

8.6 ModelElement (abstract)
ModelElement is the base element for the majority of modeling elements.
Superclass
SACMElement
Associations
implementationConstraint: ImplementationConstraint [0..*] (composition) – a collection of implementation constraints.
description: Description[0..1] (composition) – the description of the ModelElement.
note:Note[0..*] (composition) – a collection of notes for the ModelElement.
taggedValue: TaggedValue [0..*] (composition) – a collection of TaggedValues, TaggedValues can be used to describe
additional features of a ModelElement
Semantics
All the individual and identifiable elements of a SACM model correspond to a ModelElement.
Constraints

ImplementationConstraints should only be specified if +isAbstract is true OCL: self.implmentationConstraint->size() > 0
implies self.isAbstract = true

8.7 UtilityElement (abstract)
UtilityElement is an abstract element for a number of utility elements.
Superclass
SACMElement
Associations
expression: Expression [1] – the expression object containing the value of the UtilityElement (see Terminology section 10)
Semantics
UtilityElement supports the specification of additional information for a ModelElement.

8.8 ImplementationConstraint
This class specifies details of any implementation constraints that must be satisfied whenever a referencing
ModelElement is to be converted from isAbstract = true to isAbstract = false. For example in the context of a SACM
pattern fragment, an element will need to satisfy the implementation rules of the pattern.
Superclass
UtilityElement
Semantics
ImplementationConstraints indicate the conditions to fulfill in order to allow an abstract ModelElement (isAbstract = true) to
become non-abstract (isAbstract = false).
Constraints
ImplementationConstraints should only specified if isAbstract is true.

8.9 Description
This class specifies a description that may be associated with a ModelElement. In many cases Description is used to provide
the ‘content’ of a SACM element. For example, it would be used to provide the text of a Claim.
Superclass
UtilityElement
Semantics
A Description provides details about ModelElements in relation to aspects such as their content or purpose. Therefore,
Descriptions can be used to both characterize ModelElements and facilitate their understanding.

8.10 Note
This class specifies a generic note that may be associated with a ModelElement. For example a note may include a number of
explanatory comments.

8.10 ArtifactElement (abstract)

8.11

8.10 ArtifactElement (abstract)

ArtifactElement acts as the base class for elements in other SACM packages. Essentially,
all elements which extend ArtifactElement is considered to be an artifact, and therefore
can be referenced using Argument:ArtifactReference.

Superclass

ModelElement

Semantics

ArtifactElement corresponds to the base class for specifying all the identifiable units of
data modelled and managed in a structured assurance case effort.

	

9 Structured Assurance Case Packages
9.1 General
This chapter presents the normative specification for the SACM Packages Metamodel. It begins with an
overview of the metamodel structure followed by a description of each element.

Figure 9.1 - Structured Assurance Case Packages Class Diagram

In SACM, the parent container element is AssuranceCasePackage. AssurancesCasePackages can be thought of assurance case
‘modules’. Packages can contain other packages, including citations to other packages not contained within the same package
hierarchy. Packages optionally can have a separately declared interface (AssuranceCasePackageInterface) (analogous to a public
header file) that declares selected packages contained by a package.
Assurance cases (AssuranceCasePackages) consist of arguments (containined in ArgumentPackages), evidence descriptions
(contained in ArtifactPackages) and Terminology definitions (contained in TerminologyPackages).

9.2 ArtifactElement (abstract)
ArtifactElement is an abstract class that serves as a parent class for Artifacts and AssuranceCasePackage elements.
Superclass

ModelElement

Semantics
ArtifactElement correspond to the base class for specifying all the identifiable units of data modelled and managed in a
structured assurance case effort.

9.3 AssuranceCasePackage
AssuranceCasePackage is an exchangeable element that may contain a mixture of artifacts, argumentation and
terminology. When users exchange content, it is expected they use this as the top level container. It is a recursive
container, and may contain one or more sub-packages.
This follows the existing practice of considering an assurance case when fully completed to comprise both
argumentation and evidence, although each may be exchanged individually.
AssuranceCasePackage is a sub-class of ArtifactElement. Semantically an AssuranceCasePackage can be considered as
an artifact of evidence (e.g. from the perspective of another AssuranceCasePackage).

