

8.6 ModelElement (abstract)
ModelElement is the base element for the majority of modeling elements.
Superclass
SACMElement
Associations
implementationConstraint: ImplementationConstraint [0..*] (composition) – a collection of implementation constraints.
description: Description[0..1] (composition) – the description of the ModelElement.
note:Note[0..*] (composition) – a collection of notes for the ModelElement.
taggedValue: TaggedValue [0..*] (composition) – a collection of TaggedValues, TaggedValues can be used to describe
additional features of a ModelElement
Semantics
All the individual and identifiable elements of a SACM model correspond to a ModelElement.
Constraints

ImplementationConstraints should only be specified if +isAbstract is true OCL: self.implmentationConstraint->size() > 0
implies self.isAbstract = true

8.7 UtilityElement (abstract)
UtilityElement is an abstract element for a number of utility elements.
Superclass
SACMElement
Associations
expression: Expression [1] – the expression object containing the value of the UtilityElement (see Terminology section 10)
Semantics
UtilityElement supports the specification of additional information for a ModelElement.

8.8 ImplementationConstraint
This class specifies details of any implementation constraints that must be satisfied whenever a referencing
ModelElement is to be converted from isAbstract = true to isAbstract = false. For example in the context of a SACM
pattern fragment, an element will need to satisfy the implementation rules of the pattern.
Superclass
UtilityElement
Semantics
ImplementationConstraints indicate the conditions to fulfill in order to allow an abstract ModelElement (isAbstract = true) to
become non-abstract (isAbstract = false).
Constraints
ImplementationConstraints should only specified if isAbstract is true.

8.9 Description
This class specifies a description that may be associated with a ModelElement. In many cases Description is used to provide
the ‘content’ of a SACM element. For example, it would be used to provide the text of a Claim.
Superclass
UtilityElement
Semantics

A Description provides details about ModelElements in relation to aspects such as their content or purpose. Therefore,
Descriptions can be used to both characterize ModelElements and facilitate their understanding.

8.10 ArtifactElement (abstract)
ArtifactElement acts as the base class for elements in other SACM packages. Essentially, all elements which extend
ArtifactElement is considered to be an artifact, and therefore can be referenced using Argument:ArtifactReference.

8.8

the base

auxiliary

which can be added to ModelElements

content:MultiLangString[0..1] (composition) – a MultiLangString to describe the content of the UtilityElement in (possibly) multiple languages

name:LangString[1] (composition) – the name of the ModelElement.

Description is used to specify

ImpementationConstraint

Superclass
ModelElement
Semantics

ArtifactElement corresponds to the base class for specifying all the identifiable units of data modelled and
managed in a structured assurance case effort..

8.11 Description
This class specifies a description that may be associated with a ModelElement. In many cases Description is used to provide
the ‘content’ of a SACM element. For example, it would be used to provide the text of a Claim.
Superclass
UtilityElement
Semantics
8.12 A Description provides details about ModelElements in relation to aspects such as their content or purpose.
Therefore, Descriptions can be used to both characterize ModelElements and facilitate their understanding.

8.13 Note
This class specifies a generic note that may be associated with a ModelElement. For example a note may include a number of
explanatory comments.
Superclass
UtilityElement
Associations
key:MultiLangString[1] (composition) – the key of the TaggedValue.

Semantics
TaggedValues can be used to specify attributes, and their corresponding values, for ModelElements.

This class represents a simple key/value pair that can be attached to any element in SACM. This is a simple extension mechanism to allow users to add attributes to each element beyond those already specified in SACM.

Superclass

UtilityElement

Associations

key:MultiLangString[1] (composition) – the key of the TaggedValue.

Semantics

TaggedValues can be used to specify attributes, and their corresponding values, for ModelElements.

8.12 TaggedValue

8.11

9 Structured Assurance Case Packages
9.1 General
This chapter presents the normative specification for the SACM Packages Metamodel. It begins with an
overview of the metamodel structure followed by a description of each element.

Figure 9.1 - Structured Assurance Case Packages Class Diagram

In SACM, the parent container element is AssuranceCasePackage. AssurancesCasePackages can be thought of assurance case
‘modules’. Packages can contain other packages, including citations to other packages not contained within the same package
hierarchy. Packages optionally can have a separately declared interface (AssuranceCasePackageInterface) (analogous to a public
header file) that declares selected packages contained by a package.
Assurance cases (AssuranceCasePackages) consist of arguments (containined in ArgumentPackages), evidence descriptions
(contained in ArtifactPackages) and Terminology definitions (contained in TerminologyPackages).

9.2 ArtifactElement (abstract)
ArtifactElement is an abstract class that serves as a parent class for Artifacts and AssuranceCasePackage elements.
Superclass

ModelElement

Semantics
ArtifactElement correspond to the base class for specifying all the identifiable units of data modelled and managed in a
structured assurance case effort.

