Classes
10.1 General

This chapter presents the normative specification for the SACM Terminology Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

ModelElement |[+origin /

+gid : String 0.1
+name : String
+isAbstract : Bodean

T

Termi PackageCitation Terminology Element

+terminologyPackageCitation
+citedPagkage

0.* rminologyPackage
1
- 0"’
Terminology Package +erminolog ot

+citedAsset
ExpressionEIeman\ +category Category
0"
A e
+element
TerminologyAssetCitation Expression +form Term\
+value : String 0.1 +value : String I
+extemalReference : Siring \

Figure 10.1 - Terminology Class Diagram

This portion of the SACM metamodel describes and defines the concepts of term, expression and an external interface to
terminology information from others. This area of the Structured Assurance Case Metamodel also provides the starting
foundation for formalism in the assembly of terms into expressions without mandating the formalism for those that do not
need it.

10.2 TerminologyElement (abstract)

TerminologyElement is an abstract class that serves as a parent class for all SACM terminology assets (TerminologyAsset)
and the packaging of these assets (TerminologyPackage).

Superclass

ModelElement

Semantics

TerminologyElement is the base class for specifying the terminology aspects of an assurance case (AssuranceCasePackage).

element

10.3 TerminologyPackage
The TerminologyPackage &lass is the container etess for SACM terminology assets.
Superclass

element

Figure 10.1 -

Figure 10.1 — Terminology Class Diagram

TerminologyPackagelnterface.

| Base::ArtifactElement |

+terminologyElement TerminologyElement

+terminologyElement

S— TerminologyPackage

+implements

TerminologyPackageBinding

+participantPackage | 2..

]

attributes
+value : String [1]

0..*
TerminologyGroup |

TerminologyAsset

Base::ModelElement
+origin | 0..1

Term

aftributes
+externalReference : String [0..1]

TerminologyElement: TerminologyElement[0..*] (composition) —
TerminologyElements contained in the TerminologyPackage, it can be either
TerminologyPackage (and its sub-types) or TerminologyAssets (or its sub-types).

TerminologyElement
Associations

. TerminologyPackage contains the TerminologyElements that can be used within the naming
Semantics / and description of SACM arguments and artifacts. TerminologyPackages can be nested.

10.4 TerminologyAsset (abstract)

The TerminologyAsset Class is the abstract class for the different types of terminology elements represented
in SACM.

Superclass

TerminologyElement

Semantics

TerminologyAssets represent all of the elements required to model and categorize expressions in SACM
(expressions and terminology categories).

10.5 Category

The Category class describes categories of ExpressionElements (Terms and Expressions) and can be used to group these
elements within TerminologyPackages.

Superclass
TerminologyAsset
Semantics

Terms and ExpressionElements can be said to belong to Categories. Categories can group Terms, Expressions, or a mixture of
both. For example, a Category could be used to describe the terminology associated with a specific assurance standard,
project, or system.

10.6 ExpressionElement (abstract)

The ExpressionElement class is the abstract class for the elements in SACM that are necessary for modeling expressions.
Superclass

TerminologyAsset

Associations
category: Category [0..*] — optionally associates the ExpressionElement with one or more terminology categories.

Semantics

ExpressionElements are used to model (potentially structured) expressions in SACM. All ModelElements contain a
Description whose value is provided by means of an Expression.

10.7 Expression

The Expression class is used to model both abstract and concrete phrases in SACM. Abstract Expressions are denoted by the
inherited isAbstract attribute being set true. A concrete expression (denoted by isAbstract being false) is one that has a literal
string value and references only concrete ExpressionElements.

Superclass

ArtifactElement

Attributes

value: String — An attribute recording the value of the expression
Associations

TerminologyElement:TerminologyElement[0..*] (composition) – TerminologyElements contained in the TerminologyPackage, it can be either TerminologyPackage (and its sub-types) or TerminologyAssets (or its sub-types).

TerminologyPackage contains the TerminologyElements that can be used within the naming and description of SACM arguments and artifacts. TerminologyPackages can be nested.

