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Abstract

This paper aimed to present a new method for the spectral-spatial classification of hyperspectral images, based on
the idea of modified minimum spanning forest (MMSF). MMSF works on the obtained regions of pre-segmentation
step that are considered as nodes of an image graph. In the proposed method, the image is first smoothed by the
multiscale edge-preserving filter (MSEPF) and then the MMSF is built in each scale. Finally, all the classification maps
of each scale are combined with a majority vote rule. The suggested method, named as MSEPF-MMSF, is performed on
four hyperspectral images with different properties, and the experiments deal with the impacts of parameters of filter

accuracies with respect to the previous methods.

Minimum spanning forest

and the number of markers. The results demonstrate that the proposed method has improved the classification
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1 Introduction

Image processing and video analysis are one interesting
topic in intelligent systems in recent years [1-3]. In hyper-
spectral images, a vector with several hundreds of spec-
trums is assigned to each spatial position. Such numbers
are tantamount to the reflexive light spectrum. Such
precious spectral information enhances the capability of
recognizing physical material and other different objects.
One of the valuable uses of hyperspectral images analysis
is classification process through which a class is assigned
to each image pixel. Hyperspectral image classification
represents a hot research area [4—6]. However, the funda-
mental problems are high dimension and limitation in
number of training samples. In order to tackle the prob-
lems, different dimension reduction methods [7-9] have
been suggested. Extensive researches have been carried
out into hyperspectral image classification, most of which
only use spectral information. Methods such as neural
networks [10], decision tree [11], kernel-based methods
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[12], and support vector machine (SVM) [13] have been
proposed in order to fulfill the goal. SVM works very well,
specifically to limited training samples [13]. Image spatial
resolution has been enhanced thanks to advances in the
technology of hyperspectral image equipment [14—24].
Therefore, if spatial information (the information obtained
from pixel neighborhood) combined with spectral infor-
mation, classification accuracy will increase. As a result,
several numbers of spatial-spectral classification tech-
niques have been introduced in recent years. In general,
spatial-spectral classification methods can be divided
into two groups. The first group is composed of
methods based on a crisp neighborhood system such as
the Markov random field (MRF) [14] and related gener-
alized methods [15, 16]. These methods have achieved
appropriate performance in classification. But if neigh-
borhood pixels strongly depended on each other, the
concept of neighborhood may not include effective
samples. On the other hand, using a large neighbor-
hood may cause computational problems [17]. The
second group is composed of methods based on adaptive
neighborhood. The morphology-based methods [18] and
the segmentation-based methods [19-24] fall in this
category. Although morphology-based methods are
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instrumental tools for obtaining spatial information, the
shape of the structuring element (SE) and computational
complexity are still key issues in such classifications [18].
Segmentation is also a powerful tool for defining spatial
dependency where, by this tool, an image can be divided
into homogenous regions. Segmentation techniques ex-
tract a large neighborhood for large regions. Meanwhile,
small regions containing one or more pixels are not
eliminated. Methods like watershed [19], clustering [20],
hierarchical segmentation [21], and marker-controlled seg-
mentation methods [22, 23] have been presented for seg-
mentation and classification of hyperspectral images.
Meanwhile, marker-controlled segmentation methods such
as SVM-MSF (SVM-minimum spanning forest) [22] and
MSSC-MSF (multispectral-spatial classifier-MSF) [23] can
decrease over-segmentation and increase classification ac-
curacy more than other methods [21]. The SVM-MSF uses
probability SVM and consequently MSF. The MSSC-MSF
uses multispectral-spatial classification for marker selection,
and MSF is built on the obtained markers. However,
marker selection is still a fundamental challenge. In
addition, applying an extra step for marker selection leads
to an increase in computation time.

Spatial filtering has been recently used in researches into
hyperspectral image processing and has shown its
efficiency in this topic [24, 25]. The simplicity of under-
standing this type of filters is their main advantage, and
their complexity are low [24]. Filters like weighted mean
filter (WMF) [24] and edge-preserving filter (EPF) [25] are
utilized to reduce image noise, increase consistency of
neighborhood pixels, and provide homogenous regions.

