

Superclass
Base::ArtifactElement
Associations
assuranceCasePackage: AssuranceCasePackage [0..*] (composition) – a collection of optional sub-packages
interface: AssuranceCasePackageInterface [0..*] – a number of optional assurance case package interfaces that the
current package may implement
artifactPackage: ArtifactPackage [0..*] (composition) – a number of optional artifact sub-packages
terminologyPackage: TerminologyPackage [0..*] (composition) – a number of optional terminology sub-packages
argumentPackage:Argument::ArgumentPackage[0..*] (composition) – a number of optional argument packages.
Semantics
AssuranceCasePackage is the root class for creating structured assurance cases.

9.4 AssuranceCasePackageInterface
AssuranceCasePackageInterface is a kind of AssuranceCasePackage that defines an interface that may be exchanged
between users. An AssuranceCasePackage may declare one or more ArtifactPackageInterfaces.
Superclass
AssuranceCasePackage
Semantics
AssuranceCasePackageInterface enables the declaration of the elements of an AssuranceCasePackage that might be
referred to (cited) in another AssuranceCasePackage, thus the elements can be used for assurance in the scope of the
latter AssuranceCasePackage.
Constraints
AssuranceCasePackageInterface are only allowed to contain the following: ArgumentPackageInterfaces,
ArtifactPackageInterfaces, and TerminologyPackages.

9.5 ArgumentPackage
ArgumentPackage is a container for the structured argument aspect of the assurance case. It contains the structure of
assertions which comprise the structured argument.
Superclass
ArgumentationElement
Associations
argumentPackage: ArgumentPackage [0..*] – an optional set of sub ArgumentPackages, allowing for recursive
containment argumentAsset: ArgumentAsset [0..*] an optional set of ArgumentAssets
Semantics
ArgumentPackage is the base class for specifying the results of the argumentation efforts for a structured assurance case
(i.e., an AssuranceCase).

9.6 TerminologyPackage
TerminologyPackage is a container element for terminology that may be exchanged. Terminology can define terms,
expressions or categories, used elsewhere in the assurance case.
Superclass
TerminologyElement
Associations
terminologyAsset: TerminologyAsset [0..*] – an optional set of terminology assets (expressions, terms and categories)
terminologyPackage: TerminologyPackage [0..*] – an optional set of contained TerminologyPackage elements,
allowing for recursive containment.
Semantics

. These declarations are provided by containing AssuranceCasePackageInterface(s)/ArgumentPackageInterface(s)/ArtifactPackageInterface(s)/TerminologyPackageInterface(s) to the packages contained by the AssuranceCasePackage (for which the interface provided).

AssuranceCasePackageInterface,

Associations
implements:AssuranceCasePackage[1] – the AssuranceCasePackage that the AssuranceCasePackageInterface declares.

OCL:
self.assuranceCasePackage->forall(acp|acp.oclIsTypeOf(AssuranceCasePackageInterface)) and
self.argumentPackage->forall(ap|ap.oclIsTypeOf(Argumentation::ArgumentPackageInterface)) and self.artifactPackage->forall(ap|ap.oclIsTypeOf(Artifact::ArtifactPackageInterface)) and
self.terminologyPackage->forall(tp|tp.oclIsTypeOf(Terminology::TerminologyPackageInterface))

9.5 AssuranceCasePackageBinding

9.4 AssuranceCasePackageBinding

Sub-packages within the AssuranceCasePackage can be bound together by means of
AssuranceCasePackageBindings. AssuranceCasePackageBindings bind the participant
packages by means of
ArgumentPackageBindings/TerminologyPackageBindings/ArtifactPackageBindings
elements that bind the contained packages of the participant packages.

Superclass

AssuranceCasePackage

Associations

+participantPackage:AssuranceCasePackage[2..*] – references to
AssuranceCasePackages which the AssuranceCasePackageBinding binds together.

