
10 Structured Assurance Case Metamodel, v2.0

Part I - Common Elements
The first part of the specification defines the common elements of the Structured Assurance Case Metamodel, including the
Base Classes, the Structured Assurance Case Terminology Classes, and the Structured Assurance Case Packages. Subsequent
parts define the Argumentation Metamodel and the Artefact Metamodel.

Yellow denotes items covered in Clause 8, Structured Assurance Case Base Classes.

Orange denotes items covered in Clause 9, Structured Assurance Case Packages.

Blue denotes items covered in Clause 10, Structured Assurance Case Terminology Classes.

Green denotes items covered in Clause 11, Argumentation Metamodel.

Purple denotes items covered in Clause 12, Artefact Metamodel.

Figure 7.2 -

AssuranceCasePackageCitation

AssuranceCasePackageInterface

ArtefactTechniqueRelationship ArtefactResourceRelationship

+content':'String

ArgumentationElement

ExpressionElement

+value':'String
+externalReference':'String

TermTerminologyAssetCitation

+gid':'String
+name':'String
+isAbstract':'Boolean

ModelElement

TerminologyPackageCitation

ArtefactActivityRelationship

UtilityElement

+externalReference':'String

ArtefactElementCitation

ImplementationConstraint Description

ParticpantRoleRelationship

ArgumentPackageBinding

ArgumentPackageInterface

ArtefactPackageCitation

ArtefactPackageBinding

ArtefactAssetRelationship

ActivityRelationship

ArgumentPackageCitation

ArgumentAssetCitation

AssertedCounterEvidence

ArtefactPackageInterface

ArgumentPackage

AssuranceCasePackage

ArtefactPackage

ArtefactAsset

ArtefactAssetCitation

ArtefactRelationship

+version':'String
+date':'date

Artefact
+location':'String

Resource
+starttime':'date
+endtime':'date

Activity Participant Technique

ArtefactProperty

ArtefactEvent

+assumed':'Boolean
+toBeSupported':'Boolean

Claim

+value':'String

Expression

AssertedRelationship

ArtefactElement

ArgumentAsset

TerminologyPackage

ArgumentReasoning

TerminologyElement

TerminologyAsset

Category

AssertedChallenge

TaggedValue

AssertedInferenceAssertedEvidence AssertedContext

Assertion

SACMElement

Note

Element

+key 1

+expression

1

+origin 0..1

+taggedValue 0..*

+terminologyPackage

0..*

+citedArtefact

0..1

+note 0..*

+argumentPackage

0..*

+source
0..*

+implementationConstraint
0..*

+target

0..*

+artefactPackage

0..*

+target 0..*

+source
0..*

+structure
0..*

+reasoning

0..1

+interface

0..*

+description0..1

+citedAsset 1

+citedPackage

1

+interface

0..*

+assuranceCasePackage

0..*

+terminologyAsset 0..*

+metaClaim

0..*

+citedPackage

1

+interface

0..*

+terminologyPackageCitation

0..*

+citedPackage

1

+participantPackage

2..*

+participantPackage

2..*

+argumentAsset

0..*

+citedAsset

1

+category

0..*

+element

0..*

+citedPackage

1

+artefactProperty 0..*

+terminologyPackage
0..*

+artefactEvent

0..*

+form

0..1

+artefactAsset

0..*
+argumentationPackage

0..*

+citedAsset
1

+artefactPackage

0..*

12 Structured Assurance Case Metamodel, v2.0

8 Structured Assurance Case Base Classes
8.1 General
This chapter presents the normative specification for the SACM Base Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

Figure 8.1 - Overall SACM Class Diagram

The Structured Assurance Case Base Classes express the foundational concepts and relationships of the base elements of the
SACM metamodel and are utilized, through inheritance, by the bulk of the rest of the Structured Assurance Case Metamodel.

8.2 SACMElement (abstract)
SACMElement is the base class for SACM.
Superclass
MOF:Element
Attributes
None
Semantics
All the elements of a structured assurance case effort created with SACM correspond to a SACMElement.

8.3 ModelElement (abstract)
ModelElement is the base element for the majority of modeling elements.
Superclass
SACMElement
Attributes
gid: String – a unique identifier that is unique within the scope of the model instance
name: String – the name of the element

isCitation[1]=false – a flag to indicate whether the SACMElement cites another SACMElement.

isAbstract[1]=false – a flag to indicate whether the SACMElement is considered to be abstract. For example, this can be used to indicate whether an element is part of a pattern or template.