9.3 AssuranceCasePackage
AssuranceCasePackage is an exchangeable element that may contain a mixture of artifacts, argumentation and
terminology. When users exchange content, it is expected they use this as the top level container. It is a recursive
container, and may contain one or more sub-packages.
This follows the existing practice of considering an assurance case when fully completed to comprise both
argumentation and evidence, although each may be exchanged individually.
AssuranceCasePackage is a sub-class of Base::ArtifactElement. Semantically an AssuranceCasePackage can be
considered as an artifact of evidence (e.g. from the perspective of another AssuranceCasePackage).

9.2

Superclass
Base::ArtifactElement
Associations
assuranceCasePackage: AssuranceCasePackage [0..*] (composition) – a collection of optional sub-packages
interface: AssuranceCasePackageInterface [0..*] – a number of optional assurance case package interfaces that the
current package may implement
artifactPackage: ArtifactPackage [0..*] (composition) – a number of optional artifact sub-packages
terminologyPackage: TerminologyPackage [0..*] (composition) – a number of optional terminology sub-packages
argumentPackage:Argument::ArgumentPackage[0..*] (composition) – a number of optional argument packages.
Semantics
AssuranceCasePackage is the root class for creating structured assurance cases.

9.4 AssuranceCasePackageInterface
AssuranceCasePackageInterface is a kind of AssuranceCasePackage that defines an interface that may be exchanged
between users. An AssuranceCasePackage may declare one or more ArtifactPackageInterfaces.
Superclass
AssuranceCasePackage
Associations

implements:AssuranceCasePackage[1] – the AssuranceCasePackage that the AssuranceCasePackageInterface declares.

Semantics
AssuranceCasePackageInterface enables the declaration of the elements of an AssuranceCasePackage that might be
referred to (cited) in another AssuranceCasePackage. These declarations are provided by containing
AssuranceCasePackageInterface(s)/ArgumentPackageInterface(s)/ArtifactPackageInterface(s)/TerminologyPackageInte
rface(s) to the packages contained by the AssuranceCasePackage (for which the interface provided).
Constraints
AssuranceCasePackageInterface are only allowed to contain the following: AssuranceCasePackageInterface,
ArgumentPackageInterfaces, ArtifactPackageInterfaces, and TerminologyPackages.
OCL:
self.assuranceCasePackage->forall(acp|acp.oclIsTypeOf(AssuranceCasePackageInterface)) and
self.argumentPackage->forall(ap|ap.oclIsTypeOf(Argumentation::ArgumentPackageInterface)) and
self.artifactPackage->forall(ap|ap.oclIsTypeOf(Artifact::ArtifactPackageInterface)) and
self.terminologyPackage->forall(tp|tp.oclIsTypeOf(Terminology::TerminologyPackageInterface))

9.5 AssuranceCasePackageBinding
Sub-packages within the AssuranceCasePackage can be bound together by means of AssuranceCasePackageBindings.
AssuranceCasePackageBindings bind the participant packages by means of
ArgumentPackageBindings/TerminologyPackageBindings/ArtifactPackageBindings elements that bind the contained
packages of the participant packages.
Superclass
AssuranceCasePackage
Associations
participantPackage:AssuranceCasePackage[2..*] – references to AssuranceCasePackages which the
AssuranceCasePackageBinding binds together.
Semantics
AssuranceCasePackageBinding binds peer AssuranceCasePackages together to indicate the relationship between these
AssuranceCasePackages. The bindings between AssuranceCasePackages consist of the bindings of the packages (i.e.

9.3

9.4

OCL: self.participantPackage->forall(pp|pp.oclIsKindOf(Terminology::TerminologyPac kage))

10.7 TerminologyAsset (abstract)
The TerminologyAsset Class is the abstract class for the different types of terminology elements represented
in SACM.
Superclass

TerminologyElement

Semantics

TerminologyAssets represent all of the elements required to model and categorize expressions in SACM
(expressions and terminology categories).

10.8 Category
The Category class describes categories of ExpressionElements (Terms and Expressions) and can be used to group these
elements within TerminologyPackages.
Superclass
 TerminologyAsset
Semantics
Terms and ExpressionElements can be said to belong to Categories. Categories can group Terms, Expressions, or a mixture of
both. For example, a Category could be used to describe the terminology associated with a specific assurance standard,
project, or system.

10.9 ExpressionElement (abstract)
The ExpressionElement class is the abstract class for the elements in SACM that are necessary for modeling expressions.
Superclass

TerminologyAsset

Associations
category: Category [0..*] – optionally associates the ExpressionElement with one or more terminology categories.
Semantics

ExpressionElements are used to model (potentially structured) expressions in SACM. All ModelElements contain a
Description whose value is provided by means of an Expression.