11 SACM Argumentation Metamodel

11.1 General Package

This chapter presents the normative specification for the SACM Argumentation Metemedet. It begins with an overview
of the metamodel structure followed by a description of each element.

ModeiElement
+gid - Swng
+name : String
+sAbstract : Bodean
= ENment Argumen PackageC!
+content :Sting
+chedPackage
B J/
P Indin,
[+argumentatonPackage y Sckageindng
@ 1 0.7
Argumen Package
ks +partcipantPackage
+argumentAsset -—-‘___Ammpnwmhnu
0 7.

+sructure

+CltedAsset

Argumen tassstCitation

Antefact::

/non CECATETEC) A mrefactEBment
S 0.1

0.1
+reasoning
+metaciaim
0.
{ clam

/' liT ; ‘| .

/

] i i il | il
ArtifactReference

\ B
Figure 11.1 - Argumentation-6tass-Diagram

This portion of the SACM model describes and defines the concgpfs required to model structured arguments.

nts are represented in SACM through explicitly repregénting the Claims and citation of artifacts (e.g., as
evidence) (ArrtifeetEtementCitation), and the ‘links’ betweeghthese elements — e.g., how one or more Claims are
asserted to infer another Claim, or how one or more artifacts'are asserted as providing evidence for a Claim
(AssertedEvidence). In addition to these core elements, in SACM it is possible to provide additional description of
the ArgumentReasoning associated with inferential and evidential relationships, represent counter-arguments and
“threugh-AssertedChallenge); counter-evidence (through AssestedeounterEvidenee), and represent how artifacts
provide the context in which arguments should be interpreted (irough AssertedContext.)

—— Package (referenced by ArtifactReference)

The packaging of structured arguments into ‘modular’ argument packgges is enabled through
ArgumentPackages, an optional declaration of an interface for the pgékage (ArgumentPackagelnterface)

isCounter:Boolean me.

Figure 11.1 -

Package

Package

ArtifactReference

(referenced by ArtifactReference)

isCounter:Boolean

and

Figure 11.1 — Argumentation Package Diagram

o . encedArtifactElement
A tGroup L
J7 +content, Base::MultiLangString
ionElement— = e 0.1
0.*
ArtifactReferenc
+argumentationElement o,
0.°
: +arget.
o - — 2 a g 1.4
1 ; +source

ArgumentPackageBinding

participantPackage 2. ure 0.1 T
gumentR ing
[—
Assertion +reasoning (0..1

attributes
. A N

D ion [1] = asserted
AssertedRelationship
Tﬁmamdaim 0..* T -
stinbutes
Claim +isCounter : boolean [1]= false

TT‘[TT |

s | [Jwsevirs | [Fswiris | s

organizes

AssertedContext
that eites a specific selection of the ArgumentElements contained within the package, and the ability to link

(by means of an argument) two or more argument packages (through an ArgumentPackageBinding). It is
also possible within a package to cite elements contained within other argument packages (through we#ng=

HorsumentSlementSitation).

ArgumentationElement class (abstract)

An ArgumentatiqnElement is the top level element of the hierarchy for argumentation elements.
Semantics

The ArgumentationEleMent is a common class for all elements within a structured argument.

11.2.2 ArgumeniPackage Class

The ArgumentPackage Class is t
Metamodel.

container class for a structured argument represented using the SACM Argumentation

The packaging of structured arguments into ‘modular’ argument packages is enabled through
Superclass ArgumentPackages, an optional declaration of an interface for the package

ArgumentationElement (ArgumentPackagelnterface) that organises a specific selection of the ArgumentElements contained
within the package, and the ability to link (by means of an argument) two or more argument packages
(through an ArgumentPackageBinding). It is also possible within a package to cite elements contained
argumentAsset:ArgumentAsset[0..*] within other argument packages (through ArtifactReference).

