
Windows Kernel Reference

Count Vulnerabilities - Case Study

Mateusz "j00ru" Jurczyk

@ ZeroNights E.0x02

November 2012

PS C:\Users\j00ru> whoami

nt authority\system

• Microsoft Windows internals fanboy

• Also into reverse engineering and low-level

software security

• Currently in Switzerland working at Google

Why this talk?

• Lost of stuff in a sandbox

o Google Chrome, Adobe Reader, Apple Safari,

pepper plugins, ...

o Escapes are becoming valuable

• Also, escapes are super exciting!

o https://krebsonsecurity.com/2012/11/experts-warn-

of-zero-day-exploit-for-adobe-reader/ (just recently)

o ... really, is this so shocking?

• "New" old class of bugs in the Windows kernel

• Otherwise, a bunch of technically interesting bugs

https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/

Topics covered

• Reference counting philosophy and problems

• Case study

a. 1-day (NT Object Manager PointerCount weakness)

b. 0-day (generic device driver image use-after-free)

c. CVE-2010-2549 (win32k!NtUserCheckAccessForIntegrityLevel

use-after-free)

d. CVE-2012-2527 (win32k!NtUserAttachThreadInput use-after-free)

e. CVE-2012-1867 (win32k!NtGdiAddFontResource use-after-free)

• Mitigations and lessons learned

Reference counting

Fundamentals

• From now on, considering ring-0 refcounting

• System state → graph
o resources → nodes

o dependencies (refs) → directed edges

o lonely node → destroy

 dynamic memory management = vulnerabilities

ntoskrnl.exe

hal.dll

win32k.sys
dxg.sys

Fundamentals

• In the graph scenario, a vertex doesn't have

to know who points at him
o Just the total number

• Common expression in garbage collectors:

if (!pObject->Refcount) {

 free(pObject);

}

• Unsurprisingly, refcounting is usually

implemented using plain integers

• Typical code pattern

POBJECT pObject = TargetObject;

PCLIENT pClient = ClientObject;

pObject->Refcount++;

pClient->InternalPtr = pObject;

/* Perform operations on pClient assuming

initialized InternalPtr */

pClient->InternalPtr = NULL;

pObject->Refcount--;

Fundamentals

pObject guaranteed to persist

Fundamentals

• Windows kernel primarily written in C

• Everything is (described by) a structure

• Lack of common interface to manage

references

o Implemented from scratch every single time when

needed...

o ... always in a different way

Examples?

kd> dt tagQ

win32k!tagQ

 +0x000 mlInput : tagMLIST

[...]

 +0x070 hwndDblClk : Ptr64 HWND__

 +0x078 ptDblClk : tagPOINT

 +0x080 ptMouseMove : tagPOINT

 +0x088 afKeyRecentDown : [32] UChar

 +0x0a8 afKeyState : [64] UChar

 +0x0e8 caret : tagCARET

 +0x130 spcurCurrent : Ptr64 tagCURSOR

 +0x138 iCursorLevel : Int4B

 +0x13c QF_flags : Uint4B

 +0x140 cThreads : Uint2B

 +0x142 cLockCount : Uint2B

[...]

kd> dt _OBJECT_HEADER

nt!_OBJECT_HEADER

 +0x000 PointerCount : Int8B

 +0x008 HandleCount : Int8B

 +0x008 NextToFree : Ptr64 Void

 +0x010 Lock : _EX_PUSH_LOCK

[...]

kd> dt _LDR_DATA_TABLE_ENTRY

nt!_LDR_DATA_TABLE_ENTRY

[...]

 +0x068 Flags : Uint4B

 +0x06c LoadCount : Uint2B

 +0x06e TlsIndex : Uint2B

 +0x070 HashLinks : _LIST_ENTRY

[...]