In this paper, we propose a combination of spatial
filter and MSF segmentation method for spatial-spectral
hyperspectral image classification. In most of the researches
related to hyperspectral image processing, single-scale
filtering has been taken into use. But single-scale spatial
filters have no capability to describe different spatial struc-
ture of the hyperspectral images. Therefore, a multiscale
edge-preserving filter has been proposed and used in the
mentioned hybrid scheme. Furthermore, a modified model
of MSF has been proposed and used in the suggested
scheme. Despite traditional MSF that operates at the pixel
scale, our model operates at the regional scale, and this
process leads to a decrease in computational time.

2 Multiscale edge-preserving filter

Gaussian filtering is one of the most common methods
for smooth an image. In this method, the underlying
assumption is that images change slowly over space. On
the other hand, the assumption does not work at edges.
Despite Gaussian filters, EPF preserves the edges. In
order to cope with this issue, the bilateral filter as one
type of EPFs can be used. The bilateral filter has had
wide applications thanks to the advantage of preserving
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edges up to now. There are two conditions where the
pixels can be close to each other. They can have a
nearby spatial location, or they have a similar spectral
signature. The traditional filtering is a spatial domain
filtering. The combination of both the spatial domain
and range filtering is known as bilateral filtering.

Since the hyperspectral images may consist of
information in different resolutions, one scale of the
filtering cannot extract the significant information [25].
To overcome this challenge, we present a multiscale
edge-preserving filter called MSEPF. The proposed
MSEPF (denoted as H) is defined as follows:

HIl), = WLZ Go.(Ip-a1)Gor (Ip-1g)Pq (1)

with

Ng, = (205 +1) X (20s+1) o05=1, 2,...,Q. (2)

W= o, G (lp=4ll) G, (Ip-1o) 3)

where p and g represent the p-th and g-th pixels; P and
I are the input image and reference image, respectively;
os denotes the o;-th level (scale) of the decomposition; Q
is the number of the scale; N, is a local window of size
(205 + 1)x(20, + 1) at the o,-th scale around pixel p; and
W, is a normalization factor. G, and G, can be

p
obtained from Egs. (4) and (5), respectively.
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where the vectors p and g epitomize the spatial location of
the image. Furthermore, I, and I, are the intensity values
of the locations p and ¢, respectively, and P and I are the
input image and the reference image, respectively. Gg, is a
spatial Gaussian function. The more the distance from the
center, the less G, becomes. G, is a range Gaussian
function. According to Eq. (4), the increase in the intensity
difference between I, and I leads to the decrease in Gy, .
Parameters o, and o, which are the standard deviations of
Gaussian functions G, and Gg,, respectively, determine
the amount of filtering for the image 1 [25].

3 Modified minimum spanning forest

For constructing a minimum spanning forest (MSF), a B-
band hyperspectral image is given, which can be considered
as a set of n-pixel vectors X = {x; € R, j = 1,2, ... ,n}. V
and E are the sets of vertices and edges, respectively, and
W is a mapping of the set of edges E into R in the undir-
ected graph G = (V; E, W). Per pixel of image is regarded as
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each edge. In order to compute weights of edges, spectral and construct a new graph [22].
angle mapper (SAM) and L1 vector norm can be used [22].
Generation of an MSF on an image is performed as the An MSF in G is included in the minimum spanning
following steps: tree of the graph, and every tree is grown on a vertex t;
when the vertex r is taken away, the MSF is produced.
e Convert image to graph according to the Prim’s algorithm is employed for generating the MSF;
abovementioned way. for more details, please see [22].
e Compute weights of edges. The modified MSF (MMSF) as a part of the overall
e Add additional vertices ¢, i = 1, ..., m, flowchart of the proposed spectral-spatial classifica-
corresponding to m-selected markers. tion method is shown in Fig. 1. As shown in Fig. 1,
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Fig. 2 Flowchart of the proposed spectral-spatial classification method (MSEPF-MMSF)
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Fig. 3 Change of the OA and AA against the number of N,,. a Indian Pines image. b Pavial image