10.10 Expression
The Expression class is used to model both abstract and concrete phrases in SACM. Abstract Expressions are denoted by the
inherited isAbstract attribute being set true. A concrete expression (denoted by isAbstract being false) is one that has a literal
string value and references only concrete ExpressionElements.
Superclass
ArtifactElement
Attributes
value: String – An attribute recording the value of the expression
Associations

element: ExpressionElement [0..*] – an optional reference to other ExpressionElements forming part of the
StructuredExpression.
Semantics
Expressions are used to model phrases and sentences. These are defined using the value attribute. The value attribute can be a
simple literal string. Alternatively, the expression can also be defined (using the value string) as a production rule involving
other ExpressionElements. In this case, the value string must use a suitable (string) form for denoting the position of involved
ExpressionElements (e.g. “$<ExpressionElement.name>$”) within the production rule, and expressing production rule
operators (e.g. Extended Backus-Naur Form operators).

Attributes
value:String[1] – the value of the expression.

isAbstract:Boolean

ExpressionElement

sturctured Expression.

property

Constraints
Where an Expression has associated ExpressionElements these should be referenced by name within the Expression.value.
Where an Expression.value references ExpressionElements by name, these ExpressionElements should be
associated (using the element association) with Expression.

10.11 Term
The Term class is used to model both abstract and concrete terms in SACM. Abstract Terms can be considered placeholders
for concrete terms and are denoted by the inherited isAbstract attribute being set true. A concrete term is denoted by isAbstract
being false.
Attributes
value: String – An attribute recording the value of the Term
externalReference: String – An attribute recording an external reference (e.g., URI) to the object referred to by the Term
Superclass
ExpressionElement
Semantics
Term class is used to model both abstract and concrete terms in SACM. Abstract Terms can be considered placeholders for
concrete terms and are denoted by the inherited isAbstract attribute being set true. A concrete term is denoted by isAbstract
being false.
The externalReference attribute enables the referencing of the object signified by the term (signifier). It also provides a
mechanism whereby terms can reference concepts and terms defined in other ontology and terminology models.

isAbstract:Boolean

[0..1] – an

Associations
origin:Base::ModelElement[0..1] – a reference which points to the origin of the Term.

i.e. the

(the +element property), these should be referenced by name within the +value property.
Where the +value property references ExpressionElement by name, these ExpressionElements should be associated (using the +element property) with Expression.A concrete expression should have references to only concrete ExpressionElements
OCL: self.isAbstract = false implies self.element->forall(expr|expr.isAbstract = false).

11 SACM Argumentation Metamodel
11.1 General
This chapter presents the normative specification for the SACM Argumentation Package. It begins with an overview of
the metamodel structure followed by a description of each element.

11.2 Argumentation Class Diagram

Figure 11.1 - Argumentation Package Diagram
This portion of the SACM model describes and defines the concepts required to model structured arguments.
Arguments are represented in SACM through explicitly representing the Claims and citation of artifacts (e.g., as
evidence) (ArtifactReference), and the ‘links’ between these elements – e.g., how one or more Claims are asserted
to infer another Claim, or how one or more artifacts (referenced by ArtifactReference) are asserted as providing
evidence for a Claim (AssertedEvidence). In addition to these core elements, in SACM it is possible to provide
additional description of the ArgumentReasoning associated with inferential and evidential relationships, represent
counter-arguments and counter-evidence (through isCounter:Boolean), and represent how artifacts provide the
context in which arguments should be interpreted (through AssertedContext.)
The packaging of structured arguments into ‘modular’ argument packages is enabled through
ArgumentPackages, an optional declaration of an interface for the package (ArgumentPackageInterface)
that organizes a specific selection of the ArgumentElements contained within the package, and the ability to link
(by means of an argument) two or more argument packages (through an ArgumentPackageBinding). It is
also possible within a package to cite elements contained within other argument packages (through AssertedContext).
The packaging of structured arguments into ‘modular’ argument packages is enabled through ArgumentPackages, an optional
declaration of an interface for the package (ArgumentPackageInterface) that organises a specific selection of the
ArgumentElements contained within the package, and the ability to link (by means of an argument) two or more argument

packages (through an ArgumentPackageBinding). It is also possible within a package to cite elements contained within other
argument packages (through ArtifactReference).

11.3 ArgumentGroup
ArgumentGroup can be used to associate a number of ArgumentElements to a common group (e.g. representing a common
type or purpose, or being of interest to a particular stakeholder).
Superclass
ArgumentationElement
Associations
argumentationElement:ArgumentationElement[0..*] – an optional collection of ArgumentationElements organised within the
ArgumentGroup.
Semantics
ArgumentGroup can be used to associate a number of ArgumentElements to a common group (e.g. representing a common
type or purpose, or being of interest to a particular stakeholder). The name and the description of the ArgumentGroup should
provide the semantic for understanding the ArgumentGroup. ArgumentGroups serve no structural purpose in the formation of
the argument network, nor are they meant as a structural packaging mechanism (this should be done using
ArgumentPackages).