Reference counting:

problems

Logical issues

• Crucial requirement: refcount must be

adequate to number of references by pointer

• Obviously, two erroneous conditions
o Refcount is inadequately small

o Refcount is inadequately large

• Depending on the context, both may have

serious implications

Overly small refcounts

• Two typical reasons
o Reference-by-pointer without refcount incrementation

o More decrementations in a destroy phase than

incrementations performed before

• Foundation of modern user-mode vulnerability

hunting (web browsers et al)

o http://zerodayinitiative.com/advisories/published/

o http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-

2.html

o https://www.google.pl/#q=metasploit+use-after-free

o ...

http://zerodayinitiative.com/advisories/published/
http://zerodayinitiative.com/advisories/published/
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
https://www.google.pl/
https://www.google.pl/
https://www.google.pl/
https://www.google.pl/
https://www.google.pl/
https://www.google.pl/

Overly small refcounts

• Typical outcome in ring-3

mov eax, dword ptr [ecx]

mov edx, dword ptr [eax+70h]

call edx

• Still use-after-free in ring-0, but not so trivial
o almost no vtable calls in kernel

o exploitation of each case is bug specific and usually requires a

lot of work

o kernel pools feng shui is far less developed and documented

compared to userland

o Tarjei Mandt has exploited a few, check his BH slides and

white-paper

object vtable lookup + call

Overly large refcounts

• Expected result → resource is never freed
o Memory leak

o Potential DoS via memory exhaustion

o Not very useful

• But refcounts are integers, remember?
o Finite precision.

o Integer arithmetic problems apply!

o Yes, we can try to overflow

• This can become a typical "small refcount"

problem
o use-after-free again

Reference count leaks

• If we can trigger a leak for free, it's exploitable

while (1) {

 TriggerRefcountLeak(pObject);

}

• Unless the integer range is too large
o uint16_t is not enough

o uint32_t is (usually) not enough anymore

o uint64_t is enough

Reference count leaks

• Or unless object pinning implemented
(ntdll!LdrpUpdateLoadCount2)

if (Entry->LoadCount != 0xffff) {

 // Increment or decrement the refcount

}

Legitimately large refcounts

• Sometimes even those can be a problem

• We can bump up refcounts up to a specific

value

• Depends on bound memory allocations

 Per-iteration byte limit Reference counter size

impossible 64 bits

0-2 bytes 32 bits

16,384 - 131,072 bytes 16 bits

4,194,304 - 33,554,432 bytes 8 bits

never happens

Perfect reference counting

Qualities

• Implementation: 32-bit or 64-bit (safe choice)

integers.

• Implementation: sanity checking, e.g.
refcount ≥ 0x80000000 ⇒ bail out

• Usage: reference# = dereference#

o Random idea: investigate system state at shutdown

• Usage: never use object outside of its reference

block

• Mitigation: reference typing

Reference counting

bugs: case study

NT Object Manager PointerCount weakness

• Manages common resources
o files, security tokens, events, mutants, timers, ...

o around 50 types in total (most very obscure)

• Provides means to (de)reference objects

o Public kernel API functions
 ObReferenceObject, ObReferenceObjectByHandle,

ObReferenceObjectByHandleWithTag, ObReferenceObjectByPointer,

ObReferenceObjectByPointerWithTag, ObReferenceObjectWithTag

 ObDereferenceObject, ObDereferenceObjectDeferDelete,

ObDereferenceObjectDeferDeleteWithTag, ObDereferenceObjectWithTag

o Extensively used by the kernel itself and third-party

drivers

NT Object Manager PointerCount weakness

Fundamentals

• Each object comprised of a header + body

o Header common across all objects, body specific to
type (e.g ETHREAD, EPROCESS, ERESOURCE)

kd> dt _OBJECT_HEADER

win32k!_OBJECT_HEADER

 +0x000 PointerCount : Int4B

 +0x004 HandleCount : Int4B

[...]

 +0x008 Type : Ptr32 _OBJECT_TYPE

[...]

 +0x018 Body : _QUAD

type specific structure

type specifier

native word-wide

reference counters

NT Object Manager PointerCount weakness

Fundamentals

• Two reference counters
o PointerCount - # of direct kernel-mode pointer

references

o HandleCount - # of indirect references via HANDLE

(both ring-3 and ring-0)

• Object free condition(PointerCount == 0) &&
(HandleCount == 0)

NT Object Manager PointerCount weakness

• Security responsibility put on the caller

o Allows arbitrary number of decrementations

o Allows reference count integer overflows

• Excessive dereferences rather uncommon

o CVE-2010-2549 is the only I can remember

• Reference leaks on the other hand...
o can theoretically only lead to memory leak

 who'd care?

o sometimes you just forget to close something

o much more popular (in third-parties, not Windows)

• Userland can't overflow HandleCount

o At least 32GB required to store four billion

descriptors.

o HANDLE address space is four times smaller than a

native word.