Semantics

AssuranceCasePackageBinding binds peer AssuranceCasePackages together to indicate
the relationship between these AssuranceCasePackages. The bindings between
AssuranceCasePackages consist of the bindings of the packages (i.e.
ArgumentPackageBindings, ArtifactPackageBindings and TerminologyPackageBindings)
contained in the AssuranceCasePackages, together with an optional
ArgumentationPackage that asserts the relationship between +participantPackage.

Constraints

The participantPackages should be either AssuranceCasePackage or
AssuranceCasePackageInterfaces

OCL:
self.participantPackage->forall(pp|pp.oclIsTypeOf(AssuranceCase::AssuranceCasePacka
ge) or pp.oclIsTypeOf(AssuranceCase::AssuranceCasePackageInterface))

	

TerminologyPackage is the base class for specifying all the terminology needs and constraints (via TerminologyAssets)
for a structured assurance case (i.e., an AssuranceCase).

9.7 ArtifactPackage
ArtifactPackage is a container element for the assets that are used as evidence or cited in support of a structured
argument. These assets form the evidential basis for the assurance case.
Superclass
ArtifactElement
Associations
ArtifactAsset [0..*] – an optional set of ArtifactAsset elements, such as citations, artifacts, resources, activities, etc.
artifactPackage: ArtifactPackage [0..*] - an optional set of contained ArtifactPackage elements, allowing for recursive
containment.
Semantics
ArtifactPackage is the base class for specifying and structuring the ArtifactAssets of a structured assurance case (i.e., an
AssuranceCase).

10.3 TerminologyGroup
TerminologyGroup can be used to associate a number of TerminologyElements to a common group (e.g. representing a
common type or purpose, or being of interest to a particular stakeholder).

Superclass
TerminologyElement
Associations
terminologyElement[0..*] – an optional collection of TerminologyElements that are organised within the TerminologyGroup.

Semantics
TerminologyGroup can be used to associate a number of TerminologyElements to a common group (e.g. representing a
common type or purpose, or being of interest to a particular stakeholder). The name and the description of the
TerminologyGroup should provide the semantic for understanding the TerminologyGroup. TerminologyGroups serve no
structural purpose in the formation of the argument network, nor are they meant as a structural packaging mechanism (this
should be done using TerminologyPackages).

10.4 TerminologyPackage
The TerminologyPackage is the container element for SACM terminology assets.

Superclass
TerminologyElement
Associations
TerminologyElement:TerminologyElement[0..*] (composition) – TerminologyElements contained in the
TerminologyPackage, it can be either TerminologyPackage (and its sub-types) or TerminologyAssets (or its sub-types).

Semantics
TerminologyPackage contains the TerminologyElements that can be used within the naming and description of SACM
arguments and artifacts. TerminologyPackages can be nested.

10.5 TerminologyAsset (abstract)
The TerminologyAsset Class is the abstract class for the different types of terminology elements represented
in SACM.

Superclass

TerminologyElement

Semantics

TerminologyAssets represent all of the elements required to model and categorize expressions in SACM
(expressions and terminology categories).

10.6 Category
The Category class describes categories of ExpressionElements (Terms and Expressions) and can be used to group these
elements within TerminologyPackages.

Superclass
 TerminologyAsset

Semantics
Terms and ExpressionElements can be said to belong to Categories. Categories can group Terms, Expressions, or a mixture of
both. For example, a Category could be used to describe the terminology associated with a specific assurance standard,
project, or system.

10.7 ExpressionElement (abstract)
The ExpressionElement class is the abstract class for the elements in SACM that are necessary for modeling expressions.
Superclass

TerminologyAsset

10.5 TerminologyPackageInterface
10.6 TerminologyPackageBinding

10.7

10.8

10.9

10.5 TerminologyPackageInterface

TerminologyPackageInterface is a kind of TerminologyPackage that defines an interface
that may be exchanged between users. An TerminologyPackage may declare one or more
TerminologyPackageInterfaces.