the image is firstly pre-segmented. So, the image is
segmented to many small regions regarded as the
nodes of MMSF. Compared to traditional MSF, the
MMSF algorithm is presented in a smaller number of
nodes and edges. On the other hand, a pixel-wised
classification is performed. After the mentioned steps,
N, pixels are chosen randomly. One region is speci-
fied for each selected pixel based on the pre-
segmentation map. Subsequently, all the pixels of a
region are appointed to the class with the highest
frequency according to the result of the pixel-wised
classifier in the given region. These regions are
regarded as markers for MMSF construction. Also, a seg-
mentation S is a division of V into regions such that each
region ReS accords with a connected component in a
graph G’ = (V, E’), where E’e E. The differences between
the two regions Ry, R, c V can be obtained by the mini-
mum weight edge linking the two regions. That is,

w(Ry,R;) = min w(vi,vj)
ViGRl, VJ’ERZ, (Vi, Vj)GE

and w(vi7vj) = wj

w(Ry, Ry) = oo is allowed if no edge links R; and R,.
According to this measure, the algorithm will combine

two regions even though there is an edge with a low
weight between them.

4 Proposed spectral-spatial classification method
This section introduces a new spectral-spatial classifica-
tion scheme for hyperspectral images. The overall flow-
chart of the proposed spectral-spatial classification
method (MSEPF-MMSF) is given in Fig. 2.

The MSEPF-MMSF is composed of the following three
main steps: (1) preprocessing using MSEPF, (2) spatial-
spectral classification of each individual scale of filtering
using MMSE, and (3) majority vote rule for class decision.

There is a B-band hyperspectral image X = {x; € R,
j=1,2, ..., n} at the input. At first, the hyperspectral
image is smoothed by multiscale bilateral filter defined
in Section 2. At this point, the controversial issue is the
reference image selection, /. In order to tackle this
problem, principal component analysis (PCA) is applied
because the optimum portrayal of the image is presented
in the mean-squared sense. Original hyperspectral image
undergoes dimension reduction via PCA, and the first r
principal components are chosen as the reference image
for the bilateral filter. The value of r can be automatically
selected by analyzing the eigenvalues of scatter matrices
computed from the PCA [26]. In this step, we have Q-fil-
tered images. A spectral-spatial classification using MMSF
is done in each individual Q scale. We propose to use an
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Fig. 4 Analysis of the influence of the parameter g,. a Indian Pines image. b Pavial image
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Fig. 5 Analysis of the influence of the parameter os. a Indian Pines image. b Pavial image

SVM classifier for pixel-wised classification, which is
strongly suitable for hyperspectral data classification [13].
In the pre-segmentation stage, we implemented watershed
since it detects good boundaries and retains small differ-
ences within the objects. Typically, the watershed trans-
formation is used for a one-band image. There are several
ways for generalizing this technique to an r-band hyper-
spectral image [19].

In the final step, the classification maps of each
individual scale are combined with a maximum vote
decision rule and the final classification map is obtained.
At this step of the algorithm, there are Q spectral-spatial
classification maps corresponding to the Q scale of the

filtering step. The majority vote procedure is described
in the following way: For each pixel, a 1 x Q vector is
considered based on assigned classes in Q spectral-
spatial classification maps. In addition, the pixel is allo-
cated to the highest frequency class. Every pixel of the
image undergoes the abovementioned procedure. So the
final classification map is acquired.

5 Results and discussion

The experimental study is done to indicate the perform-
ance of the proposed spectral-spatial classification
scheme. In this section, the experimental data sets are
introduced and two various experiments are explained.