• But random drivers can overflow PointerCount

o grep through %system32%\drivers?

< Binary file ./cpqdap01.sys matches

< Binary file ./isapnp.sys matches

< Binary file ./modem.sys matches

< Binary file ./nwlnkipx.sys matches

< Binary file ./pcmcia.sys matches

< Binary file ./sdbus.sys matches

< Binary file ./wmilib.sys matches

NT Object Manager PointerCount weakness

Import a Reference,

but no Dereference

symbol.

NT Object Manager PointerCount weakness

• Refcount leaks are as dangerous as double derefs

(only on 32-bit platforms)

o just take longer to exploit

• Had a chat with Microsoft security

• A few months later, Windows 8 ships with a fix:

 [...]

 v8 = _InterlockedIncrement((signed __int32 *)v5);

 if ((signed int)v8 <= 1)

 KeBugCheckEx(0x18u, 0, ObjectBase, 0x10u, v8);

 [...]

 " The REFERENCE_BY_POINTER bug check has a value of
0x00000018. This indicates that the reference count of an object
is illegal for the current state of the object. "

NT Object Manager PointerCount weakness

• Ken Johnson and Matt Miller covered this

and other mitigations during their BH USA

2012 presentation

o "Exploit Mitigation Improvements in Windows 8",

check it out

• Mitigation only released for Windows 8
o older platforms still affected

o go and find your own unpaired ObReferenceObject

invocations?

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

Device driver image use-after-free

• Many drivers loaded in Windows at any time
kd> lm

start end module name

80ba0000 80ba8000 kdcom (deferred)

8281f000 82c31000 nt (pdb symbols)

82c31000 82c68000 hal (deferred)

82e00000 82e25000 CLASSPNP (deferred)

[...]

• They import from

each other

extensively

Device driver image use-after-free

• In other words, drivers are resources that

reference each other
o refcounts!

• Each described by LDR_DATA_TABLE_ENTRY

kd> dt _LDR_DATA_TABLE_ENTRY

nt!_LDR_DATA_TABLE_ENTRY

 [...]

 +0x024 FullDllName : _UNICODE_STRING

 +0x02c BaseDllName : _UNICODE_STRING

 +0x034 Flags : Uint4B

 +0x038 LoadCount : Uint2B

 +0x03a TlsIndex : Uint2B

16-bit only!

Device driver image use-after-free

• If we load a driver that imports from e.g. fwpkclnt.sys

65,536 times, LoadCount is overflown.

o must be a different path every time.

• Smallest default drivers take up 8kB - 65kB of virtual

address space.

o still within reasonable limits on X86-64 (within 4GB)

Device driver image use-after-free

• Not all drivers can be unloaded, even for refcount=0

o there's a concept of kernel DLLs

 not stand-alone, only loaded as dependencies

 can be recognized by DllInitialize / DllUnload exports

 examples: usbport.sys, msrpc.sys, Classpnp.sys

• Exploitation plan:

o Find a small driver importing from a kernel DLL to

load multiple times

o Find another such driver which fails to load.

o Overflow DLL refcount using driver A, then free using

driver B.

Device driver image use-after-free

• Exemplary setting: use wfplwf.sys to overflow the

netio.sys (DLL) refcount

• Use tcpip.sys to trigger the free(netio.sys)

• Works good!

Refcounts in the middle of an attack:

DLL modules

imported by

wfplwf.sys

Device driver image use-after-free

Effective result
[…]

<Unloaded_NETIO.SYS>+0x1b70:

88557b70 ?? ???