11.4 ArgumentationElement (abstract)
An ArgumentationElement is the top level element of the hierarchy for argumentation elements. ArgumentationElement
extends Base::ArtifactElement. Subsequently, all argument elements are considered artifacts.
Superclass
Base::ArtifactElement
Semantics
The ArgumentationElement is a common class for all elements within a structured argument.

11.5 ArgumentPackage Class
The ArgumentPackage Class is the container class for a structured argument represented using the SACM Argumentation
Metamodel.
Superclass
ArgumentationElement
Associations
argumentAsset:ArgumentAsset[0..*]
The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage:ArgumentationPackage[0..*]
The nested argumentPackage contained in a given instance of an ArgumentPackage
interface:ArgumentationPackage[0..*]
Reference to the declared interface for the ArgumentPackage.
Semantics
ArgumentPackages contain structured arguments. These arguments are composed of ArgumentAssets. ArgumentPackages
elements can be nested, and can contain citations (references) to other ArgumentPackages.
For example, arguments can be established through the composition of Claims (propositions) and the AssertedInferences
between those Claims.

11.6 ArgumentPackageBinding
ArgumentElement within the ArgumentPackage can be bound together by means of ArgumentPackageBinding.
ArgumentPackageBinding bind the participant packages by means of argument elements that connect the cited elements of the
participant packages.

ing element

argumentationElement:ArgumentationElement[0..*] (composition) – a collection of ArgumentationElements forming a structured argument

also

Constraints
If an ArgumentPackage has nested ArgumentPackages, then it is only allowed to contain ArgumentPackages.

11.2

11.4

11.5

11.3

Superclass
ArgumentPackage
Associations
participantPackage:ArgumentPackageInterface[2..*] - the ArgumentPackages being mapped together by the
ArgumentPackageBinding.
Semantics
ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.
For example, one ArgumentPackage may contain a claim that needsSupport (i.e. currently has no supporting argument). An
ArgumentPackageBinding can be used to record the mapping by means of containing a structured argument
linkingArgumentElements that cite the claims in question.
ArgumentPackageBinding is a sub type of ArgumentPackage, it is used to record the argument that connects the arguments of
two or more ArgumentPackages.
Constraints
The participantPackages should be only ArgumentPackages
OCL: self.participantPackage->forall(pp|pp.oclIsTypeOf(Argument::ArgumentPackage))
The ArgumentElements contained by an ArgumentPackageBinding must be ArgumentElement citations to ArgumentElements
contained within the ArgumentPackages associated by the participantPackage association.

11.7 ArgumentPackageInterface Class
ArgumentPackageInterface is a kind of ArgumentPackage that defines an interface that may be exchanged between
users. An ArgumentPackage may declare one or more ArgumentPackageInterface.
Superclass
ArgumentPackage
Associations
implements:ArgumentPackage[1] – a reference to the ArgumentPackage which the ArgumentPackageInterface declares.
Semantics
ArgumentPackageInterfaces can be used to declare (by means of containing ArgumentAssetCitations) the ArgumentAssets
contained in an ArgumentPackage that form part of the explicit, declared, interface of the ArgumentPackage.
For example, whilst an ArgumentPackage may contain many Claims, it may be desirable to create an
ArgumentPackageInterface that cites only a subset of those claims that are intended to be mapped / used (e.g. by means of an
ArgumentPackageBinding) by other ArgumentPackages. There may be more than one ArgumentPackageInterface for a given
ArgumentPackage that reveal different aspects of the ArgumentPackage for different audiences.
Constraints
ArgumentPackageInterfaces are only allowed with isCitation=true and +citedElement refer to ArgumentAssets within the
ArgumentPackage implementation referred to by implements.

11.8 ArgumentAsset Class (abstract)
The ArgumentAsset Class is the abstract class for the elements of any structured argument represented in SACM.
Superclass
ArgumentationElement
Semantics
ArgumentAssets represent the constituent building blocks of any structured argument contained in an ArgumentPackage.
For example, ArgumentAssets can represent the Claims made within a structured argument contained in an ArgumentPackage.

11.9 Assertion Class (abstract)
Assertions are used to record the propositions of Argumentation (including both the Claims about the subject of the argument
and the structure of the Argumentation being asserted). Propositions can be true or false, but cannot be true and false
simultaneously.

base element

Associations
content:Base::MultiLangString[0..1] (composition) – the content of the ArgumentAsset defined in possibly multiple languages

11.8 AssertionDeclaration (Enumeration)
11.9 ArtifactReference

ArgumentElement based citations

11.10

11.6

11.7

11.9 AssertionDeclaration (Enumeration)

AssertionDeclaration provides a list of declarations which can be used to declare the state
of an Assertion.