Superclass

TerminologyElement

Associations

implements:TerminologyPackage[1] – the TerminologyPackage that the
TerminologyPackageInterface declares.

Semantics

TerminologyPackageInterface enables the declaration of the elements of an
TerminologyPackage that might be referred to (cited) in another TerminologyPackage,
thus the elements can be used for assurance in the scope of the latter
AssuranceCasePackage.

	

10.6 TerminologyPackageBinding

Elements within the TerminologyPackage can be bound together by means of
TerminologyPackageBindings. TerminologyPackageBindings bind the participant
packages by means of terminology elements that connect the cited elements of the
participant packages.

Superclass

TerminologyPackage

Semantics

TerminologyPackageBinding binds TerminologyPackages together to indicate the
relationship between two TerminologyPackages.

Constraints

1. The participantPackages should be either TerminologyPackage or
TerminologyPackageInterface
OCL:
self.participantPackage->forall(pp|pp.oclIsKindOf(Terminology::TerminologyPac
kage))

	

packages (through an ArgumentPackageBinding). It is also possible within a package to cite elements contained within other
argument packages (through ArtifactReference).

11.3 ArgumentGroup
ArgumentGroup can be used to associate a number of ArgumentElements to a common group (e.g. representing a common
type or purpose, or being of interest to a particular stakeholder).

Superclass
ArgumentationElement
Associations
argumentationElement:ArgumentationElement[0..*] – an optional collection of ArgumentationElements organised within the
ArgumentGroup.

Semantics
ArgumentGroup can be used to associate a number of ArgumentElements to a common group (e.g. representing a common
type or purpose, or being of interest to a particular stakeholder). The name and the description of the ArgumentGroup should
provide the semantic for understanding the ArgumentGroup. ArgumentGroups serve no structural purpose in the formation of
the argument network, nor are they meant as a structural packaging mechanism (this should be done using
ArgumentPackages).

11.4 ArgumentationElement (abstract)
An ArgumentationElement is the top level element of the hierarchy for argumentation elements. ArgumentationElement
extends Base::ArtifactElement. Subsequently, all argument elements are considered artifacts.

Superclass
Base::ArtifactElement
Semantics
The ArgumentationElement is a common class for all elements within a structured argument.

11.5 ArgumentPackage Class
The ArgumentPackage Class is the container class for a structured argument represented using the SACM Argumentation
Metamodel.

Superclass
ArgumentationElement
Associations
argumentAsset:ArgumentAsset[0..*]
The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage:ArgumentationPackage[0..*]
The nested argumentPackage contained in a given instance of an ArgumentPackage
interface:ArgumentationPackage[0..*]

Reference to the declared interface for the ArgumentPackage.

Semantics
ArgumentPackages contain structured arguments. These arguments are composed of ArgumentAssets. ArgumentPackages
elements can be nested, and can contain citations (references) to other ArgumentPackages.

For example, arguments can be established through the composition of Claims (propositions) and the AssertedInferences
between those Claims.

11.6 ArgumentPackageBinding Class
The ArgumentPackageBinding is a sub type of ArgumentPackage used to record the mapping (agreement) between two or
more ArgumentPackages.

Superclass

ArgumentElement within the ArgumentPackage can be bound together by means of ArgumentPackageBinding. ArgumentPackageBinding bind the participant packages by means of argument elements that connect the cited elements of the participant packages.

ArgumentPackage

Associations
participantPackage:ArgumentPackageInterface[2..*]

The ArgumentPackages being mapped together by the ArgumentPackageBinding.
Semantics
ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.
For example, one ArgumentPackage may contain a claim that is toBeSupported (i.e. currently has no supporting argument).
An ArgumentPackageBinding can be used to record the mapping (by means of containing a structured argument linking
ArgumentAssetCitations to the claims in question) between this claim and a supporting claim in another ArgumentPackage.