Resetting default scope

[…]

 0: kd> kb

ChildEBP RetAddr Args to Child

8078a654 […] <Unloaded_NETIO.SYS>+0x1b70

8078a668 […] tcpip!CheckInboundBypass+0x1f

8078a810 […] tcpip!WfpAleFastUdpInspection+0x55

[…]

Device driver image use-after-free

• Impact

o Administrative rights required

o Therefore, only admin → ring-0 privilege escalation

o Useful for subverting Driver Signature Enforcement

 not much else

Device driver image use-after-free

Metrics

• Memory

o wfplwf.sys takes 0x7000 bytes (28kB) of virtual

memory.

o 0x10000 (65,536) instances = ~2GB total.

• CPU time

o Platform: Windows 7 64-bit, 4-core VMware Player,

Intel i7-3930K @ 3.20GHz

o ~100 loads per second.

o 65,536 loads ~ 655 seconds ~ 10 minutes

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• On Wed, 30 Jun 2010 Microsoft-Spurned

Researcher Collective dropped a 0-day at

full disclosure.
o Windows Vista / 2008 only

o included a link to j00ru.vexillium.org :-/

• Turned out to be a trivial double-deref when

accessing a PsProcessType object

o Managed by the NT Object Manager

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

Faulty call chain

• win32k!NtUserCheckAccessForIntegrityLevel

o win32k!LockProcessByClientId

 win32k!LockProcessByClientIdEx

• nt!PsLookupProcessByProcessId

o nt!ObReferenceObjectSafe

• nt!PsGetProcessSessionId

 nt!ObfDereferenceObject

o nt!ObfDereferenceObject

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• Referenced once

 nt!PsLookupProcessByProcessId

 PAGE:006167A9 call @ObReferenceObjectSafe@4

• Dereferenced twice

 win32k!LockProcessByClientId

 .text:BF88E63B call ds:__imp_@ObfDereferenceObject@4

 win32k!NtUserCheckAccessForIntegrityLevel

 .text:BF92D329 call ds:__imp_@ObfDereferenceObject@4

• Broke the reference# = dereference#

rule

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• Bug allows arbitrary decrementation of
PointerCount of an object.

• Conditions

o Must be a process (PsProcessType)

o In a different terminal session than caller
(process session id != gSessionId)

 System, smss.exe, lsass.exe, ...

 Remote Desktop Services applications

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• Exploitation concept

a. Find a process with HandleCount = 0

b. Free the object by dropping PointerCount to 0

c. Spray object memory with controlled data.

d. ???

e. PROFIT!

• smss.exe looks good
PROCESS 8c10b628 SessionId: none Cid: 0194 Peb: 7ffda000 ParentCid: 0004

 DirBase: 0015c020 ObjectTable: 87fc6fc8 HandleCount: 28.

 Image: smss.exe

kd> !object 8c10b628

Object: 8c10b628 Type: (8465aec0) Process

 ObjectHeader: 8c10b610 (old version)

 HandleCount: 0 PointerCount: 22

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

Crash easy to trigger

TRAP_FRAME: 90706b0c -- (.trap 0xffffffff90706b0c)

ErrCode = 00000002

eax=86399708 ebx=8180c584 ecx=8c1232d0 edx=8c123310 esi=00000000 edi=00000000

eip=8187ec58 esp=90706b80 ebp=90706b88 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202

nt!KiReadyThread+0x3c:

8187ec58 8906 mov dword ptr [esi],eax ds:0023:00000000=????????

Resetting default scope

STACK_TEXT:

[...]

90706b88 8188080e 819cfc20 863998ac 863998b4 nt!KiReadyThread+0x3c

90706ba4 818808d2 00000001 00000000 00000000 nt!KiUnwaitThread+0x14a

90706bc0 8187a307 00000001 8c1d0d78 863998ac nt!KiWaitTest+0xb6

90706bd8 81882cff 863998ac 00000001 00000001 nt!KeReleaseSemaphore+0x4f

90706c04 81d8d741 8c1d0f8c 00000001 00000000 nt!AlpcpSignalAndWait+0x7f

90706c40 81db91dc 00000001 90706cac 00000000 nt!AlpcpReceiveSynchronousReply+0x33

90706cd0 81dc041c 8c172818 00020000 00ddfab0 nt!AlpcpProcessSynchronousRequest+0x648

[...]