Superclass

N/A

Enumeration Literals

asserted – the default enumeration literal, indicating that an Assertion is asserted.

needsSupport – a flag indicating that further argumentation has yet to be provided to
support the Assertion.

assumed – a flag indicating that the Assertion being made is declared by the author as
being assumed to be true rather than being supported by further argumentation.

axiomatic – a flag indicating that the Assertion being made by the author is axiomatically
true, so that no further argumentation is needed.

defeated – a flag indicating that the Assertion is defeated by counter-evidence and/or
argumentation.

asCited – a flag indicating that because the Assertion is cited, the AssertionDeclaration
should be transitively derived from the value of the AssertionDeclaration of the cited
Assertion.

Semantics

AssertionDeclaration provides a list of declarations which indicate the state of an
Assertion.

	

11.8

11.10 ArtifactReference

ArtifactReference enables the citation of an artifact as information that relates to the
structured argument.

Superclass

ArgumentAsset

Associations

referencedArtifactElement:Base::ArtifactElement[0..*] – reference to a collection of
ArtifactElements.

Semantics

It is necessary to be able to cite artifacts that provide supporting evidence, context, or
additional description with in an argument structure. ArtifactReferences allow there to be
an objectified citation of this information within the structured argument, thereby
allowing the relationship between this artifact and the argument to also be explicitly
declared.

	

11.9

Associations
 metaClaim:Claim[0..*]
 references Claims concerning (i.e., about) the Assertion (e.g., regarding the confidence in the Assertion)
Semantics
Structured arguments are declared by stating claims, citing evidence and contextual information, and asserting how these
elements relate to each other.

11.10 ArtifactElementCitation Class
The ArtifactElementCitation Class enables the citation of an artifact that relates to the structured argument.
Superclass

ArgumentAsset
Attributes
externalReference: String An attribute recording a URL to external evidence.
Associations
citedArtifact:ArtifactElement[0..1]
The ArtifactElements cited by the current ArtifactElementCitation object.
Semantics
It is necessary to be able to cite artifacts that provide supporting evidence, context, or additional description for the core
reasoning of the recorded argument. ArtifactElementCitations allow there to be an objectified citation of this information
within the structured argument, thereby allowing the relationship between this artifact and the argument to also be explicitly
declared.
The externalReference attribute can be used when wishing to cite an Artifact not being modeled by an SACM
ArtifactElement.

11.11 ArgumentAssetCitation Class
The ArgumentAssetCitation cites an ArgumentAsset within another ArgumentPackage, for use within the current
ArgumentPackage.
Superclass
 ArgumentAsset
Associations
 citedAsset:ArgumentAsset[0..*]
 References an ArgumentAsset within another ArgumentPackage.
Semantics
Within an ArgumentPackage it can be useful to be able to cite elements of another ArgumentPackage (i.e., ArgumentAssets)
to act as explicit proxies for those elements acting within the argumentation structure. For example, in supporting a Claim it
may be useful to cite a Claim contained within another ArgumentPackage.
Constraints
The citedAsset referred to by an ArgumentAssetCitation must be outside of the containment hierarchy containing the citation.

11.12 Claim Class
Claims are used to record the propositions of any structured argument contained in an ArgumentPackage.
Propositions are instances of statements that could be true or false, but cannot be true and false simultaneously.
Superclass
Assertion
Attributes
assumed: Boolean

Superclass
ArgumentAsset
Attributes
assertionDeclaration:AssertionDeclaration[1] = asserted – the declaration indicating the state of the Assertion

- references

11.11

An attribute recording whether the claim being made is declared as being assumed to be true rather than being supported by
further reasoning.
toBeSupported: Boolean
An attribute recording whether further reasoning has yet to be provided to support the Claim (e.g. further evidence to be
cited).
Semantics
The core of any argument is a series of claims (premises) that are asserted to provide sufficient reasoning to support a (higher-
level) claim (a conclusion).
A Claim that is intentionally declared without any supporting evidence or argumentation can be declared as being assumed to
be true. It is an assumption. However, it should be noted that a Claim that is not ‘assumed’ (i.e., assumed = false) is not being
declared as false.
A Claim that is intentionally declared as requiring further evidence or argumentation can be denoted by setting toBeSupported
to be true.
Constraints
Self.assumed and self.toBeSupported cannot both be true simultaneously.

11.13 ArgumentReasoning Class
ArgumentReasoning can be used to provide additional description or explanation of the asserted inference or challenge that
connects one or more Claims (premises) to another Claim (conclusion). ArgumentReasoning elements are therefore related to
AssertedInferences and AssertedChallenges. It is also possible that ArgumentReasoning elements can refer to other structured
Arguments as a means of documenting the detail of the argument that establishes the asserted inferences.
Superclass
ReasoningElement
Associations
structure:ArgumentPackage[0..1]
Optional reference to another the ArgumentPackage that provides the detailed structure of the argument being described by
the ArgumentReasoning.
Semantics
The AssertedRelationship that relates one or more Claims (premises) to another Claim (conclusion), or evidence cited by an
ArtifactElementCitation to a Claim, may not always be obvious. In such cases ArgumentReasoning can be used to provide
further description of the reasoning involved.