Table 1 Information classes, number of training samples, and classification accuracy for the Indian Pines

No. of samples No. of training samples SYM SSEPF-MMSF MSEPF-MMSF
Alfalfa 46 15 95.65 100 100
Corn-notill 1428 50 64.85 80.31 86.55
Corn-mintill 830 50 61.57 91.81 90.72
Corn 237 50 86.08 98.73 100
Grass-pasture 483 50 92.55 95.86 94.62
Grass-trees 730 50 87.81 98.36 97.95
Grass-pasture-mowed 28 15 96.43 96.43 100
Hay-windrowed 478 50 99.16 100 100
Qats 20 15 100 100 100
Soybean-notill 972 50 66.46 87.74 88.79
Soybean-mintill 2455 50 47.94 84.95 85.38
Soybean-clean 593 50 715 93.57 92.22
Wheat 205 50 99.02 100 100
Woods 1265 50 83.32 96.13 97.15
Buildings-G-T-D 386 50 71.76 99.22 98.96
Stone-steel-towers 93 50 914 100 100
AA (%) - - 82.21 94.87 95.64
OA (%) - - 69.79 90.31 9145
Kappa coefficient - - 66.27 89.18 90.32
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Table 2 Information classes, number of training samples, and classification accuracy for the Pavial

No. of samples No. of training samples SVM SSEPF-MMSF MSEPF-MMSF
Asphalt 6631 548 82.17 99.14 99.2
Meadows 18,649 540 87.25 97.28 99.23
Gravel 2099 392 81.23 95.95 9543
Trees 3064 524 93.21 98.66 96.28
Metal sheets 1345 265 99.78 99.93 100
Bare soil 5029 532 91.05 99.54 99.8
Bitumen 1330 375 89.4 99.25 100
Bricks 3682 514 85.17 97.66 98.18
Shadows 947 231 99.89 99.79 97.36
AA (%) - - 89.9 98.57 98.36
OA (%) - - 876 99.18 98.8
Kappa coefficient (%) - - 85.23 98.81 9841

In the first experiment, two well-known data sets includ-
ing the non-urban data set (e.g., Indian Pines) and urban
data set (e.g., PaviaU) are used. The effectiveness of
parameters (N, o, Q) of the proposed method is
analyzed, and their optimal values are extracted. Also, the
classification results and comparison with other methods
are given. In the second experiment, the proposed method
using the extracted optimal values is applied on two other
data sets including Botswana and SalinasA. In this experi-
ment, it is demonstrated that the good classification
accuracies for various images will be achieved with the
presented parameter setting. In addition, the classification
results and discussion are presented.

5.1 Data sets

Four well-known hyperspectral data sets, i.e., the Indian
Pines, the University of Pavia, the Salinas, and Botswana,
go under the classification approach. The Indian Pines
image capturing the agricultural Indian Pine test site of
north-western Indiana was recorded by the AVIRIS
sensor. This image contains 220 bands ranging from 0.4
to 2.5 um with a spatial resolution of 20 m per pixel. It
consists of 145 x 145 pixels and contains 16 classes.
Twenty water absorption bands were removed before ex-
periments (the removed bands are [104-108], [150-163],
and 220). The ROSIS-03 satellite sensor captured an
image of an urban area surrounding the University of Pa-
via. This image is called PaviaU. The image is with the size
610 x 340 pixels and has 115 bands ranging from 0.43 to
0.86 pm with a spatial resolution of 1.3 m per pixel. In
addition, the 12 most noisy channels were removed before
experiments. Nine classes are considered for this image.
The Salinas image was recorded by the AVIRIS sensor
over Salinas Valley, CA, USA. This data set has 224 bands
in the wavelength range 04-25 pm with the size
512 x 217. The bands of [108—112], [154—167], and 224
are eliminated because of the water absorption bands, and

204 bands with a spatial resolution of 3.7 m per pixel are
applied in our study. A subset of this image, named as
SalinasA, is used. It is with the size 86 x 83 pixels, located
in the [591-678] x [158—-240] of Salinas Valley, containing
six classes. The Botswana data set was recorded by the
Hyperion sensor over Okavango Delta, Botswana. It
contains 242 bands covering the 400-2500 nm with a
spatial resolution of 30 m per pixel. The noisy bands
([10-55, 82-97, 102-119, 134-164, 187-220]) were
removed, and the remaining 145 bands were used for
experiments. This data set consists of 14 identified classes.

