10 in Bousquet (2002) (for the definition of a separable process see also
van der Vaart and Wellner 1996).

Lemma 27 (e-separations of an empirical process) Let {Z;;t € T } be a separable stochastic pro-
cess satisfying for A > 0 the increment condition

VS,'[ eT: E(eA(Z‘_ZS)) S e}\202d2(37t)/2.

Lete>0and 6> 0. If € >0, let T denote a maximal €-separated subset of T and let T =T
otherwise. Then for all tg,

3/2
E < sup Z —Zto) < 4\/50/ V/1ogN (T, u,d)du.
teTe d(t,to) <8 e/4

To apply this lemma to the Rademacher complexity of a function class #, we choose the index
set T = 7, the fixed index tg = fo for some fo € F, the empirical process Z¢ = % y oif(Xi), and & —
oo, Note that the Rademacher complexity satisfies the increment condition of Lemma 27 with respect
to the L (un)—distance with constant ¢ = y/n. Moreover, observe that E (sup, Z; — Zy,) = E(sup; Zt) —
E(Zy,) and E(Zy,) = E(% 5 0ifo(Xi)) = 0. Together with the symmetry of the distribution of Z; we
thus get the next lemma:

Lemma 28 (Entropy bound for e-separations) Let (Xi)i—1,.. n be iid training points with empiri-
cal distribution y,, F an arbitrary class of functions, and 7 a maximal e-separating subset of 7
with respect to L, (Hn)- norm. Then

42 [
sup =| oif(X ‘xl,...,x g—/ logN(7F,u,La(4n)) du.
(M-E 3 oif 00 1) < ), VIOONGE U Lan)

With this lemma we achieved that the integral over the covering numbers starts at €/4 instead
of 0 as it is the case in Theorem 26. The price we pay is that the supremum on the left hand side is
taken over the smaller set 7. instead of the whole class F. Our next step is to bound the mistake we
make by this procedure.

Lemma 29 Let ¥ be a class of functions and ¥, a maximal e-separating subset of F with respect
10 || [y Then [Rn(F) —Rn(Fe)| < 2e.

Proof We want to bound the expression

Ra(F) ~Rn(%)| = E —sup|zo. )|~ sup | 3 oif (X

feFe

First look at the expression inside the expectation, assume that the o; and X; are fixed and that
supscr | Y Oif(Xi)| = | 3 0i f*(x;)| for some function f* (if f* does not exist we additionally have to
use a limit argument). Let fe € 7 such that || f* — fe[[,(,) < 2¢. Then,

—HZO’. xi)| =1 oife(xi)

= ‘ZUI (xi) — fe(x ))} < = fellLy ) S 5= fell ) < 26

% sup|Zoif(xi)|— sup\ZGif(

693



VON LUXBURG AND BOUSQUET

As this holds conditioned on all fixed values of o; and X; we get the same for the expectation. This
proves the lemma. [ |

To prove Theorem 16 we now combine lemmas 28 and 29.
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