11.14 AssertedRelationship (abstract)
AssertedRelationship is the abstract association class that enables the ArgumentAssets of any structured argument to be linked
together. The linking together of ArgumentAssets allows a user to declare the relationship that they assert to hold between
these elements.
Superclass
Assertion
Attributes
isCounter:Boolean[1] = false – a flag indicating that the AssertedRelationship counters its declared purposes (e.g. setting
isCounter = true for an AssertedEvidence indicates that the relationship is a counter-evidence).
Associations
source:ArgumentAsset[1..*] - reference to the ArgumentAsset(s) that are the source (starting point) of the relationship.
target:ArgumentAsset[1..*] - reference to the ArgumentAsset(s) that are the target (ending point) of the relationship.
reasoning:ArgumentReasoning[0..1] – an optional reference to the a description of the reasoning underlying the
AssertedRelationship.
Semantics
In SACM, the structure of an argument is declared through the linking together of primitive ArgumentAssets. For example, a
sufficient inference can be asserted to exist between two claims (“Claim A implies Claim B”) or sufficient evidence can be

(i.e. assertionDeclared = assumed).

(i.e., assertionDeclaration = asserted)

However, there is the expectation of the provision of a supporting argument structure (e.g. it may represent part of an incomplete structure).

can be denoted by setting +assertionDeclaration to “needsSupport”.
A Claim that is being declared as axiomatically true can be denoted by setting +assertionDeclaration to “axiomatic”.
A Claim that is defeated by counter evidence can be denoted by setting +assertionDeclaration to “defeated”.
A Claim which cites another claim and supported by the cited claim can be denoted by setting +assertionDeclaration to “asCited”.

11.12

11.13

relationship. For example, it can be used to provide description of an AssertedInference

, AssertedContexts, and AssertedEvidence.

, contexts, and evidence

ArgumentAsset

– optional

Reference

asserted to exist to support a claim (“Claim A is evidenced by Evidence B”). An inference asserted between two claims (A –
the source – and B – the target) denotes that the truth of Claim A is said to infer the truth of Claim B.

11.15 AssertedInference Class
The AssertedInference association class records the inference that a user declares to exist between one or more Assertion
(premises) and another Assertion (conclusion). It is important to note that such a declaration is itself an assertion on behalf of
the user.
Superclass
AssertedRelationship
Semantics
The core structure of an argument is declared through the inferences that are asserted to exist between Assertions (e.g.,
Claims). For example, an AssertedInference can be said to exist between two claims (“Claim A implies Claim B”). An
AssertedInference between two claims (A – the source – and B – the target) denotes that the truth of Claim A is said to infer
the truth of Claim B.
Constraints
The source of AssertedInference relationships must be Claims, or ArgumentElementCitations that cite a Claim.
The target of AssertedInference relationships must be Assertions, or ArgumentElementCitations that cite an Assertion.

11.16 AssertedEvidence Class
The AssertedEvidence association class records the declaration that one or more artifacts of Evidence (cited by
ArtifactElementCitations) provide information that helps establish the truth of a Claim. It is important to note that such a
declaration is itself an assertion on behalf of the user. The artifact (cited by an ArtifactElementCitation) may provide evidence
for more than one Claim.
Superclass
AssertedRelationship
Semantics
Where evidence (cited by ArtifactElementCitation) exists that helps to establish the truth of a Claim in the argument, this
relationship between the Claim and the evidence can be asserted by an AssertedEvidence association. An AssertedEvidence
association between an artifact cited by an ArtifactElementCitation and a Claim (A – the source evidence cited – and B – the
target claim) denotes that the evidence cited by A is said to help establish the truth of Claim B.
Constraints
The source of AssertedEvidence relationships must be ArtifactElementCitation.
The target of AssertedEvidence relationships must be Assertions, or ArgumentElementCitations that cite an Assertion.

11.17 AssertedContext Class
The AssertedContext association class can be used to declare that the artifact cited by an ArtifactElementCitation(s) provides
the context for the interpretation and scoping of a Claim or ArgumentReasoning element. In addition, the AssertedContext
association class can be used to declare a Claim asserted as necessary context (i.e. a precondition) for another Assertion or
ArgumentReasoning.
Superclass
AssertedRelationship
Semantics
Contextual information often needs to be cited in order to make clear the interpretation and scope of a Claim or
ArgumentReasoning description. For example, a Claim can be said to be valid only in a defined context (“Claim A is asserted
to be true only in a context as defined by the information cited by Artifact B” or conversely “InformationItem B is the asserted
context for Claim A”). A declaration (AssertedContext) of context (ArtifactElementCitation B) for a ReasoningElement A
records that B is asserted to be contextual information required for the interpretation and scoping of A (i.e., B defines the
context where the reasoning presented by A is asserted as true).