Associations:
citedElement:SACMElement[0..1] – a reference to another SACMElement that the SACMElement cites.
abstractForm:SACMElement[0..1] – an optional reference to another abstract SACMElement to which this concrete SACMElement conforms.

Constraints:
If citedElement is populated, isCitation must be true.
OCL: self.citedElement <> null implies self.isCitation = true
When +abstractForm is used to refer to another SACMElement, +isAbstract of the SACMElement is false, and the +isAbstract of the referred SACMElement should be true. The referred SACMElement should be of the same type of the SACMElement. If ImplementationConstraints are expressed on the referred SACMElement, the SACMElement should satisfy these ImplementationConstraints.

16 Structured Assurance Case Metamodel, v2.0

This follows the existing practice of considering an assurance case when fully completed to comprise both
argumentation and evidence, although each may be exchanged individually.
AssuranceCasePackage is a sub-class of ArtefactElement. Semantically an AssuranceCasePackage can be considered as
an artefact of evidence (e.g. from the perspective of another AssuranceCasePackage).
Superclass

ArtefactElement
Associations
assuranceCasePackageCitation: AssuranceCasePackageCitation [0..*] – a collection of optional citations to other
AssuranceCasePackages
assuranceCasePackage: AssuranceCasePackage [0..*] – a number of optional sub-packages
interface: AssuranceCasePackageInterface [0..*] – a number of optional assurance case package interfaces that the
current package may implement
artefactPackage: ArtefactPackage [0..*] – a number of optional artefact sub-packages
terminologyPackage: TerminologyPackage [0..*] – a number of optional terminology sub-packages
Semantics
AssuranceCasePackage is the root class for creating structured assurance cases.

9.4 AssuranceCasePackageInterface
AssuranceCasePackageInterface is a kind of AssuranceCasePackage that defines an interface that may be exchanged
between users. An AssuranceCasePackage may declare one or more ArtefactPackageInterfaces.
Superclass
AssuranceCasePackage
Semantics
AssuranceCasePackageInterface enables the declaration of the elements of an AssuranceCasePackage that might be
referred to (cited) in another AssuranceCasePackage, thus the elements can be used for assurance in the scope of the
latter AssuranceCasePackage.
Constraints
AssuranceCasePackageInterface are only allowed to contain the following: ArgumentPackageInterfaces,
ArtefactPackageInterfaces, and TerminologyPackages.

9.5 AssuranceCasePackageCitation
AssuranceCasePackageCitation is used to cite another AssuranceCasePackage. The citation can be used where an
assurance case author wishes to refer to an AssuranceCasePackage outside of the current AssuranceCasePackage
hierarchy.
Superclass
 ArtefactElement
Associations
citedPackage: AssuranceCasePackage – the existing AssuranceCasePackage being referenced.
Constraints

Structured Assurance Case Metamodel, v2.0 17

The citedPackage referred to by a AssuranceCasePackageCitation must be outside of the containment hierarchy
containing the citation.

9.6 ArgumentPackage
ArgumentPackage is a container for the structured argument aspect of the assurance case. It contains the structure of
assertions which comprise the structured argument.
Superclass
ArgumentationElement
Associations
argumentPackageCitation: ArgumentPackageCitation [0..*] – an optional set of citations to other ArgumentPackages
argumentPackage: ArgumentPackage [0..*] – an optional set of sub ArgumentPackages, allowing for recursive
containment argumentAsset: ArgumentAsset [0..*] an optional set of ArgumentAssets
Semantics
ArgumentPackage is the base class for specifying the results of the argumentation efforts for a structured assurance case
(i.e., an AssuranceCase).

9.7 TerminologyPackage
TerminologyPackage is a container element for terminology that may be exchanged. Terminology can define terms,
expressions or categories, used elsewhere in the assurance case.
Superclass
TerminologyElement
Associations
terminologyPackageCitation: TerminologyPackageCitation [0..*] – an optional set of citations to other
TerminologyPackage elements
terminologyAsset: TerminologyAsset [0..*] – an optional set of terminology assets (expressions, terms and categories)
terminologyPackage: TerminologyPackage [0..*] – an optional set of contained TerminologyPackage elements,
allowing for recursive containment.
Semantics
TerminologyPackage is the base class for specifying all the terminology needs and constraints (via TerminologyAssets)
for a structured assurance case (i.e., an AssuranceCase).