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• Exploitation more difficult
o Only candidate is smss.exe (despite System)

o Unknown PointerCount

o Requires advanced kernel pool feng-shui

 EPROCESS takes 0x25c (604) bytes of

NonPagedPool

 failed attempt = Blue Screen of Death

• Definitely still possible!

o keep an eye on my blog☺

win32k!NtUserCheckAccessForIntegrityLevel

use-after-free

• Impact
o Local privilege escalation if exploitation succeeds

o Denial of Service otherwise.

o Windows Vista / 2008 Server only.

• Metrics
o Memory: irrelevant

o CPU time: irrelevant (instant)

• Fix

o Setting the output object pointer to NULL in

win32k!LockProcessByClientId

 second dereference doesn't occur anymore

win32k!NtUserAttachThreadInput

use-after-free

• Some threads in Windows are marked as GUI

o can then talk to win32k.sys

o required for anything graphics-related

• Every such thread has a kernel-mode message

queue.

kd> dt tagQ

win32k!tagQ

 +0x000 mlInput : tagMLIST

 [...]

 +0x13c QF_flags : Uint4B

 +0x140 cThreads : Uint2B

 +0x142 cLockCount : Uint2B

 +0x144 msgJournal : Uint4B

looks like

refcounts!

win32k!NtUserAttachThreadInput

use-after-free

• Threads can attach to each others' queues!

o see AttachThreadInput (documented API)

• Queues must store # of reliant threads

o uses cThreads for just that

• Queues freed in win32k!UserDeleteW32Thread

when (cThreads == 0) && (cLockCount == 0)

.text:BF8D6B63 cmp [ecx+tagQ.cLockCount], di

.text:BF8D6B6A jnz short loc_BF8D6B7D

.text:BF8D6B6C mov eax, ecx

.text:BF8D6B6E cmp [eax+tagQ.cThreads], di

.text:BF8D6B75 jnz short loc_BF8D6B7D

.text:BF8D6B77 push eax ; Entry

.text:BF8D6B78 call _FreeQueue@4 ; FreeQueue(x)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681956(v=vs.85).aspx

win32k!NtUserAttachThreadInput

use-after-free

• There's no refcount leak in the implementation

o no "free" incrementations

• Can we legitimately attach > 65,535 threads to a single

queue?

o Yes, if we can create that much.

o Can we?

• Mark Russinovich had an excellent post about it, see

"Pushing the Limits of Windows: Processes and

Threads"

win32k!NtUserAttachThreadInput

use-after-free

• Short answer: no on 32-bit Windows

o limitations: kernel virtual address space size,

physical memory capacity, …

o only up to 32K threads, usually far less.

• Good news: yes on 64-bit Windows

win32k!NtUserAttachThreadInput

use-after-free

Let’s test!

for (unsigned int i = 0; ; i++) {

 if (!CreateThread(NULL, 0,

 (LPTHREAD_START_ROUTINE)ThreadRoutine,

 NULL, 0, NULL)) {

 break;

}

 printf(„threads: %u\n”, i);

}

win32k!NtUserAttachThreadInput

use-after-free

c:\code\testlimit\objchk_win7_amd64\amd64>test

threads: 157179

c:\code\testlimit\objchk_win7_amd64\amd64>

• Windows 7 64-bit, 12GB of RAM

• ~ 2.64 GB physical memory consumption for

65,536 threads

• Several seconds of CPU time

win32k!NtUserAttachThreadInput

use-after-free

Security by poor programming practices?

• Overflowing a 16-bit counter shouldn't take too

long, right?

o in theory...

• Every "attach thread A to B" request:

o results in a full recalc of thread queues

o takes O(n2) time, n = session thread count

• Creating a queue with 216 threads takes ~248 steps

o could've been done a whole lot faster

win32k!NtUserAttachThreadInput

use-after-free

AttachThreadInput(x,y) algorithm (pseudo-code)

win32k!gpai.append(pair(thread_from, thread_to));

foreach thread in current_thread->desktop:

 pqAttach = thread->pq;

changed = false;

if thread->attached:

 continue

do:

foreach thread_nested in current_thread->desktop:

if thread_nested->pq == pqAttach:

foreach req in win32k!gpai:

if req.first == thread_nested || req.second == thread_nested:

attach(req.first, req.second)

changed = true

 while changed;

win32k!NtUserAttachThreadInput

use-after-free

• Still exploitable (with some extra work)
o Note: recalc only for caller thread's desktop