Associations

The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage: ArgumentationPackage[0..*]

The nested argumentPackage contained in a given instance of an ArgumentPackage
interface: ArgumentationPackage[0..*]

Reference to the declared interface for the ArgumentPackage.
Semantics

ArgumentPackages contain structured arguments. These arguments are composed of ArgumentAssets. ArgumentPackages
elements can be nested, and can contain citations (references) to other ArgumentPackages.

For example, arguments can be established through the composition of Claims (propositions) and the AssertedInferences
between those Claims.

11.2.4 ArgumentPackageBinding Class

The ArgumentPackageBinding is a sub type of ArgumentPackage used to record the mapping (agreement) between two or
more ArgumentPackages.

Superclass

ArgumentPackage

Associations

participantPackage: ArgumentPackagelnterface[2..*]

The ArgumentPackages being mapped together by the ArgumentPackageBinding.

Semantics

ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.

For example, one ArgumentPackage may contain a claim that is toBeSupported (i.e. currently has no supporting argument).
An ArgumentPackageBinding can be used to record the mapping (by means of containing a structured argument linking
ArgumentAssetCitations to the claims in question) between this claim and a supporting claim in another ArgumentPackage.

An ArgumentPackagelnterface is a sub type of ArgumentPackage that can be used to create an explicit interface to an existing
ArgumentPackage.

Constraints

The ‘root’ ArgumentAssets contained by an ArgumentPackageBinding (i.e. the ArgumentAssets only associated as target of
an AssertedRelationship) and ‘leaf” ArgumentAssets (i.e. the ArgumentAssets only associated as source of an

organizes

AssertedContext

The packaging of structured arguments into ‘modular’ argument packages is enabled through ArgumentPackages, an optional declaration of an interface for the package (ArgumentPackageInterface) that organises a specific selection of the ArgumentElements contained within the package, and the ability to link (by means of an argument) two or more argument packages (through an ArgumentPackageBinding). It is also possible within a package to cite elements contained within other argument packages (through ArtifactReference).

12 Artifact Classes

12.1 General
Package

This chapter presents the normptive specification for the SACM Artifact Metemedek It begins with an overview of the
metamodel structure followegd by a description of each element.

Package

Figure 12.1 - Artifact Glass-Diagram

AssertedEvidence with
isCounter = true/false

Anctacfte gionship

—1

can be referenced (using
ArtifactReferences) as

Artifacts correspond to the main evidentiary elements of an assurance case. By means of asserti
amdrssertedConmterEviderree), artifacts ere-ased=fer supportmg claims and argu

In general, artifacts are managed when the corre s are available. For example, a test case is
linked to the requirement that validates once the test case has already been created. However, artifact
management might also require the specification of patterns (or templates) in order to allow a user, for
instance, to indicate that a given artifact must be created but it has not yet. A common scenario of this
situation corresponds to the process during which a supplier and a certifier have to agree upon the artifacts
that the supplier will have to provide as assurance evidence for a system. As a result of this process, artifact
patterns could be specified, and such patterns would need to be made concrete during the lifecycle of the
system. Artifact patterns are specified by mrean of the attribute ‘isAbstract’ (ModelElement). For example
supplier and a certifier might agree upon the n for maintaining a hazard log during a system’s lifec
Such a hazard log would initially be modeled as
attribute of the hazard log would be ‘false’. The speégificati i ili eir reuse,
as the corresponding artifacts might have to be createdNn the scope of more than one asspednce case effort.
Using again hazard logs as an example, their structure might be the same for seve stems, thus all the
corresponding hazard logs might be based on a same abstract i

means

When made concrete, an Artifact can relate to many different types of information necessary for developing confidence
in the Artifact and thus for assurance purposes. Such information can be regarded as meta-data or provenance
information about an Artifact, provides information about its management, and is specified with the rest of
specializations of ArtifactAsset. Using a design specification as an example, properties (ArtifactProperty) could be
specified regarding its quality (completeness, consistency...), and it would have a lifecycle with events such as its
creation and modifications. The specification could be created by using UML (Technique) in an Activity named
‘Specify system design’, stored in a Resource corresponding to a diagram created with some modeling tool, and later
used as input for another Activity called ‘Verify system design’. A given person (Participant) playing the role of system

Package

Package

can be referenced (using ArtifactReferences) as

AssertedEvidence with isCounter = true/false

means

Figure 12.1 -

Figure 12.1 — Artifact Package Diagram

+artifactElement

0.*

N ArtifactPackage
+implements

Base::ArtifactElement

+artifactElement

i
Property
+property (0.