9.8 ArtefactPackage
ArtefactPackage is a container element for the assets that are used as evidence or cited in support of a structured
argument. These assets form the evidential basis for the assurance case.
Superclass
ArtefactElement
Associations
artefactPackageCitation: ArtefactPackageCitation [0..*] – an optional set of citations to other ArtefactPackage elements
artefactAsset:

Structured Assurance Case Metamodel, v2.0 19

10 Structured Assurance Case Terminology
Classes

10.1 General
This chapter presents the normative specification for the SACM Terminology Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

Figure 10.1 - Terminology Class Diagram

This portion of the SACM metamodel describes and defines the concepts of term, expression and an external interface to
terminology information from others. This area of the Structured Assurance Case Metamodel also provides the starting
foundation for formalism in the assembly of terms into expressions without mandating the formalism for those that do not
need it.

10.2 TerminologyElement (abstract)
TerminologyElement is an abstract class that serves as a parent class for all SACM terminology assets (TerminologyAsset)
and the packaging of these assets (TerminologyPackage and TerminologyPackageCitation).
Superclass
ModelElement
Semantics
TerminologyElement is the base class for specifying the terminology aspects of an assurance case (AssuranceCasePackage).

20 Structured Assurance Case Metamodel, v2.0

10.3 TerminologyPackage
The TerminologyPackage Class is the container class for SACM terminology assets.
Superclass
TerminologyElement
Associations
TerminologyAsset:TerminologyAsset[0..*]
The TerminologyAssets contained in a given instance of a TerminologyPackage.
terminologyPackage:TerminologyPackage[0..*]
The nested terminologyPackage contained in a given instance of a TerminologyPackage
terminologyPackageCitation:TerminologyPackageCitation[0..*]
The nested terminologyPackageCitation contained in a given instance of a TerminologyPackage
Semantics
TerminologyPackages contain the TerminologyAssets that can be used within the naming and description of SACM
arguments and artefacts. TerminologyPackage elements can be nested, and can contain citations (references) to other
TerminologyPackages.

10.4 TerminologyPackageCitation
The TerminlogyPackageCitation is a citation (reference) to another TerminologyPackage.
Superclass

TerminologyElement
Associations
citedPackage: TerminologyPackage[0..1]
The TerminologyPackage being cited by the TerminologyPackageCitation.
Semantics

TerminologyPackageCitations make it possible to cite other TerminologyPackages.For example, within a
TerminologyPackage it can be useful to refer to another TerminologyPackage (to reference terminology) that is not contained
with the same TerminologyPackage and is defined elsewhere.
Constraints
The citedPackage referred to by a TerminologyPackageCitation must be outside of the containment hierarchy containing the
citation.

10.5 TerminologyAsset (abstract)
The TerminologyAsset Class is the abstract class for the different types of terminology elements represented
in SACM.
Superclass

TerminologyElement

Semantics

TerminologyAssets represent all of the elements required to model and categorize expressions in SACM
(expressions and terminology categories).

22 Structured Assurance Case Metamodel, v2.0

10.9 Term
The Term class is used to model both abstract and concrete terms in SACM. Abstract Terms can be considered placeholders
for concrete terms and are denoted by the inherited isAbstract attribute being set true. A concrete term is denoted by isAbstract
being false.
Attributes
value: String – An attribute recording the value of the Term
externalReference: String – An attribute recording an external reference (e.g., URI) to the object referred to by the Term
Superclass
ExpressionElement
Semantics
Term class is used to model both abstract and concrete terms in SACM. Abstract Terms can be considered placeholders for
concrete terms and are denoted by the inherited isAbstract attribute being set true. A concrete term is denoted by isAbstract
being false.
The externalReference attribute enables the referencing of the object signified by the term (signifier). It also provides a
mechanism whereby terms can reference concepts and terms defined in other ontology and terminology models.

