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Abstract

Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of
remote PCs distributed on the Internet to execute large parallel applications - has proved
to be an efficient paradigm to provide a large computational power at the fraction of the
cost of a dedicated computing infrastructure.

This document presents my contributions over the last decade to broaden the scope
of Desktop Grid Computing. My research has followed three different directions. The
first direction has established new methods to observe and characterize Desktop Grid
resources and developed experimental platforms to test and validate our approach in
conditions close to reality. The second line of research has focused on integrating Desk-
top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many
challenges such as security, scheduling, quality of service, and more. The third direction
has investigated how to support large-scale data management and data intensive applica-
tions on such infrastructures, including support for the new and emerging data-oriented
programming models.

This manuscript not only reports on the scientific achievements and the technologies
developed to support our objectives, but also on the international collaborations and
projects I have been involved in, as well as the scientific mentoring which motivates my
candidature for the Habilitation à Diriger les Recherches.
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Chapter 1

Introduction

Learning is experience. Everything else is just information.

(Albert Einstein (1879 – 1955))

This document presents the research I have done since receiving my Ph.D. in 2003.
These activities started during my postdoctoral stay at the University of California San
Diego and continued at University Paris XI in the Grand-Large team where I occu-
pied a position of INRIA Researcher between 2004 and 2008. In 2008, I joined the
GRAAL/AVALON team at the University of Lyon, whose research activities aim at de-
signing software, algorithms and programming models for large scale distributed comput-
ing infrastructures. Pursuing similar objective, I focused my research work on studying
infrastructures and technologies for Desktop Grid Computing.

1.1 Historical Context

Thorough this document, the reader will follow a part of the history of parallel and dis-
tributed computing. This story illustrates the efforts to build more powerful computing
infrastructures by designing large scale systems, that is to say, capable of assembling
millions of computing nodes [1]. Desktop Grid Computing [2] is a discipline which, by
considering the whole Internet as a possible computing platform, has pushed this idea to
its extreme limit. It’s hard to figure out now, how disruptive this approach was, when
it emerged at the late 90’s. To put things into context, Desktop Grid has appeared at
the same time than Cluster Computing, which was aiming at designing parallel com-
puters using off-the shelf components such as regular PC run by Linux and early Grid
Computing, where the first experiments were considering parallel applications spanning
over several super-computers geographically distributed. Thus, the environment was
favorable to research leading to new directions for high performance computing. The
characteristics of a Desktop Grid platform is radically different from a traditional super-
computer: nodes are distributed over the Internet, nodes can join or leave the network
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Chapter 1 Introduction

at any time without notice, nodes have low network capabilities with many connection
restrictions and nodes are shared with end-users.

Our context was so radically different, that we had to invent new paradigms and tech-
nologies before being able to explore the full possibility of Desktop Grid Computing.
Indeed, Desktop Grid has revisited many traditional aspects of high performance com-
puting: scheduling, file management, communications, programming model and more.
Moreover, it has also revealed in advance several problematics that were considered as
minor and secondary in the classical field of parallel computing, such as system security
and dependability, and which are now widely addressed as a primary concern, at the age
of Cloud Computing and Peta-scale High Performance Computing.

This thesis presents my contributions to the domain, both in term of technology and
scientific results. One particular aspect of research in Desktop Grid computing is that
it requires to develop the technology which enables to build the infrastructure, and at
the same time to observe and understand the infrastructure in order to improve the
technology. Thus, my research follows two axis which are advanced in parallel. The
first area concerns Desktop Grid algorithms and software, and addresses a large variety
of topics such as performance, programming model, security, data management, fault-
tolerance etc. The second direction concerns the Desktop Grid infrastructures, which
consists in observing the infrastructures and characterizing the computing resources.
This helps to develop new experimental methodologies that were rather taken from the
P2P world and that we have applied to the study of computing infrastructure.

Finally, since the beginning of the field and up to now, more than a decade has passed.
Desktop Grid Computing, and more generally speaking, the landscape of Distributed
Computing Infrastructure (DCI) has greatly evolved. The reader will also follow a part
of the history and how we have integrated Desktop Grid computing to the existing DCI
paradigms, so that we made Desktop Grid a first class citizen.