• Plan:
o Create self_desktop and thread_desktop desktops

o Assign main thread to self_desktop

o Create 65,536 threads

 assign all to thread_desktop

o Attach threads 1..65,536 to 0

 fills in the win32k!gpai list with thread pairs

 fast: single attach is O(1) for foreign desktops (no recalc)

[...]

win32k!NtUserAttachThreadInput

use-after-free

• Plan, part two
o Switch main thread and current workstation to thread_desktop

o Attach main thread queue to thread 0

 causes a full recalc, n = 216, O(n2) ~ 232 iterations

• within one syscall, no context switches

 triggers the integer overflow; refcount = [...], 65536, 0

 triggers a free of the shared input queue

o Spray session paged pools

o Terminate remaining threads

 triggers use of the freed queue

win32k!NtUserAttachThreadInput

use-after-free

Results

• Multiple assertion hits on a checked build

(s: 1 0x4dc.484 test.exe) [Err] DBGValidateQueueStates: Assertion failed: (pti == pq->ptiMouse)

|| (fAttached && (pq == pq->ptiMouse->pq))

(s: 1 0x4dc.484 test.exe) [Err] DBGValidateQueueStates: Assertion failed: (pti == pq-

>ptiKeyboard) || (fAttached && (pq == pq->ptiKeyboard->pq))

• Ultimately, a bugcheck
win32k!DestroyThreadsMessages+0x22:

fffff960`0011a6b6 488b33 mov rsi,qword ptr [rbx] ds:002b:aaaaaaaa`aaaaaaaa=????????????????

Resetting default scope

STACK_TEXT:

fffff880`fd18e7d0 fffff960`00119da9 : [...] : win32k!DestroyThreadsMessages+0x22

fffff880`fd18e800 fffff960`0013deb7 : [...] : win32k!xxxDestroyThreadInfo+0x1001

fffff880`fd18e8d0 fffff960`00115140 : [...] : win32k!UserThreadCallout+0x93

fffff880`fd18e900 fffff800`0299d375 : [...] : win32k!W32pThreadCallout+0x78

win32k!NtUserAttachThreadInput

use-after-free

• Impact

o Invincible processes by infinite loops in win32k.sys

o Denial of Service (failed use-after-free exploitation)

o Escalation of Privileges (successful exploitation)

 resource constraints

 kernel pool feng-shui required again

• Metrics

o Memory: ~2.5GB required for thread storage.

o CPU time: up to 10 minutes

 creating threads (216 steps): < 5s

 attaching threads (216 steps) < 2 minutes

 doing global recalc (232 steps) < 10 minutes

win32k!NtUserAttachThreadInput

use-after-free

The fix

• Expand the cThreads / cLockCount refcounts to

32 bits

o you can't possibly have 4,294,967,296 threads... yet

(but ping me when you can)

[...] [...]

+0x140 cThreads : Uint2B +0x140 cThreads : Uint4B

+0x142 cLockCount : Uint2B +0x144 cLockCount : Uint4B

[...] [...]

[...] [...]

add word ptr [r12+140h], 1 inc dword ptr [r12+140h]

[...] [...]

win32k!NtGdiAddFontResource use-after-free

• Applications can load external fonts for local

usage
o documented AddFontResource Windows API

o perhaps used in every win32k.sys font fuzzer

" When an application no longer needs a font resource it
loaded by calling the AddFontResourceEx function, it

must remove the resource by calling the

RemoveFontResourceEx function.

"

• Sounds reference-countable! :-)

http://msdn.microsoft.com/en-us/library/windows/desktop/dd183326(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd162923(v=vs.85).aspx

win32k!NtGdiAddFontResource use-after-free

• Indeed...