11.16

11.15

11.14

B

A

Reference

OCL:
self.source->forall(s|s.oclIsTypeOf(ArtifactReference))

Reference

Contextual Claims often need to be cited as preconditions for a Claim or ArgumentReasoning. For example, a Claim may be
asserted only in the context of another claim (“Claim A is asserted to be true only in a context where Claim B is true”.
Similarly, a description of ArgumentReasoning A may only be considered true in a context where Claim B is true”.
Constraints
The source of AssertedContext relationships must be ArtifactElementCitations or Claims.
The target of AssertedContext relationships must be Assertions, ArgumentElementCitations that cite an Assertion,
“ArgumentReasoning” elements or ArgumentElementCitations that cite ArgumentReasoning elements.

11.18 AssertedArtifactSupport
AssertedArtifactSupport records the assertion that one or more artifacts support another artifact.
Superclass
AssertedRelationship
Semantics
The truth of the assertions associated with an artifact are supported by the assertions that are associated with one or more other
artifacts. Note: this can be an ambiguous relationship if the nature of these Assertions is unclear. In such cases, it would be
clearer to declare explicit AssertedInferences between Claims drawn out from the ArtifactReference.
Constraints
The source and target of AssertedArtifactSupport must be of type ArtifactReference.

11.19 AssertedArtifactContext
AssertedArtifactContext records the assertion that one or more artifacts provide context for another artifact.
Superclass
AssertedRelationship
Semantics
One or more other artifacts provide the necessary context in which the assertions associated with another artifact should be
understood. Note: this can be an ambiguous relationship if the nature of these Assertions is unclear. In such cases, it would be
clearer to declare explicit AssertedContext between Claims drawn out from the ArtifactReference.
Constraints
The source and target of AssertedArtifactContext must be of type ArtifactReference.

11.17

11.18

an Assertion.

12 Artifact Classes
12.1 General
This chapter presents the normative specification for the SACM Artifact Package. It begins with an overview of the
metamodel structure followed by a description of each element.

Figure 12.1 - Artifact Package Diagram

Artifacts correspond to the main evidentiary elements of an assurance case. By means of assertions (AssertedEvidence
with isCounter = true/false), artifacts can be referenced (using ArtifactReferences) as supporting claims and arguments.
In general, artifacts are managed when the corresponding objects are available. For example, a test case is
linked to the requirement that validates once the test case has already been created. However, artifact
management might also require the specification of patterns (or templates) in order to allow a user, for
instance, to indicate that a given artifact must be created but it has not yet. A common scenario of this
situation corresponds to the process during which a supplier and a certifier have to agree upon the artifacts
that the supplier will have to provide as assurance evidence for a system. As a result of this process, artifact
patterns could be specified, and such patterns would need to be made concrete during the lifecycle of the
system. Artifact patterns are specified by means of the attribute ‘isAbstract’ (ModelElement). For example, a
supplier and a certifier might agree upon the need for maintaining a hazard log during a system’s lifecycle.
Such a hazard log would initially be modeled as an Artifact that is abstract. Once created, the value of this
attribute of the hazard log would be ‘false’. The specification of artifact patterns also facilitates their reuse,
as the corresponding artifacts might have to be created in the scope of more than one assurance case effort.
Using again hazard logs as an example, their structure might be the same for several systems, thus all the
corresponding hazard logs might be based on a same abstract Artifact.
When made concrete, an Artifact can relate to many different types of information necessary for developing confidence
in the Artifact and thus for assurance purposes. Such information can be regarded as meta-data or provenance
information about an Artifact, provides information about its management, and is specified with the rest of
specializations of ArtifactAsset. Using a design specification as an example, properties (ArtifactProperty) could be
specified regarding its quality (completeness, consistency...), and it would have a lifecycle with events such as its
creation and modifications. The specification could be created by using UML (Technique) in an Activity named
‘Specify system design’, stored in a Resource corresponding to a diagram created with some modeling tool, and later
used as input for another Activity called ‘Verify system design’. A given person (Participant) playing the role of system

SACM

12.5 ArtifactPackageInterface
ArtifactPackageInterface is a kind of ArtifactPackage that defines an interface that may be exchanged between users.
An ArtfefactPackage may define one or more ArtifactPackageInterfaces.
Superclass
ArtifactPackage
Associations
implements:ArtifactPackage[1] - a reference to the ArtifactPackage which the ArtifactPackageInterface declares.
Semantics
ArtifactPackageInterface enables the declaration of the elements of an ArtifactPackage that might be referred to (cited)
in another ArtifactPackage.
Constraints
ArtifactPackageInterfaces are only allowed to contain Artifacts with +isCitation=true citing ArtifactAssets within the
ArtifactPackage with which this ArtifactPackageInterface is associated.