1.1.1 From High Throughput Computing on Volatile Desktop Computers. . .

The starting point of the XtremWeb project [3] is an interdisciplinary collaboration be-
tween scientists belonging to the Paris Sud University: Alain Cordier (Laboratory of
Linear Accelerator) and Franck Cappello (Laboratory of Computer Science). The physi-
cists’ lab was participating to an international collaboration called the Pierre Auger
Cosmic Ray Observatory, which is studying ultra-high energy cosmic rays, the most
energetic and rarest of particles in the universe. A significant part of their simulation
campaign was aiming at simulating particles striking the earth’s atmosphere, which pro-
duces extensive air showers made of billions of secondary particles. While much progress
has been made in nearly a century of research in understanding cosmic rays with low to
moderate energies, those with extremely high energies remain mysterious. Because such
simulation campaign based on Monte-Carlo application is known to be embarrassingly
parallel, the physicists were looking for an alternative infrastructure that would not
over-use their regular super-computer center. The second motivation was that particles
entering the atmosphere is a rare event, which is difficult to observe. It was anticipated
that once detected, the observation would provoke a huge demand in computing power
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1.1 Historical Context

and physicists were looking for the largest pool of resources possible in addition to their
computing centers. Inspired by the first successes of distributed computing projects
such as distributed.net and SETI@Home, Franck proposed the XtremWeb platform that
I further developed during my Ph. D thesis. My main source of inspiration was the P2P
file sharing software (Napster, Kazaa), which have drawn the idea that we could design a
platform where each user could at the same time be a resource provider and take advan-
tage of other contributors’ resources. We rapidly sketched the objectives, features and
prototyped the software accordingly. The XtremWeb vision was to provide an execution
runtime environment supporting multiple applications and multiple users, and taking
its computing power by using idle computing resources, distributed on the Internet and
located in existing local area network, such as classrooms or data centers. This vision
was translated into an architecture and a set of principles that did not evolve during
the following years of research and development: it consists of a client-server-worker
architecture, a push-pull scheduler, a security based on sandboxing and a fault-tolerance
protocol based on host failure detection. As soon as we succeeded in executing the first
applications from the Pierre Auger Observatory, we began to explore new programming
models for the platform. An important milestone was the support of message-passing
parallel application on volatile nodes, which probably represents the most challenging
class of application that could be ported to Desktop Grid Computing. At the end of
my Ph. D, I was genuinely convinced that extending Desktop Grid computing to new
classes of applications was less an issue of ”how-to”, i.e. implementing adequate exe-
cution environment, than a question of ”how good”, i.e. finding out the algorithms to
make efficient application execution. I took the opportunity of one year postdoctoral
fellowship in A. Chien’s team at UCSD and work with H. Casanova’s, who was opening
a new research direction dedicated to scheduling on volatile resources. This post-doc
experience allowed me to develop the experimental framework required for the observa-
tion and characterization of Desktop Grid resources and the conceptual framework to
understand the impact of node volatility on the performance of application execution.
Up to now, I’m still relying heavily on this heritage whenever simulations or analytical
evaluation of system performances are required.

1.1.2 . . . to Data-Intense Processing on Hybrid Distributed Infrastructures

In the meanwhile of our research around Desktop Grid, the technologies for Parallel and
Distributed Computing have strongly evolved. One remarkable evolution was the shift
from High Throughput Computing (HTC), a computing paradigm that focuses on the
efficient execution of Bag-of-Tasks (BoT) applications, i.e. consisting of a large number
of loosely-coupled tasks to Data-Intensive Computing, i.e parallel applications which
use a data parallel approach to process large volumes of data. If Desktop Grids have
been proved extremely efficient systems for HTC, concerning Data-Intensive Computing,
everything had to start from scratch.

In order to broaden the use of Desktop Grids, I examined several challenging appli-
cations (e.g. data-intensive bag-of-tasks application, long running applications which
requires checkpointing, workflow application with tasks dependencies, MapReduce-like
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Chapter 1 Introduction

flow of execution, and more) and came to the conclusion that these applications have very
strong needs in terms of data management, which where not satisfied by existing Desk-
top Grid technologies. Most Desktop Grid systems rely on a centralized architecture for
indexing and distributing the data, and thus potentially face issues with scalability and
fault tolerance. Moreover, many basic blocks have been developed by researchers in P2P
systems (Distributed Hash Tables, collaborative file distribution, storage over volatile
resources and wide-area network storage), which addresses many challenges relevant to
Data Desktop Grids: scalable and resilient data indexing, efficient data distribution, etc.
Thus, the challenge was to re-architecture classical Desktop grid systems so that it can
integrate some aspects of P2P technologies, while keeping the same level of performance,
security and manageability than those allowed by a centralized design.