10.10 TerminologyAssetCitation
 The TerminologyAssetCitation is a citation (reference) to an ExpressionElement contained in another
 TerminologyPackage.
Superclass

ExpressionElement
Associations
citedElement:TerminologyAsset [1] The TerminologyAsset being cited by the TerminologyAssetCitation.
Semantics

TerminologyAssetCitations make it possible to cite TerminologyAssets from other TerminologyPackages when forming
TerminologyPackages or Expressions.
For example, within a TerminologyPackage it can be useful to refer to TerminologyAssets within another
TerminologyPackage (to reference terminology) that are not contained with the same TerminologyPackage and is defined
elsewhere. Within an Expression it can also be useful to refer to TerminologyAssets within another TerminologyPackage that
are not contained with the same TerminologyPackage and is defined elsewhere.
Constraints
The citedElement referred to by a TerminologyAssetCitation must be outside of the containment hierarchy containing the
citation.

26 Structured Assurance Case Metamodel, v2.0

The packaging of structured arguments into ‘modular’ argument packages is enabled through
ArgumentPackages, an optional declaration of an interface for the package (ArgumentPackageInterface)
that cites a specific selection of the ArgumentElements contained within the package, and the ability to link
(by means of an argument) two or more argument packages (through an ArgumentPackageBinding). It is
also possible within a package to cite elements contained within other argument packages (through using
ArgumentElementCitation).
In the following sections we describe these model elements in detail.

11.2.1 ArgumentationElement class (abstract)
An ArgumentationElement is the top level element of the hierarchy for argumentation elements.
Semantics
The ArgumentationElement is a common class for all elements within a structured argument.

11.2.2 ArgumentPackage Class
The ArgumentPackage Class is the container class for a structured argument represented using the SACM Argumentation
Metamodel.
Superclass
ArgumentationElement
Associations
argumentAsset:ArgumentAsset[0..*]
The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage:ArgumentationPackage[0..*]
The nested argumentPackage contained in a given instance of an ArgumentPackage
interface:ArgumentationPackage[0..*]
Reference to the declared interface for the ArgumentPackage.
Semantics
ArgumentPackages contain structured arguments. These arguments are composed of ArgumentAssets. ArgumentPackages
elements can be nested, and can contain citations (references) to other ArgumentPackages.
For example, arguments can be established through the composition of Claims (propositions) and the AssertedInferences
between those Claims.

11.2.3 ArgumentPackageCitation Class
The ArgumentPackageCitation is a citation (reference) to another ArgumentPackage.
Superclass
ArgumentPackage
Associations
citedPackage:ArgumentPackage[1]
The ArgumentPackage being cited by the ArgumentPackageCitation.
Semantics
ArgumentPackageCitations make it possible to cite other ArgumentPackages.

Structured Assurance Case Metamodel, v2.0 27

For example, within an ArgumentPackage it can be useful to refer to another ArgumentPackage that is not
contained within the same ArgumentPackage.
Constraints
ArgumentPackageCitations have no contents other than the association to the citedPackage.
The citedPackage referred to by an ArgumentPackageCitation must be outside of the containment
hierarchy containing the citation.

11.2.4 ArgumentPackageBinding Class
The ArgumentPackageBinding is a sub type of ArgumentPackage used to record the mapping (agreement) between two or
more ArgumentPackages.
Superclass
ArgumentPackage
Associations
participantPackage:ArgumentPackageInterface[2..*]
The ArgumentPackages being mapped together by the ArgumentPackageBinding.
Semantics
ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.
For example, one ArgumentPackage may contain a claim that is toBeSupported (i.e. currently has no supporting argument).
An ArgumentPackageBinding can be used to record the mapping (by means of containing a structured argument linking
ArgumentAssetCitations to the claims in question) between this claim and a supporting claim in another ArgumentPackage.
An ArgumentPackageInterface is a sub type of ArgumentPackage that can be used to create an explicit interface to an existing
ArgumentPackage.
Constraints
The ‘root’ ArgumentAssets contained by an ArgumentPackageBinding (i.e. the ArgumentAssets only associated as target of
an AssertedRelationship) and ‘leaf’ ArgumentAssets (i.e. the ArgumentAssets only associated as source of an
AssertedRelationship) must be ArgumentAssetCitations to Claims or ArtefactElementCitations contained within the
ArgumentPackages associated by the participantPackage association.

11.2.5 ArgumentPackageInterface Class
Superclass
ArgumentPackage
Semantics
ArgumentPackageInterfaces can be used to declare (by means of containing ArgumentAssetCitations) the ArgumentAssets
contained in an ArgumentPackage that form part of the explicit, declared, interface of the ArgumentPackage.
For example, whilst an ArgumentPackage may contain many Claims, it may be desirable to create an
ArgumentPackageInterface that cites only a subset of those claims that are intended to be mapped / used (e.g. by means of an
ArgumentPackageBinding) by other ArgumentPackages. There may be more than one ArgumentPackageInterface for a given
ArgumentPackage that reveal different aspects of the ArgumentPackage for different audiences.
Constraints
ArgumentPackageInterfaces are only allowed to contain ArgumentAssetCitations to ArgumentAssets within the
ArgumentPackage with which this ArgumentPackageInterface is associated (by the interface association).