Callstack

kd> kb

ChildEBP RetAddr Args to Child

9b714af4 [...] win32k!PFFOBJ::vLoadIncr+0x12

9b714b14 [...] win32k!PFTOBJ::chpfeIncrPFF+0x94

9b714b80 [...] win32k!PUBLIC_PFTOBJ::bLoadFonts+0x90

9b714bc8 [...] win32k!GreAddFontResourceWInternal+0xad

9b714d14 [...] win32k!NtGdiAddFontResourceW+0x15e

9b714d14 [...] nt!KiFastCallEntry+0x12a

0022fd2c [...] ntdll!KiFastSystemCallRet

win32k!NtGdiAddFontResource use-after-free

• Indeed...

 .text:BF8149BF ; public: void __thiscall PFFOBJ::vLoadIncr(unsigned long)

[...]

.text:BF8149C4 test [ebp+arg_0], 20h

.text:BF8149C8 mov eax, [ecx]

.text:BF8149CA jz short loc_BF8149D1

.text:BF8149CC inc dword ptr [eax+28h]

.text:BF8149CF jmp short loc_BF8149D4

.text:BF8149D1

.text:BF8149D1 loc_BF8149D1:

.text:BF8149D1 inc dword ptr [eax+24h]

.text:BF8149D4

.text:BF8149D4 loc_BF8149D4:

.text:BF8149D4 call PFFOBJ::vRevive(void)

.text:BF8149D9 pop ebp

.text:BF8149DA retn 4

.text:BF8149DA ?vLoadIncr@PFFOBJ@@QAEXK@Z endp refcount

incrementation!

win32k!NtGdiAddFontResource use-after-free

• Details

o 32-bit refcount involved on both X86 / X86-64

 perhaps an ULONG, but exact structure unknown

o No persistent memory allocations!

• How long does it take?

o well, 232 system calls...

o test environment: Windows XP SP3 in a VM, single

core

o incr. rate at about 100,000 requests / second

o (only) ~12 hours!

 could be less on better machine or with optimized exploit

win32k!NtGdiAddFontResource use-after-free

• Results
o Upon unload, the PFFOBJ class is "killed" when

refcount drops to 0.

o Stack trace:

#0 win32k!PFFOBJ::vKill

#1 win32k!PFFOBJ::bDeleteLoadRef

#2 win32k!PFTOBJ::bUnloadWorkhorse

#3 win32k!GreRemoveFontResourceW

#4 win32k!NtGdiRemoveFontResourceW

win32k!NtGdiAddFontResource use-after-free

• All sorts of badness
o use-after-frees

o NULL pointer dereferences

 kd> g

Access violation - code c0000005 (!!! second chance !!!)

win32k!bGetNtoD_Win31+0x1f:

82008864 8b4830 mov ecx,dword ptr [eax+30h]

kd> ? eax

Evaluate expression: 0 = 00000000

kd> kb

ChildEBP RetAddr Args to Child

9bb28bc4 [...] win32k!bGetNtoD_Win31+0x1f

9bb28bf8 [...] win32k!PFEOBJ::bSetFontXform+0x3e

9bb28c98 [...] win32k!RFONTOBJ::bInit+0x1bf

9bb28cb0 [...] win32k!RFONTOBJ::vInit+0x16

9bb28cd4 [...] win32k!GreGetRealizationInfo+0x2a

9bb28d24 [...] win32k!NtGdiGetRealizationInfo+0x41

9bb28d24 [...] nt!KiFastCallEntry+0x12a

win32k!NtGdiAddFontResource use-after-free

• Impact

o typically DoS or EoP, depending on exploitation

skills

o works on 32-bit and 64-bit platforms

• Fix: mount a reference count limit at ULONG_MAX

o Quite risky, what if there's a two-thread race?

win32k!NtGdiAddFontResource use-after-free

overflow

prevention

check

hmmm... a

new bug?

Also worth checking out

CVE-2011-2013 (tcp/ip stack use-after-free)

• Fixed on November 8, 2011

• 32-bit reference counter integer overflow

• Remote, through UDP packets!

• Works on closed ports!