An ArgumentPackageInterface is a sub type of ArgumentPackage that can be used to create an explicit interface to an existing
ArgumentPackage.
Constraints
The ‘root’ ArgumentAssets contained by an ArgumentPackageBinding (i.e. the ArgumentAssets only associated as target of
an AssertedRelationship) and ‘leaf’ ArgumentAssets (i.e. the ArgumentAssets only associated as source of an
AssertedRelationship) must be ArgumentAssetCitations to Claims or ArtifactElementCitations contained within the
ArgumentPackages associated by the participantPackage association.

11.7 ArgumentPackageInterface Class
Superclass
ArgumentPackage
Semantics
ArgumentPackageInterfaces can be used to declare (by means of containing ArgumentAssetCitations) the ArgumentAssets
contained in an ArgumentPackage that form part of the explicit, declared, interface of the ArgumentPackage.
For example, whilst an ArgumentPackage may contain many Claims, it may be desirable to create an
ArgumentPackageInterface that cites only a subset of those claims that are intended to be mapped / used (e.g. by means of an
ArgumentPackageBinding) by other ArgumentPackages. There may be more than one ArgumentPackageInterface for a given
ArgumentPackage that reveal different aspects of the ArgumentPackage for different audiences.
Constraints
ArgumentPackageInterfaces are only allowed to contain ArgumentAssetCitations to ArgumentAssets within the
ArgumentPackage with which this ArgumentPackageInterface is associated (by the interface association).

11.8 ArgumentAsset Class (abstract)
The ArgumentAsset Class is the abstract class for the elements of any structured argument represented in SACM.

Superclass
ArgumentationElement
Semantics
ArgumentAssets represent the constituent building blocks of any structured argument contained in an ArgumentPackage.

For example, ArgumentAssets can represent the Claims made within a structured argument contained in an ArgumentPackage.

11.9 Assertion Class (abstract)
Assertions are used to record the propositions of Argumentation (including both the Claims about the subject of the argument
and the structure of the Argumentation being asserted). Propositions can be true or false, but cannot be true and false
simultaneously.
Associations
 metaClaim:Claim[0..*]

 references Claims concerning (i.e., about) the Assertion (e.g., regarding the confidence in the Assertion)

Semantics

with isCitation=true and +citedElement refer to ArgumentAssets within the ArgumentPackage implementation referred to by implements.

Associations
implements:ArgumentPackage[1] – a reference to the ArgumentPackage which the ArgumentPackageInterface declares.

ArgumentPackageInterface is a kind of ArgumentPackage that defines an interface that may be exchanged between users. An ArgumentPackage may declare one or more ArgumentPackageInterface.

 - the

needsSupport

ArgumentElements that cite the claims in question.

ArgumentPackageBinding

, it is used to record the argument that connects the arguments of two or more

s

Constraints
The participantPackages should be only ArgumentPackages
OCL: self.participantPackage->forall(pp|pp.oclIsTypeOf(Argument::ArgumentPackage))

The ArgumentElements contained by an ArgumentPackageBinding must be ArgumentElement citations to ArgumentElements contained within the ArgumentPackages associated by the participantPackage association.

designer could be the owner of the design specification, which would also relate to other artifacts: the requirements
specification that satisfies, the architecture that implements, its verification report, etc. Associations between Artifacts
and Activities /Events/Participants/ Resources/Techniques, and between Aritfacts and Activities /Events/Participants/
Resources/Techniques Participants can be recorded by means ArtifactAssetRelationships.

12.2 ArtifactPackage
ArgumentPackage is the containing element for artifacts involved in a structured assurance case.

Superclass
Base::ArtifactElement
Associations
artifactElement:Base::ArtifactElement[0..*] (composition) – a collection of ArtifactElements forming a artifact package
in a structured assurance case.

Semantics

ArtifactPackages contain ArtifactElements that represent the artifact forming part of a structured assurance case.
ArtifactPackages can also be nested.