Structured Assurance Case Metamodel, v2.0 35

12 Artefact Classes
12.1 General
This chapter presents the normative specification for the SACM Artefact Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

Figure 12.1 - Artefact Class Diagram

Artefacts correspond to the main evidentiary elements of an assurance case. By means of assertions (AssertedEvidence
and AssertedCounterEvidence), artefacts are used for supporting claims and arguments.
In general, artefacts are managed when the corresponding objects are available. For example, a test case is
linked to the requirement that validates once the test case has already been created. However, artefact
management might also require the specification of patterns (or templates) in order to allow a user, for
instance, to indicate that a given artefact must be created but it has not yet. A common scenario of this
situation corresponds to the process during which a supplier and a certifier have to agree upon the artefacts
that the supplier will have to provide as assurance evidence for a system. As a result of this process, artefact
patterns could be specified, and such patterns would need to be made concrete during the lifecycle of the
system. Artefact patterns are specified by mean of the attribute ‘isAbstract’ (ModelElement). For example, a
supplier and a certifier might agree upon the need for maintaining a hazard log during a system’s lifecycle.
Such a hazard log would initially be modeled as an Artefact that is abstract. Once created, the value of this
attribute of the hazard log would be ‘false’. The specification of artefact patterns also facilitates their reuse,
as the corresponding artefacts might have to be created in the scope of more than one assurance case effort.
Using again hazard logs as an example, their structure might be the same for several systems, thus all the
corresponding hazard logs might be based on a same abstract Artefact.

36 Structured Assurance Case Metamodel, v2.0

When made concrete, an Artefact can relate to many different types of information necessary for developing confidence
in the Artefact and thus for assurance purposes. Such information can be regarded as meta-data or provenance
information about an Artefact, provides information about its management, and is specified with the rest of
specializations of ArtefactAsset (different to ArtefactAssetCitation). Using a design specification as an example,
properties (ArtefactProperty) could be specified regarding its quality (completeness, consistency...), and it would have a

lifecycle with events such as its creation and modifications. The specification could be created by using UML
(Technique) in an Activity named ‘Specify system design’, stored in a Resource corresponding to a diagram created
with some modeling tool, and later used as input for another Activity called ‘Verify system design’. A given person
(Participant) playing the role of system designer could be the owner of the design specification, which would also relate
to other artefacts: the requirements specification that satisfies, the architecture that implements, its verification report,
etc. Further relationships might be specified between other artefact assets, such precedence between activities (‘Specify
system design’ precedes ‘Verify system design’) and the participants in an Activity.

12.2 ArtefactPackageCitation
ArtefactPackageCitation is used to cite another ArtefactPackage. The citation can be used where an assurance case
author wishes to refer to an existing ArtefactPackage.
Superclass
ArtefactPackage
Associations
citedPackage: ArtefactPackage [1] – the ArtefactPackage cited by the ArtefactPackageCitation
Semantics

ArtefactPackageCitations enable the reference, in a given ArtefactPackage, to another ArtefactPackage.
Constraints

ArtefactPackageCitations have no contents other than the association to the citedPackage.

12.3 ArtefactPackageBinding
The ArtefactPackageBinding is a sub type of ArtefactPackage used to record ArtefactAssetRelationships between the
ArtefactAssets of two or more ArtefactPackages.

Superclass
ArtefactPackage
Associations
participantPackage:ArtefactPackageInterface[2..*]
The ArtefactPackages containing the ArtefactAssets being related together by the ArtefactPackageBinding.
Semantics

ArtefactPackageBindings can be used to map dependencies between the cited ArtefactAssets of two or more
ArtefactPackages. For example, a binding could be used to record a ‘derivedFrom’ ArtefactAssetRelationship between
the ArtefactAsset of one package to the ArtefactAsset of another.
Contraints
ArtefactPackageBindings must only contain ArtefactAssetRelationships with source and target ArtefactAssetCitations
citing ArtefactsAssets contained within the ArtefactPackageInterfaces associated by participantPackage.