The second evolution that happened during this past decade was the consolidation and
wide availability of Distributing Computing Infrastructures (DCI), in particular Grid
and Cloud Computing infrastructures. In the U.S and in Europe, pushed by a strong
effort towards standardization and by significant support from international institutions,
several Grid infrastructures have been established as the main computing facilities to
support e-Science communities. The European Grid Infrastructure is an example of a
large computing infrastructure established to support High Energy Physics. Following
Grid Computing, the advent of Cloud Computing has made DCI available to a larger
audience, including private companies and smaller scientific communities. The result
is that scientific users now have at their disposal several kinds of DCIs, that can be
used simultaneously; we call this assemblage of Grids, Clouds and Desktop Grids an
Hybrid Distributed Computing Infrastructures. Because infrastructures are characterized
by different attributes such as price, performance, trust, greenness, combining these
infrastructures in such a way that meets users’ and applications’ requirements raises
significant scheduling challenges.

Thus, I have identified three main bottlenecks that prevented Desktop Grid to be
first class citizen amongst the existing technologies to build Distributed Computing
Infrastructures:

• Lacks of tools and methodological concepts to deeply understand the characteris-
tics and performances of Desktop Grid platforms. The first challenge is to design
observation and characterization methods for real-world Desktop Grids in terms of
computing capabilities, reliability, resources volatility and trust. The second chal-
lenge is to establish experimental platforms that allow experiment reproducibility
either using real execution platform or by accurately re-creating an execution by
simulation or emulation.

• Desktop Grid systems should be as usable as regular Distributed Computing Infras-
tructure. The first challenge is to integrate Desktop Grid systems in the e-science
infrastructure and solve the interoperability issues between Desktop Grids and
other DCIs. In particular, this includes implementing the same standards than
Grid computing, with respect to job submissions, security, user authentication,
resources monitoring and so forth. The second challenge is that user experience
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should be similar when using Desktop Grid, Cloud or Grid infrastructures. This
implies to provide advanced features to Desktop Grid middleware, such as the
support for virtualization technologies to improve the portability of scientific ap-
plications, and an improved QoS so that a probabilistic guaranty for the user is
given on application completion time. The last challenge is to re-factor applications
so that they can be executed on hybrid infrastructures, to mitigate the drawbacks
of some infrastructures and enjoy the benefits of others.

• Support for Data-intensive applications is the third bottleneck that prevents Desk-
top Grid systems for being adopted in a large number of scientific disciplines. This
requires that a data management system is able to efficiently execute the main
data operations: storage ensuring data availability, security and privacy, efficient
distribution of large files to high number of nodes, collective file communication
following patterns such as broadcast or gather/scatter and smart user-driven data
placement. In addition, an execution environment should be provided as well for
programming languages dedicated to data intensive computing, such as MapRe-
duce for example.

1.2 Contributions

The three challenges mentioned in the above sections have been developed into cor-
responding research directions. In this Section, I summarize the main contributions
and briefly indicates the organization of the research (support, collaboration, PhD and
postdoc advising) that lead to these results.

1.2.1 Research Achievements

• The first research direction aims at providing a solid background for the evaluation
of our research by providing new platforms and methodologies for characterizing
and experimenting with Desktop Grids.

Although we know that Desktop Grids resources are heterogeneous and volatile,
new methods are required to precisely observe and characterize the computing
resources in existing and deployed Desktop Grid systems. I have implemented
such methods in two different deployment contexts: local enterprise and campus
Desktop Grids system (joint work with H. Casanova and D. Kondo at UCSD), and
Internet volunteer system, in collaborations with D. Anderson (SETI@Home, UC.
Berkeley). Furthermore, activity traces collected during these experiments have
been made available to the research community in distributed system through the
Desktop Grid Trace Archive, and later through the Failure Trace Archive [4].

The second main contribution of this research direction addresses the challenge
to conduct experiments in controlled and reproducible experimental conditions as
close as possible to the reality of an actual Internet-wide deployment. In 2006, I
started and lead the project DSLLAB, funded by the French Research Agency, in
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partnership with the INRIA MESCAL team in Grenoble, which allowed to design
and deploy an innovative platform dedicated to perform experiments on nodes
distributed on the broadband DSL Internet.

The main contributors to this research direction are:

– The Ph.D. work thesis of Paul Malécot (co-advised with Franck Cappello, FP6
Grid4all funding, 2006-2010) has been at the center of the DSLLAb project.
Paul’s contributions are in the design and development of the DSLLAB and
the XtremLab platforms.