12.6 ArtifactAsset (abstract)
 ArtifactAsset represents the artifact-specific pieces of information of an assurance case, in contrast to the argument-
specific pieces of information.
Superclass
Base::ArtifactElement
Association
property:Property[0..*] (composition) – an optional collection of Propert(ies) which enable the specification of the
characteristics of an ArtifactAsset.
Semantics
Information about artifacts is essential for any assurance case. The artifacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related
pieces of information such as the provenance of an artifact, its lifecycle, and its properties. All this information might
have to be consulted for developing confidence in the validity of an assurance case.

12.7 Artifact class
 The Artifact class represents the distinguishable units of data used in an assurance case.
Superclass

ArtifactAsset

Attributes
version: String
The version of the Artifact
date: Date
The date on which the artifact was created.
Associations
artifactProperty::ArtifactProperty[0..*]
The ArtifactProperties of the Artifact
artifactEvent::ArtifactEvent[0..*]
The set of ArtifactEvents that represent the lifecycle of the Artifact
Semantics
Artifacts correspond to the main evidentiary support for the arguments and claims of an assurance case: an Artifact can
play the role of evidence of a Claim (AssertedEvidence), or of counterevidence (AssertedCountedEvidence). An
Artifact can take several forms, such as a diagram, a plan, a report, or a specification, both in electronic (e.g., a pdf file)

with isCounter = true

[0..1] – the

artifact.

[0..1] – the

structured

or physical (e.g., a paper document) formats. Typical examples of Artifacts include system lifecycle plans,
dependability (e.g., safety) analysis results, system specifications, and V&V results.

12.8 ArtifactProperty class
The ArtifactProperty class enables the specification of the characteristics of an Artifact.
Semantics

An Artifact can have different, specific characteristics independent of the argumentation structure in which the Artifact
is used. Some can be objective (e.g., the result of a test case execution, as passed or not passed) and others can be based
on a person’s judgement (e.g., regarding a quality aspect of a report).

12.9 ArtifactEvent class
The ArtifactEvent class enables the specification of the events in the lifecycle of an Artifact.
Attributes

date: Date
The date on which the ArtifactEvent occurred.
Semantics

Artifacts change during their lifecycle, and different types of happenings can occur at different moments:
creation, modification, revocation... ArtifactEvents serve to maintain a history log of an Artifact, and can be consulted
to know how an Artifact has evolved and to develop confidence in its adequate management.

12.10 Resource class
The Resource class corresponds to the tangible objects representing an Artifact.
Superclass

ArtifactAsset
Attributes
location: String
The path or URL specifying the location of the Resource.
Semantics
Artifacts are located and accessible somewhere, usually in the form of some electronic file for an assurance case. Such
information is specified by means of Resources.

12.11 Activity class
The Activity class represents units of work related to the management of ArtifactAssets.
Superclass

ArtifactAsset
Attributes
startTime: Date
Time when the Activity started.
endTime: Date
Time when the Activity ended.
Semantics
The Artifacts used in an assurance case are the result of and managed via the execution of processes, which consist of
Activities: specification of requirements, design of the system, integration of system components, etc.
ArtifactActivityRelationships can be used to specify the relationship between Activities and Artifacts. Activities can,

Superclass
ArtifactAsset

[0..1] – the

Superclass
ArtifactAsset

location:Base::MultiLangString (composition) – the

, can be in multiple languages.

[0,,1] = time

[0,,1] = time

activity

for instance, be described as using a given Artifact as input or producing an Artifact as output. Activities can be related
to one another using ActivityRelationships (e.g., ‘preceding’). The purpose of an activity can be specified in its
description.

12.12 Technique class
The Technique class represents techniques associated with Artifacts (e.g., associated with the creation, inspection,
review or analysis of an Artifact).
Superclass
ArtifactAsset
Semantics
Artifacts are created, or managed from a more general perspective, via some method whose use results in specific
characteristics for the Artifacts. For example, the use of UML (as a Technique) for designing a system results in a
design specification with a set of UML diagrams that could represent static and dynamic internal aspects of the system.

12.13 Participant class
The Participant class enables the specification of the parties involved in the management of ArtifactAssets.
Superclass
 ArtifactAsset
Semantics
Different parties can participate in an assurance case effort, such as specific people, organizations, and tools.

12.14 ArtifactAssetRelationship class
The ArtifactAssetRelationship class enables the ArtifactAssets of an AssuranceCase to be linked together. The linking
together of ArtifactAssets allows a user to specify that a relationship exists between the assets.
Superclass
ArtifactAsset
Associations
source:ArtifactAsset[1..*] - the source of the ArtifactRelationship
target:ArtifactAsset[1..*] - the target of the ArtifactRelationship
Constraints
The source or target of an ArtifactAssetRelationship cannot be another ArtifactAssetRelationship.
Semantics
An ArtifactAsset can be related to other ArtifactAssets. This kind of information is specified by means of
ArtifactAssetRelationships, which can also have a specific type depending on the ArtifactAssets being linked together.

name and description of the ArtifactAssetRelationship can be used to describe the semantics of the ArtifactAssetRelationship.

structured assurance case

Asset