12.4 ArtefactPackageInterface
ArtefactPackageInterface is a kind of ArtefactPackage that defines an interface that may be exchanged between users. A
typical use case might be for a component supplier to provide its customers with ArtefactPackageInterfaces that contain
the relevant supplier’s ArtefactElements for the customers’ ArtefactPackages. An ArtfefactPackage may also declare

Structured Assurance Case Metamodel, v2.0 37

that it implements or conforms to a particular ArtefactPackageInterface.

Superclass
ArtefactPackage
Associations
artefactPackageCitation: ArtefactPackageCitation [0..*] – an optional set of citations to other ArtefactPackage elements
artefactAsset: ArtefactAsset [0..*] – an optional set of ArtefactAsset elements, such as citations, artefacts, resources,
activities, etc.
artefactPackage: ArtefactPackage [0..*] - an optional set of contained ArtefactPackage elements, allowing for recursive
containment.
Semantics
ArtefactPackageInterface enables the declaration of the elements of an ArtefactPackage that might be referred to (cited)
in another ArtefactPackage, thus the elements can be used for assurance in the scope of the latter ArtefactPackage.
Constraints
ArtefactPackageInterfaces are only allowed to contain ArtefactAssetCitations to ArtefactAssets within the
ArtefactPackage with which this ArtefactPackageInterface is associated (by the interface association).

12.5 ArtefactAsset class (abstract)
The ArtefactAsset class represents the artefact-specific pieces of information of an assurance case, in contrast to the
argument-specific pieces of information.
Superclass
ArtefactElement
Semantics
Information about artefacts is essential for any assurance case. The artefacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related
pieces of information such as the provenance of an artefact, its lifecycle, and its properties. All this information might
have to be consulted for developing confidence in the validity of an assurance case.

12.5.1 ArtefactAssetCitation class
The ArtefactAssetCitation class allows an ArtefactPackage to refer to the components of another ArtefactPackage.
Superclass
ArtefactAsset
Associations
citedAsset:ArtefactAsset[1]
The ArtefactAsset that the ArtefactAssetCitation cites
Constraints
The citedAsset of an ArtefactAssetCitation must be part of an ArtefactPackageInterface.
The citedAsset of an ArtefactAssetCitation must be part of a different ArtefactPackage.
The citedAsset of an ArtefactAssetCitation cannot be an ArtefactAssetCitation.
The citedAsset of an ArtefactAssetCitation cannot be an ArtefactAssetRelationship.
Semantics

38 Structured Assurance Case Metamodel, v2.0

ArtefactAssets belong to single ArtefactPackages. Nonetheless, the ArtefactAssets can be referred to in other
ArtefactPackages in order to, for instance, specify that a relationship exists between ArtefactAssets of different
ArtefactPackages. For example, an ArtefactPackage might be specified for all the V&V results of an assurance case,
and another for the requirements specifications. The fist ArtefactPackage might refer to the second for further
specifying that a given V&V result corresponds to the validation of a given requirement.

12.5.2 Artefact class
 The Artefact class represents the distinguishable units of data used in an assurance case.
Superclass

ArtefactAsset

Attributes
version: String
The version of the Artefact
date: Date
The date on which the artefact was created.
Associations
artefactProperty::ArtefactProperty[0..*]
The ArtefactProperties of the Artefact
artefactEvent::ArtefactEvent[0..*]
The set of ArtefactEvents that represent the lifecycle of the Artefact
Semantics
Artefacts correspond to the main evidentiary support for the arguments and claims of an assurance case: an Artefact can
play the role of evidence of a Claim (AssertedEvidence), or of counterevidence (AssertedCountedEvidence). An
Artefact can take several forms, such as a diagram, a plan, a report, or a specification, both in electronic (e.g., a pdf file)
or physical (e.g., a paper document) formats. Typical examples of Artefacts include system lifecycle plans,
dependability (e.g., safety) analysis results, system specifications, and V&V results.

12.5.3 ArtefactProperty class
The ArtefactProperty class enables the specification of the characteristics of an Artefact.
Semantics

An Artefact can have different, specific characteristics independent of the argumentation structure in which the Artefact
is used. Some can be objective (e.g., the result of a test case execution, as passed or not passed) and others can be based
on a person’s judgement (e.g., regarding a quality aspect of a report).