– With Derrick Kondo, (post-doc, 2006-2007, ANR JCJC DSLLAB funding)
we worked on the XtremLab project on characterizing and evaluating Desk-
top Grid and investigated new algorithms for resource management, error
detection and recovery.

• The second research direction aims at the integration of Desktop Grids within
regular and existing e-Science Cyber-infrastructures with the aim of providing ad-
ditional computing capabilities at a reduced cost.

In 2007, I joined an European collaboration involving several academic partners
and strongly supported by several European FP7 grants. In particular, I took
work package leadership in two FP7 projects: EDGeS (Enabling Desktop Grid e-
Science) and EDGI (European Desktop Grid Initiative), which was aiming at set-up
the first computing infrastructures based on Desktop Grid technologies that could
transparently be used by regular users of the European Grid Infrastructure (EGI).

The contributions in this research axis are both algorithms and software in the
field of security, support for virtualization technologies, quality of service, as well
as several scheduling heuristics. Eventually, I started the CloudPower project,
funded by the French ANR, to study the possibility to transfer our research results
and technologies to create a new innovative start-up company that would offer low-
cost, scalable and secure HPC-on demand service for innovative small businesses.

– Haiwu He, (post-doc, 2007-2009, FP7 EDGeS funding) has contributed to
the bridge technologies that allow jobs workload to flow between Grid and
Desktop Grid infrastructures.

– Simon Delamare ’s (post-doc, 2011-2012, FP7 EDI funding) main contribution
is SpeQuloS, a QoS service which provides to the application executed on
EDGI a prediction of their execution time and a probabilistic guaranty that
they’ll meet the expected completion time.

• The third research direction concerns the support for Data-intensive science in
hybrid distributed computing infrastructure.

We first designed and developed the BitDew software, which allows large scale
data management on hybrid infrastructures. Besides, I joined the ANR project
Clouds@Home and lead the ADT INRIA to support the development of BitDew.

14
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More recently, in collaboration with Matei Ripeanu (UCB, Vancouver, Canada),
we started Active Data, a project around data life cyle management.

The second contribution addresses the execution of data intensive applications on
hybrid DCI. This research direction started when we were looking at the feasabil-
ity of executing data-intense applications on Desktop Grid using P2P protocols.
Based on BitDew, and in collaboration with Huazong University of Science and
Technology (Wuhan, China) and the University of Babes-Bolaj (Cluj, Romania),
we explored several research directions around the challenge of executing MapRe-
duce [5] to allow data-centric computing on hybrid infrastructures: middleware
design, scheduling, security, performance evaluation. Part of this work has been
achieved thanks to the ANR MaReduce project.

– Baohua Wei (PhD co-advised with F. Cappello, 2004-2005, Chinese corporate
funding) started his PhD thesis on Data Desktop Grid, until he resigned
prematurely for personal reason.

– Bing Tang (Postdoc, 2011-2012, ANR Clouds@home funding) is a key con-
tributor of BitDew and research around storage and MapReduce runtime
environment for hybrid infrastructure.

– Anthony Simonet’s PhD thesis main proposition (PhD, 2011-2015, ANR MapRe-
duce funding) is Active Data, a programming model that allows to expose and
manage data life cycle when the data sets are handled by heterogeneous sys-
tems and infrastructures.

Table 1.1 summarizes the involvement of students, postdocs and research engineers
(F. Bérenger, J. Saray, and S. Bernard):

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Phd Students

Baoha Wei
Paul Malécot
Anthony Simonet

PostDocs & Research Engineers

Derrick Kondo
Haiwu He
Francois Bérenger
Simon Delamare
Bing Tang
José Saray
Sylvain Bernard

Table 1.1: Mentoring and advising
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Chapter 1 Introduction

1.2.2 Experimentation and Development of Software and Toolkits

The methodology to explore and validate our approaches relies extensively on experi-
ments (either in a controlled environment or using real world infrastructures), sometimes
on simulations, and marginaly on analytical analysis. The difficulty to address the ex-
perimental evaluation of such environments leads us to develop a variety of original
solutions, ranging from dedicated experimental platform (e.g DSLLAb) to complex em-
ulation framework on Grid5000, the French experimental Grid [6].