5.2 First experiment

In the used filters, the parameters o and o, represent
the filtering size and blur degree, respectively. In
addition, the numbers of N,, influence the classification
accuracy. In order to indicate the influence of N, four

Table 3 Average accuracy (AA), overall accuracy (OA), and kappa
for some segmentation-based and filter-based methods on Indian
Pines and Pavia University data sets

Methods Ref. Indian Pines PaviaU

AA OA Kappa AA OA Kappa
SVM-MSF [22] 9106 884 87 84.14 923 80
MSSC-MSF [23] 923 942 91 986 979 97
RD-MSF [24] 9373 9133 - - - -
Pixon based [6] 9218 8994 88 9472 9517 94
SVMMRF-HSRM Bl - 9310 9211 - - -
MLRsubMLL-HSRM  [5] - 8021 8260 - - -
EPF [25] 9446 9028 8998 9838 99.09 9877
MSF-KNN [29] 90.1 8867 8732 9439 951 9412
AMG-M-HSEG [30] 9483 914 8948 97.18 9745 9723
MSEPF-MMSF - 9564 9145 9032 9836 988 9841

(Proposed method)
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different values have been determined, i.e., 0.2N,, 0.4N,,
0.6N,, and 0.8N,.

N, symbolizes the number of regions in the segmenta-
tion map obtained from the watershed. While the impact
of analysis of the N, is being analyzed, o, and o, are
supposed to be 0.2 and 3, respectively. The evolution of
the overall accuracy (OA) and average accuracy (AA)
against the N, for Indian Pines and PaviaU data set
is presented in Fig. 3. With an increase in N,,, the
classification accuracies increase until a zenith point
is obtained. Reaching the maximum amount, the clas-
sification accuracies initiate to reduce up to the SVM
results. This figure shows that the highest amount of
accuracy values is obtained when N, is 0.4N, and 0.6N, for
the two abovementioned data sets, respectively. Although
astounding, this difference of optimal value for N, can be
explained. In the non-unban data set, e.g, Indian Pines
image, the objects are pretty wide and usually well delim-
ited. So, though it is not high, the number of N,,, will be a
fairly accurate classification. However, the PaviaU image in-
cludes a lot of small regions. Thus, there should be enough

number of N, in order to statistically have more oppor-
tunity to get at least one marker in each various region of
the image. In conclusion, there is a higher amount of
optimal value for N, compared to the other images.

The impact of ¢, and o5 on the classification efficiency
is investigated in Figs. 4 and 5, respectively. N, is fixed
to be the optimal value and o; equals 3 during the
analysis of the effect of ¢,. In Fig. 4a, b, we can see the
evolution of the AA and OA against o;. Seven different
modes, ie, 1, 2, ..., 7, are considered so as to show the
influence of o5 . Figure 5a, b shows the changes of classi-
fication accuracies as a function of o, for two data.

From Fig. 5, it is concluded that the optimal values of
os are 4 and 2 for the Indian Pines and PaviaU images,
respectively. The results support that these parameters
cannot be too small or too large. If the filtering size and
blur degree, i.e., o5 and o, are too large, there may be a
dramatic decrease in the average classification accuracy
that may over-smooth the maps. So, those small-scale
objects may be misclassified. Likewise, a very small
filtering size or blur degree is also unsatisfactory for the
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Fig. 7 PaviaU image. a Ground truth data. b Pixel-wised classification map using SVM. ¢ Classification map obtained by SSEPF-MMSF.
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Fig. 8 Comparison between the proposed classifier and some state-of-the-art methods for Indian Pines
A\

HAA
mOA
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proposed method since it connotes that only very
limited local spatial information is used in the filtering
process. Hereafter, the optimal values of o, and N, are
employed in each image. In our previous method [27],
single-scale edge-preserving filter (SSEPF) is applied.
Then, spatial-spectral classification is constructed using
MMSE. Thus, this method is called SSEPF-MMSE. In
SSEPF-MMSEF, we used optimal values of both of g,and o,
which are obtained from the experiment. In MSEPF-
MMSEF (this work), seven values from 1 to 7 of oy are used
and construction of MMSEF is repeated for each scale. The
final classification label for each pixel is achieved by com-
bining the multiple results via majority voting.