ArtifactAsset |+source

1

ArtifactPackageBinding

+participantPackage |2..* T

Harget.

ArtifactAssetRelationship

e

Activity Event Participant || Technique | | Resource
atinbutes atinbutes atinbutes

+version : String [0..1] +startTime : date [0..1]| |+occurence : date [0..1]

+date : date [0..1] +endTime : date [0..1]

Associations between Artifacts and Activities /Events/Participants/ Resources/
. Techniques, and between Aritfacts and Activities /Events/Participants/ Resources/
12.2 ArtlfaCtPaCkage Techniques Participants can be recorded by means ArtifactAssetRelationships.

designer could be the owner of the design specification, which would also relate to other artifacts: the requirements
spec1ﬁcat10n that satlsﬁes the archltecture that implements, its verlﬁcatlon report etc. F-aﬁher—rekr&ensh-qas—mag-ht—be—

12.342:2- ArtifactPackageBinding

12.4

The ArtifactPackageBinding is a sub type of ArtifactPackage used to record ArtifactAssetRelationships between the
ArtifactAssets of two or more ArtifactPackages.

Superclass

ArtifactPackage

Associations

participantPackage: ArtifactPackagelnterface[2..*]

The ArtifactPackages containing the ArtifactAssets being related together by the ArtifactPackageBinding.

Semantics

ArtifactPackageBindings can be used to map dependencies between the cited ArtifactAssets of two or more
ArtifactPackages. For example, a binding could be used to record a ‘derivedFrom’ ArtifactAssetRelationship between
the ArtifactAsset of one package to the ArtifactAsset of another.

Contraints

142-3- ArtifactPackagelnterface

ArtifactPackagelnterface is a kind of ArtifactPackage that defines an interface that may be exchanged between users. A
typical use case might be for a component supplier to provide its customers with ArtifactPackagelnterfaces that contain
the relevant supplier’s ArtifactElements for the customers’ ArtifactPackages. An ArtfefactPackage may also declare that
it implements or conforms to a particular ArtifactPackagelnterface.

Superclass

ArtifactPackage

Associations

artifactAsset: ArtifactAsset [0..*¥] — an optional set of ArtifactAsset elements, such as citations, artifacts, resources,
activities, etc.

artifactPackage: ArtifactPackage [0..*] - an optional set of contained ArtifactPackage elements, allowing for recursive
containment.
Semantics

ArtifactPackagelnterface enables the declaration of the elements of an ArtifactPackage that might be referred to (cited)
in another ArtifactPackage, thus the elements can be used for assurance in the scope of the latter ArtifactPackage.

Constraints

125424 ArtifactAsset class (abstract)

The ArtifactAsset class represents the artifact-specific pieces of information of an assurance case, in contrast to the
argument-specific pieces of information.

Superclass
ArtifactElement
Semantics

Information about artifacts is essential for any assurance case. The artifacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related

12.2 ArtifactPackage

Associations between Artifacts and Activities /Events/Participants/ Resources/Techniques, and between Aritfacts and Activities /Events/Participants/ Resources/Techniques Participants can be recorded by means ArtifactAssetRelationships.

12.3

12.4

12.5

12.2 ArtifactPackage

ArgumentPackage is the containing element for artifacts involved in a structured
assurance case.

Superclass
Base:: ArtifactElement
Associations

artifactElement:Base:: ArtifactElement[0..*] (composition) — a collection of
ArtifactElements forming a artifact package in a structured assurance case.

Semantics

ArtifactPackages contain ArtifactElements that represent the artifact forming part of a
structured assurance case. ArtifactPackages can also be nested.