To meet our research objectives, validate our approaches and perform large experi-
ments, we have developed and contributed to the development of several software toolk-
its:

• XtremWeb-HEP is the result of technology transfer from the original XtremWeb
code to the French Institute for Research in High Energy Physics (CNRS/IN2P3).
Since 2002, Oleg Lodygensky leads the development of XtremWeb-HEP, with the
objective of achieving a production and integration in the EGI Grid infrastructure,
for which IN2P3 is one of the main actor. We continuously and closely cooperated
not only on software development, but also to prototype new ideas, to validate
innovative approaches developed at INRIA, and get feedback from real world use
case, eventually leading to open new research directions. This collaboration al-
lowed to address a very large range of scientific applications coming from physics,
mathematics, finance, biology, and even multi-media.

• BitDew is the project umbrella under which several software and experiments
have been developed to address the issues of data management and distribution
for hybrid distributed infrastructures. BitDew is a subsystem, composed of a set of
services, that offers programmers (or an automated agent that works on behalf of
the user) a simple API for creating, accessing, storing and moving data with ease,
even on highly dynamic and volatile environments. We started the development of
BitDew in 2005. Since then, it has been used as a substrate by several PhD students
and postdocs to conduct research on data-intensive computing: storage over hybrid
infrastructures, MapReduce for Desktop Grid, data life cycle management (Active
Data) and more.

1.3 Summary of the Document

The document is organized as follows.

• The Chapter II presents a State of the Art of Desktop Grid and related Distributed
Computing Infrastructure technologies. An historical evolution of the technologies
is done that covers the topics of resource management, scheduling algorithms,
security principle, data management, software, standardization. The Chapter II
positions our work with respect to related works and emerging challenges.
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1.3 Summary of the Document

• The Chapter III presents our methodology for studying Desktop Grid Computing.
The chapter covers our effort to observe and characterize existing Desktop Grid
infrastructures, including Volunteer Computing Systems. We also report on our
participation to the European Desktop Grid Infrastructure (EDGI), the first inter-
national collaboration aiming at providing a sustainable computing infrastructure
based on Desktop Grid technologies.

• Chapter IV presents the algorithms and middleware we have developed to improve
Desktop Grid in the context of Hybrid Distributed Computing Infrastructures.
This chapter covers important areas such as security, virtualization, result check-
ing, scheduling and Quality of Service.

• Chapter V focuses on Data Intense Computing on Desktop Grids and Hybrid In-
frastructures. We’ll describe the BitDew project as well as the associated develop-
ments: MapReduce on Desktop Grids, hybrid storage involving Desktop resources
and Cloud storage, and Active Data, a programming model to program applica-
tions based on data life cycle across heterogeneous systems and infrastructures.

• Chapter VI presents conclusion and perspectives for this Habilitation thesis.

17





Chapter 2

Evolution of Desktop Grid Computing

We described a computational model based upon the classic
science-fiction film, The Blob: a program that started out running
in one machine, but as its appetite for computing cycles grew, it
could reach out, find unused machines, and grow to encompass
those resources. In the middle of the night, such a program could
mobilize hundreds of machines in one building; in the morning, as
users reclaimed their machines, the “blob” would have to retreat in
an orderly manner, gathering up the intermediate results of its
computation. (This affinity for night-time exploration led one
researcher to describe these as “vampire programs.”)

(John F. Shoch and Jon A. Hupp, 1982)

In this Chapter, we introduce the principles of Desktop Grid Computing, the main
software realizations implementing this paradigm, and the characteristics of the infras-
tructures based on these systems. Over the last two decades cyber-infrastructures have
lived many revolutions such as the elaboration of Grid production infrastructures and
more recently the emergence of Cloud Computing. This Chapter positions our contribu-
tions with regard to these developments and outlines the singularities of our approach.
We argue for a better integration of Desktop Grid infrastructures in eScience and we
report on the requirements and challenges in terms of algorithms and technologies to
meet this objective. We identify data management as being one of the key issues for
Desktop Grid Computing and propose a new vision to tackle this difficult task. Finally
we emphasize on the methodological challenge of conducting research in this field and ar-
gue for tools that not only improve the comprehension of existing systems but also allow
experimentation on conditions close to the reality. Overall, this chapter aims at giving
the reader a comprehension of the field before each of the points of our contribution are
further detailed in the following chapters.
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Chapter 2 Evolution of Desktop Grid Computing

2.1 A Brief History of Desktop Grid and Volunteer Computing

2.1.1 Definition

The most widely accepted definition of Desktop Grid Computing is the principle of
using a network of Desktop PCs when they are idle to execute very large distributed
applications.

Taking this definition as a starting point, we can further develop the concept, depend-
ing on whether one considers the perspective of the infrastructure or the technology.