Tables 1 and 2 present the classification results for the
two mentioned data sets. These tables show the com-
mon classification indexes, e.g., average accuracy (AA),
overall accuracy (OA), and kappa coefficient. Further-
more, the classification accuracy of each class obtained
by pixel-wised classifier and proposed methods are
given. In these tables, the results of Monte Carlo simula-
tions (after 10 runs) are reported. Training samples were
randomly selected from the Ground truth data.

It can be understood that through using the proposed
classifier, the classification accuracies are increased signifi-
cantly when compared to the pixel-wised classification. In
the Indian Pines, the MSEPF-MMSF increases the classifi-
cation accuracy compared to the SVM classifier by about

13%. In the PaviaU data set, the OA is improved by 18%
points and the AA by 12.13% points. It is worth noting
that the SSEPF-MMSF classifier is presented with
better performance than the MSEPF-MMSF classifier
in the PaviaU. In the following, the reason for this
result is explained. PaviaU data set contained many
small areas such as shadow.

As can be seen from Table 3, the MSEPF-MMSFE
improves all of the accuracies than SSEPF-MMSF except
for the classes shadows and trees. These classes contained
the very small object. Furthermore, at the small scale of
filtering, the SSEPF-MMSF has been proven to be more
suitable for classification of such classes. Increasing the
scale of filtering may over-smooth the maps, and thus,
such classes may be misclassified. In the MSEPF-MMSF
method, the results of different scales are combined using
majority voting. Because these classes are not on a large
scale with good results, the classification accuracy of the
MSEPF-MMSF method is lower than that of SSEPE-
MMSE. As a result, the MSEPF-MMSF might not be the
most suitable one for classifying such images that contain
very small objects. Considering the obtained results, it is
clear that the final classification results are the best ones
although the initial pixel-wised classifier does not perform
very well. The adjacent pixel consistency increases and
provides more homogeneous objects brought on by the
filtering step. Thus, much smoother classification maps
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Table 4 Information classes, number of training samples, and classification accuracy for the SalinasA

No. of Samples No. of training samples SVM SSEPF-MMSF MSEPF-MMSF
Brocoli_green_weeds_1 391 6 99.49 100 100
Corn_senesced_green_weeds 1343 6 97.69 97.54 98.98
Lettuce_romaine_4wk 616 6 93.67 99.68 98.78
Lettuce_romaine_5wk 1525 6 99.93 99.8 100
Lettuce_romaine_6wk 674 6 9.1 99.85 100
Lettuce_romaine_7wk 799 6 96.62 100 100
AA (%) - 97.75 9947 99.62
OA (%) - - 96.59 994 99.48
Kappa coefficient (%) - - 96.33 99.31 994

are obtained. The proposed multiscale method can de-
scribe different spatial structures, and hence, our proposed
algorithm has higher classification accuracy than the
SSEPF-MMSE, except for the PaviaU image. It should be
noted that the classification results of SSEPF-MMSF and
MSEPF-MMSEF are so close together for the PaviaU
data set. It can be concluded that the SSEPF-MMSF
method has been proven to be more adaptable for
the classification of the urban area, but the MSEPF-
MMSF method is suitable for the non-urban area.
The Ground truth data, the classification maps of
pixel-wised classifier, and our proposed classifiers
(SSEPF-MMSF and MSEPF-MMSF) for the two data
sets are shown in Figs. 6 and 7. These figures show
that the classification map represented by the SVM is
not very well because it is still possible to see some

noisy pixels, whereas the proposed classifiers provide
a smoother classification map.