Base::

Superclass

ArtifactElement
Associations
assuranceCasePackage: AssuranceCasePackage [0..*] – a number of optional sub-packages
interface: AssuranceCasePackageInterface [0..*] – a number of optional assurance case package interfaces that the
current package may implement
artifactPackage: ArtifactPackage [0..*] – a number of optional artifact sub-packages
terminologyPackage: TerminologyPackage [0..*] – a number of optional terminology sub-packages
Semantics
AssuranceCasePackage is the root class for creating structured assurance cases.

9.4 AssuranceCasePackageInterface
AssuranceCasePackageInterface is a kind of AssuranceCasePackage that defines an interface that may be exchanged
between users. An AssuranceCasePackage may declare one or more ArtifactPackageInterfaces.
Superclass
AssuranceCasePackage
Semantics
AssuranceCasePackageInterface enables the declaration of the elements of an AssuranceCasePackage that might be
referred to (cited) in another AssuranceCasePackage, thus the elements can be used for assurance in the scope of the
latter AssuranceCasePackage.
Constraints
AssuranceCasePackageInterface are only allowed to contain the following: ArgumentPackageInterfaces,
ArtifactPackageInterfaces, and TerminologyPackages.

9.5 ArgumentPackage
ArgumentPackage is a container for the structured argument aspect of the assurance case. It contains the structure of
assertions which comprise the structured argument.
Superclass
ArgumentationElement
Associations
argumentPackage: ArgumentPackage [0..*] – an optional set of sub ArgumentPackages, allowing for recursive
containment argumentAsset: ArgumentAsset [0..*] an optional set of ArgumentAssets
Semantics
ArgumentPackage is the base class for specifying the results of the argumentation efforts for a structured assurance case
(i.e., an AssuranceCase).

9.6 TerminologyPackage
TerminologyPackage is a container element for terminology that may be exchanged. Terminology can define terms,
expressions or categories, used elsewhere in the assurance case.
Superclass
TerminologyElement
Associations
terminologyAsset: TerminologyAsset [0..*] – an optional set of terminology assets (expressions, terms and categories)
terminologyPackage: TerminologyPackage [0..*] – an optional set of contained TerminologyPackage elements,
allowing for recursive containment.
Semantics

Base::

(composition) – a collection

(composition)

argumentPackage:Argument::ArgumentPackage[0..*] (composition) – a number of optional argument packages.

10 Structured Assurance Case Terminology
Classes 10.1 General

This chapter presents the normative specification for the SACM Terminology Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

Figure 10.1 - Terminology Class Diagram

This portion of the SACM metamodel describes and defines the concepts of term, expression and an external interface to
terminology information from others. This area of the Structured Assurance Case Metamodel also provides the starting
foundation for formalism in the assembly of terms into expressions without mandating the formalism for those that do not
need it.

10.2 TerminologyElement (abstract)
TerminologyElement is an abstract class that serves as a parent class for all SACM terminology assets (TerminologyAsset)
and the packaging of these assets (TerminologyPackage).
Superclass
ModelElement
Semantics
TerminologyElement is the base class for specifying the terminology aspects of an assurance case (AssuranceCasePackage).

10.3 TerminologyPackage
The TerminologyPackage is the container element for SACM terminology assets.
Superclass

grouping of TerminologyElements (TerminologyGroup). TerminologyElement extends Base::ArtifactElement, this implies that all elements in the Terminology package are artifacts.

Base::ArtifactElement

General

Classes

11.2.1 ArgumentationElement class (abstract)
An ArgumentationElement is the top level element of the hierarchy for argumentation elements.
Semantics
The ArgumentationElement is a common class for all elements within a structured argument.

11.2.2 ArgumentPackage Class
The ArgumentPackage Class is the container class for a structured argument represented using the SACM Argumentation
Metamodel.
Superclass
ArgumentationElement
Associations
argumentAsset:ArgumentAsset[0..*]
The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage:ArgumentationPackage[0..*]
The nested argumentPackage contained in a given instance of an ArgumentPackage
interface:ArgumentationPackage[0..*]
Reference to the declared interface for the ArgumentPackage.
Semantics
ArgumentPackages contain structured arguments. These arguments are composed of ArgumentAssets. ArgumentPackages
elements can be nested, and can contain citations (references) to other ArgumentPackages.
For example, arguments can be established through the composition of Claims (propositions) and the AssertedInferences
between those Claims.