• If one takes the point of view of the infrastructure, then there is a set of PCs,
distributed over the Internet or several local networks, that cooperate to run large
applications. Of course this set of computing resources have their own character-
istics, which are very different than computing resources involved in traditional
DCIs. Without characterizing these resources extensively, one simply notes that
they are numerous, prone to frequent failures, with low communication perfor-
mance and with a low level of trust.

• The second aspect of the concept is the set of technologies which allows this kind
of distributed infrastructure to run parallel applications. Those technologies en-
compass software, service and algorithms which implement scheduling, security,
failure resilience, data management, programming model, and more.

Obviously, in parallel computing, architecture, runtime environments, and languages
are strongly linked. Historically, emerging classes of parallel architectures have steered
the development of parallel programming paradigms able to exploit the hardware effi-
ciently. As an example, one could remember the development of vector supercomputers,
such as Cray and Fujitsu, and the emergence of associated parallel data programming
models. In the late 90’s, our research team was involved in designing and assembling one
of the first French cluster of multi-processors interconnected with a Myrinet Network,
at the time where the idea of using off-the shelf components to build supercomputer was
almost considered as a silly idea. Once the prototype built, the first challenge was to ex-
tend the message passing communication library to take advantage of the dual-processors
motherboards. Interestingly, this first prototype and experience have opened many re-
searches around hybrid message passing and shared memory programming model. In
contrast, when doing our research about Desktop Grid, we had to follow a different de-
velopment cycle [7, 8, 9]. We first designed and solved the runtime issues before building
the infrastructure by deploying the software prototypes on the Desktop machines. Later,
we were able to study the infrastructures, in particular by characterizing the computing
resources, which in turn influenced the design of many Desktop Grid components such
as the scheduler, or the result certification mechanism.

In the remaining of this manuscript, we name Desktop Grids both the infrastruc-
tures and the technologies, and we study this items independently going back and forth
between this two notions.
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2.1.2 The Origins

Computer enthusiasts often like to think that any outstanding innovation must, some-
how, be born in the Xerox Palo Alto Research Center. It turns out that the very first
paper, published in 1982, discussing a system similar to Desktop Grid comes from the
PARC, which also confirms this cosmogonic belief. In [10], authors introduce the idea
of Blob computing and Worm programs, whose principle is given in the chapter dictum.
The paper presents several key ideas for distributing a computation over a network of
computers: Self replication, migration, distributed coordination, etc.

But what has actually driven the development of Desktop Grids, came from the associ-
ation of several key concepts: 1) cycle stealing; 2) computing over several administrative
domains; and 3) the Master-Worker computing paradigm.

Desktop Grids inherit the principle of aggregating inexpensive, often already in place,
resources, from past research in cycle stealing. Roughly speaking, cycle stealing consists
in using the CPU’s cycles of other computers. This concepts is particularly relevant when
the target computers are idle. Mutka and al. demonstrated in 1987 that the CPU’s of
workstations are mostly unused [11], opening the opportunity for high demanding users
to scavenge these cycles for their applications. Due to its high attractiveness, cycle
stealing has been studied in many research projects like Condor [12], Glunix [13] and
Mosix [14], to cite a few. In addition to the development of these computing environ-
ments, a lot of research has focused on theoretical aspects of cycle stealing [15].

Early cycle stealing systems where bounded to the limits of a single administrative
domain. To harness more resources, techniques were proposed to cross the boundaries
of administrative domains. In the early 90’s, the WWW has become increasingly pop-
ular. Beside the publication usage, the idea of using the Web as a technology to build
distributed computing systems became a reality by designing client/server application
using HTTP technologies. A first approach was proposed by Web Computing projects,
such as Javelin [16]. These projects have emerged with Java, taking benefit of the virtual
machine properties: high portability across heterogeneous hardware and OS, large dif-
fusion of virtual machine in Web browsers and a strong security model associated with
bytecode execution. At the end of the 90’s these projects have proved that DG was a
successful proof of concept. They have paved the way for several research works in the
fields of programming model, results certification and scheduling.

The Master-Worker paradigm is the third enabling concept of Desktop Grids. The
concept of Master-Worker programming is quite old [17], but its application to large
scale computing over many distributed resources has emerged few years before 2000 [18].
The Master-Worker programming approach essentially allows for the implementation of
non trivial (bag of tasks) parallel applications on loosely coupled computing resources.
Because it can be combined with simple fault detection and tolerance mechanisms, it
fits extremely well with the Desktop Grid platforms that are very dynamic by essence.
The combination of web technologies with the Master/Worker programing model has
enabled the first generation of Desktop Grid systems.