Although the MSEPF-MMSF method has good
performance, the primary problem of this method is
determining the optimal values for the parameters N,
0, and Q. Based on the performed experiments, default
values can be suggested for these parameters. For g, it
can be shown that with increasing values of ¢, the com-
putation time is increased without giving better results.
Therefore, we suggest setting this parameter to 0.05. For
Q, it has been observed in our experiments that after the
seventh scale, there is no significant improvement in the
accuracy values. We suggest setting this parameter to 7.
The determination of the optimal value of Ny, is not a
simple task. It has been indicated that for the images
with a big region (such as Indian Pines), the optimal

Table 5 Information classes, number of training samples, and classification accuracy for the Botswana

No. of samples No. of training samples SVM SSEPF-RSMSF MSEPF-RSMSF
Water 270 23 100 99.63 100
Hippo grass 101 23 89.11 100 100
Floodplain grasses1 251 25 100 100 100
Floodplain grasses2 215 23 9349 100 100
Reeds1 269 23 855 96.65 98.88
Riparian 269 23 84.76 100 100
Firescar2 259 23 97.68 100 100
Island interior 203 23 97.04 100 100
Acacia woodlands 314 24 92.04 100 100
Acacia shrublands 248 23 95.56 100 100
Acacia grasslands 305 23 90.49 99.67 99.67
Short mopane 181 23 90.61 100 100
Mixed mopane 268 23 92.16 100 100
Exposed soils 95 23 100 100 100
AA (%) - - 93.46 99.7 99.89
OA (%) - - 93.23 99.66 99.88
Kappa coefficient - - 92.66 99.63 99.87
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d Classification map obtained by MSEPF-MMSF

Fig. 10 SalinasA image. a Ground truth data. b Pixel-wised classification map using SVM. ¢ Classification map obtained by SSEPF-MMSF.

W,

()

(d)

value of N, is 40% of the total number of regions of the
pre-segmented image. However, for the image such as
PaviaU, which is composed of many small areas, the
optimal value of Ny, is 60% of the total number of
regions of the pre-segmented image. Thus, the user
should have background knowledge of the image in
order to obtain the best results.

In Table 3 and Figs. 8 and 9, the proposed classifier is
compared with classification results obtained with some
state-of-the-art methods for Indian Pines and PaviaU
data sets. These methods include construction MSF on
markers obtained from probability SVM (SVM-MSE)
[22], classification by building an MSF on markers
extracted from multispectral-spatial classifier (MSSC-
MSF) [23], classification by construction of an MSF on
random markers (RD-MSF) [28], classification by con-
struction of an MSF on extracted markers of KNN
(MSF-KNN) [29], classification by the algebraic multi-
grid method and hierarchical segmentation algorithm
(AMG-M-HSEG) [30], edge-preserving filter (EPF)-
based classification [25], adaptive pixon extraction tech-
nique [6], and two types of hierarchical statistical region
merging (HSRM) [5] for Indian Pines and PaviaU data
sets. The classification results obtained by different
approaches for the Indian Pines data set with 50 random
training samples per class (15 for smaller classes) are given.
Furthermore, we reported the classification accuracy of the
mentioned schemes for PaviaU data set with 3921 total
training samples. The MSEPF-MMSF method can describe
different spatial structures, and hence, our proposed
algorithm has higher classification accuracy than the other

methods. Although not satisfying, the obtained accuracies
of the proposed methods for PaviaU data set are so close
to the results obtained by the MSSC-MSF method [23].
Similarly, by comparing the result of our model and EPF
[25], we can see that our result for Indian Pines is better
than EPF [25], and for PaviaU, both results are so close.
Moreover, in [28], the EPF [25] was compared with the sin-
gle scale of our model (SSEPF-MMSF), and the results ex-
plain that for PaviaU, the SSEPF-MMSF works better [27].