11.2.4 ArgumentPackageBinding Class
The ArgumentPackageBinding is a sub type of ArgumentPackage used to record the mapping (agreement) between two or
more ArgumentPackages.
Superclass
ArgumentPackage
Associations
participantPackage:ArgumentPackageInterface[2..*]
The ArgumentPackages being mapped together by the ArgumentPackageBinding.
Semantics
ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.
For example, one ArgumentPackage may contain a claim that is toBeSupported (i.e. currently has no supporting argument).
An ArgumentPackageBinding can be used to record the mapping (by means of containing a structured argument linking
ArgumentAssetCitations to the claims in question) between this claim and a supporting claim in another ArgumentPackage.
An ArgumentPackageInterface is a sub type of ArgumentPackage that can be used to create an explicit interface to an existing
ArgumentPackage.
Constraints
The ‘root’ ArgumentAssets contained by an ArgumentPackageBinding (i.e. the ArgumentAssets only associated as target of
an AssertedRelationship) and ‘leaf’ ArgumentAssets (i.e. the ArgumentAssets only associated as source of an
AssertedRelationship) must be ArgumentAssetCitations to Claims or ArtifactElementCitations contained within the
ArgumentPackages associated by the participantPackage association.

11.2.5 ArgumentPackageInterface Class
Superclass
ArgumentPackage

ArgumentationElement extends Base::ArtifactElement. Subsequently, all argument elements are considered artifacts.

Superclass
Base::ArtifactElement

11.3

11.4

11.5

11.6

ArtifactPackageInterface enables the declaration of the elements of an ArtifactPackage that might be referred to (cited)
in another ArtifactPackage, thus the elements can be used for assurance in the scope of the latter ArtifactPackage.
Constraints

12.5 ArtifactAsset class (abstract)
The ArtifactAsset class represents the artifact-specific pieces of information of an assurance case, in contrast to the
argument-specific pieces of information.
Superclass
ArtifactElement
Semantics
Information about artifacts is essential for any assurance case. The artifacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related
pieces of information such as the provenance of an artifact, its lifecycle, and its properties. All this information might
have to be consulted for developing confidence in the validity of an assurance case.

12.4.2 Artifact class
 The Artifact class represents the distinguishable units of data used in an assurance case.
Superclass

ArtifactAsset

Attributes
version: String
The version of the Artifact
date: Date
The date on which the artifact was created.
Associations
artifactProperty::ArtifactProperty[0..*]
The ArtifactProperties of the Artifact
artifactEvent::ArtifactEvent[0..*]
The set of ArtifactEvents that represent the lifecycle of the Artifact
Semantics
Artifacts correspond to the main evidentiary support for the arguments and claims of an assurance case: an Artifact can
play the role of evidence of a Claim (AssertedEvidence), or of counterevidence (AssertedCountedEvidence). An
Artifact can take several forms, such as a diagram, a plan, a report, or a specification, both in electronic (e.g., a pdf file)
or physical (e.g., a paper document) formats. Typical examples of Artifacts include system lifecycle plans,
dependability (e.g., safety) analysis results, system specifications, and V&V results.

12.4.3 ArtifactProperty class
The ArtifactProperty class enables the specification of the characteristics of an Artifact.
Semantics

An Artifact can have different, specific characteristics independent of the argumentation structure in which the Artifact
is used. Some can be objective (e.g., the result of a test case execution, as passed or not passed) and others can be based
on a person’s judgement (e.g., regarding a quality aspect of a report).

12.4.4 ArtifactEvent class
The ArtifactEvent class enables the specification of the events in the lifecycle of an Artifact.

Base::

Association
property:Property[0..*] (composition) – an optional collection of Propert(ies) which enable the specification of the characteristics of an ArtifactAsset.

12.6 Artifact class

12.7 ArtifactProperty class

12.8 ArtifactEvent class