12.3 ArtifactGroup
ArtifactGroup can be used to associate a number of ArtifactElements to a common group (e.g. representing a common
type or purpose, or being of interest to a particular stakeholder).

Superclass
Base::ArtifactElement
Associations
artifactElement:ArtifactElement[0..*] – an optional collection of ArtifactElements organised within the ArtifactGroup.

Semantics

ArtifactGroup can be used to associate a number of ArtifactElements to a common group (e.g. representing a
common type or purpose, or being of interest to a particular stakeholder). The name and the description of
the ArtifactGroup should provide the semantic for understanding the ArtifactGroup. ArtifactGroups serve no
structural purpose in the formation of the argument network, nor are they meant as a structural packaging
mechanism (this should be done using ArtifactPackage).

12.4 ArtifactPackageBinding
The ArtifactPackageBinding is a sub type of ArtifactPackage used to record ArtifactAssetRelationships between the
ArtifactAssets of two or more ArtifactPackages.

Superclass
ArtifactPackage
Associations
participantPackage:ArtifactPackageInterface[2..*]
The ArtifactPackages containing the ArtifactAssets being related together by the ArtifactPackageBinding.

Semantics

ArtifactPackageBindings can be used to map dependencies between the cited ArtifactAssets of two or more
ArtifactPackages. For example, a binding could be used to record a ‘derivedFrom’ ArtifactAssetRelationship between
the ArtifactAsset of one package to the ArtifactAsset of another.
Contraints

 - the

ArtifactPackageBindings must only contain ArtifactAssetRelationships with source and target Artifacts, with isCitation = true citing ArtifactAssets contained within the ArtifactPackages associated by participantPackage.

12.5 ArtifactPackageInterface
ArtifactPackageInterface is a kind of ArtifactPackage that defines an interface that may be exchanged between users. A
typical use case might be for a component supplier to provide its customers with ArtifactPackageInterfaces that contain
the relevant supplier’s ArtifactElements for the customers’ ArtifactPackages. An ArtfefactPackage may also declare that
it implements or conforms to a particular ArtifactPackageInterface.
Superclass
ArtifactPackage
Associations
artifactAsset: ArtifactAsset [0..*] – an optional set of ArtifactAsset elements, such as citations, artifacts, resources,
activities, etc.
artifactPackage: ArtifactPackage [0..*] - an optional set of contained ArtifactPackage elements, allowing for recursive
containment.
Semantics
ArtifactPackageInterface enables the declaration of the elements of an ArtifactPackage that might be referred to (cited)
in another ArtifactPackage, thus the elements can be used for assurance in the scope of the latter ArtifactPackage.
Constraints

12.6 ArtifactAsset (abstract)
 ArtifactAsset represents the artifact-specific pieces of information of an assurance case, in contrast to the argument-
specific pieces of information.
Superclass
Base::ArtifactElement
Association
property:Property[0..*] (composition) – an optional collection of Propert(ies) which enable the specification of the
characteristics of an ArtifactAsset.
Semantics
Information about artifacts is essential for any assurance case. The artifacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related
pieces of information such as the provenance of an artifact, its lifecycle, and its properties. All this information might
have to be consulted for developing confidence in the validity of an assurance case.

12.7 Artifact class
 The Artifact class represents the distinguishable units of data used in an assurance case.
Superclass

ArtifactAsset

Attributes
version: String
The version of the Artifact
date: Date
The date on which the artifact was created.
Associations
artifactProperty::ArtifactProperty[0..*]
The ArtifactProperties of the Artifact
artifactEvent::ArtifactEvent[0..*]
The set of ArtifactEvents that represent the lifecycle of the Artifact
Semantics

define one or more

implements:ArtifactPackage[1] - a reference to the ArtifactPackage which the ArtifactPackageInterface declares.

ArtifactPackageInterfaces are only allowed to contain Artifacts with +isCitation=true citing ArtifactAssets within the ArtifactPackage with which this ArtifactPackageInterface is associated.