We note that the obtained results of each models
depend on the parameter setting and the researchers often
insert the best parameters for the results [5, 6, 22—24].

Next, we demonstrate the marker selection process of
MSF-based approaches [22, 23] from the point of view
of time-consuming.

Marker selection is the main problem when an MSF is
created. Even though showing a good performance for
hyperspectral image analysis, using a marker-controlled
approach of supervised segmentation is challenging due
to the issue of marker selection. The SVM-MSF method
[22] requires the computation of an SVM probabilistic
map. In RD-MSF [24] and in the proposed methods
since these methods do not need the probability esti-
mates for selection of the markers, this time-consuming
step is not used. The random selection of the markers in
the proposed methods is at a higher speed compared to
the marker selection done by connected component ana-
lysis [22]. The MSSC-MSF [23] approach is required to
apply multispectral-spatial classifier in the marker selec-
tion step. Thus, the marker selection strategy is more
time-consuming in comparison with the one that is used

(a) (b) (c) (d)

Fig. 11 Botswana image. a Ground truth data. b Pixel-wised classification map using SVM. ¢ Classification map obtained by SSEPF-MMSF.
d Classification map obtained by MSEPF-MMSF
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Methods SSEPF-MMSF
Scale #1 Scale #2 Scale #3 Scale #4 Scale #5 Scale #6 Scale #7
MSEPF-MMSF 341 232 2.14 245 265 436 4.26

in the proposed approach. As a result, the suggested
methods implement at less time than other MSF-based
methods in the marker selection step.

5.3 Second experiment

In order to confirm the discussion of algorithm perform-
ance based on the provided parameter setting, the
proposed algorithm (MSEPF-MMSF) is applied on two
other well-known hyperspectral images including SalinasA
and Botswana. In this experiment, the parameters of the
algorithms are set at the optimal values extracted from the
first experiment. In Tables 4 and 5, the number of training
and test samples of each class and the classification accur-
acies for these data sets are given. In order to visualize the
analysis, the obtained classification maps of the SVM clas-
sifier and the abovementioned classifiers (SSEPF-MMSF
and MSEPF-MMSEF) are given in Figs. 10 and 11. It is clear
that the obtained classification map of MSEPF-MMSF is
less noisy than the other two classification maps. More-
over, the classification accuracies are enhanced using the
MSEPF-MMSF method. For example, the OA is improved
by 6.65% and the AA by 6.43% when compared to the
SVM classification for the Botswana data set. The result
indicates that the good classification accuracies for the
different images will be achieved with the use of the
extracted optimal values of the parameters.

The following table represents McNemar’s test [31]
results for the Botswana data set (Table 6). The result of
McNemar’s test indicates the using of MSEPF-MMSF
improves confidence of classification than SSEPF-
MMSE. MSEPF-MMSEF will remove the statistical fluctu-
ations of the classification. So, the efficiency and the
robustness of the results will be enhanced. In fact, rather
than preserving only the best classification result, the
results of all classifiers even the unsuccessful ones are
kept. The combination of these rich information using
the majority voting decision rule provides the comple-
mentary spectral-spectral information and improves
the classification accuracy. Thus, the confidence of
classification will be improved. The results of the
McNemar test for the Botswana image are given be-
cause it has a bigger size than the other researched
images.

6 Conclusions
In this paper, a new method is proposed for spectral-
spatial classification by the combination of modified

MSF (MMSF) and multiscale edge-preserving filter
(MSEPF). The proposed method can describe different
spatial structures and performs faster than the trad-
itional MSF because of the reduction in the number of
nodes and edges. In addition, the marker-based ap-
proach of supervised segmentation which suffers from
an issue of marker selection does not exist in this new
method. The proposed method is also compared to
some state-of-the-art methods. The results indicate that
the proposed method has good performance in hyper-
spectral image classification. It is worth mentioning that
the primary problem of the proposed method is deter-
mining the optimal values for the related parameters
and that an automatic determination of these parameters
would be a very interesting direction for future research.
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