The Great Internet Mersenne Prime Search (GIMPS) [19] is one of the oldest compu-
tation using resources provided by volunteer Desktop Grid users. It started in 1996 and

21



Chapter 2 Evolution of Desktop Grid Computing

is still running. The 45th known Mersenne prime has been found in August 2008. Since
1997, Distributed.net [20] tries to solve cryptographic challenges. RC5 and several DES
challenges have been solved. The first version of SETI@Home [21] has been released in
may 1999. SETI is an acronym for the Search for Extra-Terrestrial Intelligence, whose
purpose is to analyze radio signals collected from the Arecibo radio telescope. The
data is digitized, stored, and split in work-units both by time (107s long) and frequency
(10KHz) to search for any signals, that is, variations which cannot be ascribed to noise,
and contain information. The crux of SETI@home is to have work-units distributed
to a large base of home computers, so that data analysis is massively distributed. At
the moment, projects such as SETI@Home have formed among the largest distributed
systems in the world, involving millions of volunteers to reach huge computational power
at the fraction of the cost of a traditional supercomputer.

However, this success has been obtained at the price of simplification as they were built
around a single application and only the project administrator could use the computing
power provided by the whole Desktop Grids.

2.1.3 Influence and Impact of P2P Computing

In the second half of the 90’s, a new approach, called peer-to-peer (P2P) has revolution-
ized the design of distributed systems [22]. By contrast with the traditional Client/Server
architecture, P2P systems can be summarized by three guidelines: i) the organization
and the coordination of the system is totally decentralized avoiding the bottleneck and
the single point of failure of the server; ii) the system relies on nodes which are located
at the edge of the Internet instead of relying on servers, which are usually located on
the Internet backbone; and iii) any nodes in the system can play at the same time the
role of client and server. Driven by the objective of providing more scalable and reliable
distributed systems, the literature has seen a flowering of papers proposing distributed
indexing structures, such as Distributed Hash Tables (DHT). To name a few of the most
successful propositions, we can cite Chord [23], Pastry [24], or Tapestry [25]. In parallel
with these research works, many end-user applications, mainly dedicated to file-sharing
have seen an increasing popularity. The principle was that all participants of the system
were both able to propose a list of multi-media files to download, and to download the
files from the other participants. These applications have shown that it was possible
to build actual systems relying on P2P principles and those systems where able to im-
plement scalable databases containing multi-billion content documents and to distribute
very large files to large number of nodes [26]. In the beginning of the 2000’s, soon after
being made available to the Internet users, these systems where already consuming a
significant fraction of the Internet bandwidth.

Strongly influenced by the P2P vision, Desktop Grid computing has followed a similar
evolution. Indeed, the P2P systems have outlined the lack of genericity of the early
distributed application, mainly built around a single application. Making Desktop Grid
Systems more generic is one of the fundamental motivations of the second generation
of Global Computing systems like BOINC [27] and XtremWeb [28]. These systems are
designed so that various applications can be integrated, and several users or projects
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can share the aggregated resources. The consequence is the establishment of a general
architecture for Desktop Grid computing, which can be described as three components:
the client that submits computing requests, the worker that accepts requests, performs
the computation and returns the results, and the coordinator that schedules the client
requests to the workers. Thus, depending on how the clients/workers/coordinators net-
work is organized, one can build very different types of infrastructures.

2.1.4 Taxonomy of Desktop Grid Systems

Worker

Client

Server

a) b) c)

d) e)

Server/Client

Workers

Server

Workers & Clients

Project AProject B

Workers

Peers Clients, Workers
& Servers

Figure 2.1: Different architectures of Desktop Grid project: a/ Distributed Application,
b/ Global Desktop Grid, c/ Volunteer Computing, d/ Collaborative Desktop
Grid, e/ P2P Desktop Grid

Desktop Grid systems can be classified according to their deployments and resource
organization as shown in Figure 2.1:

Distributed Application (Fig. 2.1-a), corresponds to the early 90’s first generation of
Desktop Grid systems, including Web computing projects such as Jet [29], Charlotte [30],
Javelin [16], Bayanihan [18], SuperWeb [31], ParaWeb [32] and PopCorn [33].

Internet Desktop Grid Fig. 2.1-b) and Volunteer Desktop Grid 2.1-c) correspond
to the second generation of Desktop Grid systems; sometimes referenced as Enterprise
Desktop Grids when the deployment consists of Desktop computers hosted within a
corporation or University belonging to the same administrative domain. The Con-
dor [12] system is a pioneering work in this domain, whereas several companies such
as Entropia [34], United Devices, or Platform, have specifically designed products to
implement this paradigm.