12.5.4 ArtefactEvent class
The ArtefactEvent class enables the specification of the events in the lifecycle of an Artefact.
Attributes

date: Date
The date on which the ArtefactEvent occurred.

40 Structured Assurance Case Metamodel, v2.0

characteristics for the Artefacts. For example, the use of UML (as a Technique) for designing a system results in a
design specification with a set of UML diagrams that could represent static and dynamic internal aspects of the system.

12.5.8 Participant class
The Participant class enables the specification of the parties involved in the management of ArtefactAssets.
Superclass
 ArtefactAsset
Semantics
Different parties can participate in an assurance case effort, such as specific people, organizations, and tools.

12.5.9 ArtefactAssetRelationship class
The ArtefactAssetRelationship class enables the ArtefactAssets of an AssuranceCase to be linked together. The linking
together of ArtefactAssets allows a user to specify that a relationship exists between the assets.
Superclass
ArtefactAsset
Associations
source:ArtefactAsset[0..*]
The source of the ArtefactRelationship
target:ArtefactAsset[0..*]
The target of the ArtefactRelationship
Constraints
The source or target of an ArtefactAssetRelationship cannot be another ArtefactAssetRelationship.
Semantics
An ArtefactAsset can be related to other ArtefactAssets. This kind of information is specified by means of
ArtefactAssetRelationships, which can also have a specific type depending on the ArtefactAssets being linked together.

12.5.10 ArtefactRelationship class
The ArtefactRelationship class enables two Artefacts to be linked together.
Superclass
ArtefactAssetRelationship
Constraints
 The source and target of an ArtefactRelationhsip must be Artefacts, or ArtefactAssetCitations citing an
 Artefact.
Semantics

The Artefacts managed during a system’s lifecycle do not exist in isolation, but relationships typically exist between
them: the test cases that validate some requirement, the design standard followed in a design specification, etc. These
relationships are specified by means of ArtefactRelationships.

12.5.11 ActivityRelationship class
The ActivityRelationship class enables two Activities to be related together.
Superclass

Structured Assurance Case Metamodel, v2.0 41

ArtefactAssetRelationship
Constraints
The source and target of an ActivityRelationship must be Activities or ArtefactAssetCitations citing an Activity.
Semantics

ActivityRelationships aim to support the specification of how Activities, and citations to them, relate each other: an
Activity that precedes another, an Activity decomposed into others, etc.

12.5.12 ArtefactActivityRelationship class
The ArtefactActivityRelationships class enables an Artefact and an Activity to be linked together.
Superclass

ArtefactAssetRelationship
Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.
The target of an ArtefactActivityRelationship must be an Activity, or an ArtefactAssetCitation citing an Activity.
Semantics

Artefacts are managed in the scope of Activities, which usually use the Artefact as input and output. Such information is
specified by means of ArtefactActivityRelationships.

12.5.13 ArtefactTechniqueRelationship class
The ArtefactTechniqueRelationship class enables an Artefact and a Technique to be linked together.
Superclass

ArtefactAssetRelationship
Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.
The target of an ArtefactActivityRelationship must be a Technique, or an ArtefactAssetCitation citing a Technique.

Semantics

Artefacts result from the application of Techniques, such as the application of UML for a design specification.
ArtefactTechniqueRelationships are used to specify such a kind of information.

12.5.14 ParticipantRoleRelationship class
The ParticipantRoleRelationships class enables a Participant to be linked to other ArtefactAssets.
Superclass
ArtefactAssetRelationship
Constraints
The source of an ParticipantRoleRelationship must be a Participant or an ArtefactAssetCitation citing a Participant.
Semantics

42 Structured Assurance Case Metamodel, v2.0

The information about the roles and functions that a Participant plays with regard to other ArtefactAssets is specified by
means of ParticipantRoleRelationships. Examples of roles and functions include the owner of an Artefact, the executor
of an Activity, and possible relationships between Participants (e.g., supervisor).

12.5.15 ArtefactResourceRelationship class
The ArtefactResourceRelationship class enables an Artefact and a Resource to be linked together.
Superclass
ArtefactAssetRelationship
Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.
The target of an ArtefactActivityRelationship must be a Resource, or an ArtefactAssetCitation citing a Resource.
Semantics
The specific Resources where an Artefact is located are specified by means of ArtefactResourceRelationships.

	SACM 2.0 2nd FTF baseline
	SACM 2.0 2nd FTF baseline-word