• Root cause - adverse circumstances and no mitigations

o "small" integer, a 64-bit one would suffice

o no sanity checks

o no persistent memory allocations bound to refcount

incrementations

Mitigations concepts

Preventing refcount problems

• You can't prevent developers from writing

buggy code

• But you can mitigate consequences of the

resulting vulns
o Provide a "secure" interface for everyone to use

o Not perfect, but raises the bar

Preventing integer overflows

• Introduce refcount_t as an alias to

int64_t

o doesn't cost anything: memory is cheap

 times when it mattered are long gone

o would prevent 99% refcount overflow attacks

o potential problem: sometimes counters are difficult

to recognize

Preventing integer overflows

• Introduce generic APIs for refcount

manipulation
o nt!IncrementRefcount, nt!DecrementRefcount,

nt!TestRefcount

o could include basic sanity checks

if (++(*refcount) < 1) {

 KeBugCheckEx(REFCOUNT_GONE_WRONG);

}

if (--(*refcount) < 0) {

 KeBugCheckEx(REFCOUNT_GONE_WRONG);

}

Preventing excessive dereferences

• Much harder than plain integer problems
o let's never free refcounted allocations! :-)

 revisit the idea when unlimited memory available

 curio: nt!NtMakePermanentObject
• requires SeCreatePermanentPrivilege

• The interface doesn't know caller's logic

o which derefs are paired with which refs?

Preventing excessive dereferences

• Idea: identify each ({reference}, {dereference}) pair

with a unique tag

o similarly to pool tags

• A "reference counter" becomes a "reference tree"

• Store information about all pending reference tags

in the tree

• Always pass the tag to the {ref,deref} API

o Test if tag is in tree before decrementing

Preventing excessive dereferences

• A self-balancing binary search tree

struct REFCOUNT_TREE *tree

refcount_t tree_size

A

D A

D C B B

C C

AVL trees already

implemented in Windows

Preventing excessive dereferences

Performance hit

• Statistics (Windows 7 SP1 32-bit with a few apps)

o Average PointerCount: 118009 / 29364 =~ 4.01883

o Average HandleCount: 15135 / 29364 =~ 0.51542

• Difficult to measure refs/derefs per second

• Overhead should be acceptable (own opinion)

Tree implementation Traditional implementation

Reference cost O(lg n) O(1)

Deference cost O(lg n) O(1)

Test cost O(1) O(1)

Preventing excessive dereferences

Memory overhead

• Loose estimate
o ~120,000 references to NT executive objects at

startup

o Twice as much during typical session =~ 250,000

o Twice as much including other refcounts =~ 500,000

o Assume 64 bytes per one reference

 pool header, tag, pointers to parent / children

o A total of extra ~30MB of NonPaged memory

 guess if my 12GB RAM machine can take it?

Preventing excessive dereferences

Other problems

• Lazy developers

o would have to define unique tags

o already do it for pool allocations, so perhaps possible?

• Legacy issues

o existing API routines lack tagging information

 ObReferenceObject{ByHandle,ByPointer}

o how to communicate failure (e.g. lack of memory)?

• Passing tags through wrappers

• Possibly low engineering effort / benefit ratio

o how many bugs would this prevent?

Preventing excessive dereferences

Benefits

• If properly executed, would prevent most use-after-

frees through double derefs

o stealing references not possible anymore

o dereference sequence would have to match the

reference one to exploit

• Automatic mitigation integer overflow

o through memory constraining

• Robust interface for future use

Conclusions

Random thoughts

• Refcounts bugs = use-after-frees
o otherwise rarely observed (perhaps except Tarjei)

o usually time-consuming and tricky to exploit

o often memory-consuming

• Kernel pool spraying should be better

investigated

• Integer types != machine word don't scale

o No explicit (1/2 void*) or (1/4 void*)

o Small types used 20 years ago can take revenge

o More to be found?

Random thoughts

• Inconsistent patches
o sometimes extending types

o sometimes pinning

o sometimes sanity checks

o would a common interface help?

• Microsoft doesn't backport fixes?
o Why CVE-2010-2549 only affected Vista / 2008?

o Could've been found by bindiffing?

o See Nikita's talk

Questions?

Благодарю вас за

внимание!

E-mail: j00ru.vx@gmail.com

Blog: http://j00ru.vexillium.org/

Twitter: @j00ru

mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
http://twitter.com/j00ru
http://twitter.com/j00ru