XtremWeb is an open source research project originally developed by the LRI and LAL
(CNRS, Université Paris XI and LAL) that belongs to the class of Internet Desktop Grid
systems [28, 35, 36, 3, 37]. The development started in 1999, and it was primary designed
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in order to explore scientific issues about Desktop Grid, Global Computing and Peer to
Peer distributed systems. Since then, it has been deployed over networks of common
Desktop PCs and regular Grid nodes, providing an efficient and cost effective solution for
a wide range of applicative domains: bioinformatics, molecular synthesis, high energy
physics, numerical analysis and many more. XtremWeb-HEP [38], is the production
version developed in the context of EGI Grid by Oleg Lodygensky and his team in the
Laboratory of the Linear Accelerator (LAL/IN2P3/Université Paris Sud).

The Berkeley Open Infrastructure for Network Computing (BOINC) [27] is the main
platform for Volunteer Computing. More than 900,000 users from nearly all coun-
tries participate with more than 1,300,000 computers, to more than 40 public projects.
BOINC is an asymmetric organization, in the sense that a project is using resources from
many resource volunteers. In addition, volunteers have the possibility to collaborate to
several projects simultaneously. SZTAKI-DG [39] is a set of extension for BOINC to
allow for a seamless and secure integration in Grid environments.

Collaborative Desktop Grids 2.1-d) consists of several Local Desktop Grids which agree
to aggregate their resources for a common goal. The OurGrid project [40] proposes a
mechanism for laboratories to put together their local Desktop Grids. When scientists
need an extra computing power, this setup allows them to access easily their friend
universities resources. In exchange, when their resources are idle, they can be given or
rented to others universities. A similar approach has been proposed by the Condor team
under the term “flocks of condor” [41].

2.2 Algorithms and Technologies Developed to Implement the
Desktop Grid Concept

Over this past decade of development of the Desktop grid concept, an impressive set of
technologies has been developed we are going to overview now.

2.2.1 Job and Resource Management

The functionalities required for job management include job submission, resource discov-
ery, resource selection and binding. With respect to job submission, some systems have
an interface similar to batch systems, mainly because it is well adapted to Bag-of-Tasks
workload.

After a job is submitted to the system, the job management system must identify a
set of available resources. This process is called Resource discovery. The classic method
is via matchmaking [42] where application requirements are paired with compatible re-
source using a ClassAds description of the requirements.

Several distributed approaches to resource discovery have been proposed. The chal-
lenges of building a distributed resource discovery system are the overheads of distribut-
ing queries, guaranteeing that queries can be satisfied, being able to support a range of
application constraints specifed through queries, and being able to handle dynamic loads
on nodes. Several works [43, 44, 45] have investigated how to implemented distributed
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resource discovery using a DHT in the context of a P2P system. In [46], the authors
proposed a rendezvous-node tree (RNT) where load is balanced using random applica-
tion asssignment. The RNT deals with load dynamics by conducting a random-walk
(of limited length) after the mapping. In [47], the authors use a system where infor-
mation is summarized hierarchically, and a bloom filter is used to reduce the overheads
for storage and maintenance. And alternative to the DHT is to use a self-stabilized
tree. In [48], a decentralized resource discovery using a self-stabilized tree have been
proposed. BonjourGrid [49] is an interesting alternative to decentralized index protocols
inspired by P2P network. As the name suggests, BonjourGrid leverages the Zero con-
figuration networking and publish/subscribe protocol. Nodes advertize their role (i.e.,
worker/scheduler/client) using the Bonjour implementation, and the system can deploy
on-the-fly instances of Desktop Grid middleware if it is observed that some roles are
missing.

After a set of suitable resources have been determined, the management system must
then select a subset of the resources and determine how to schedule tasks among the
resources.

2.2.2 Scheduling

The majority of application models in Desktop Grid scheduling have focused on jobs
requiring either high-throughput [50] or low latency [51, 52]. Some works have considered
providing a response in a limited time [53, 54], others have considered guaranting some
level of QoS [55]. These jobs are typically compute-intensive.

The pull nature of work distribution and the random behavior of resources in Desktop
Grids introduce several limitations on scheduling possibilities. First, it makes advance
planning difficult as resources may not be available for task execution at the scheduled
time slot. Second, as task requests are typically handled in a centralized fashion and
a server can handle a maximum of a few hundred connections, the choice of resources
available is always a small subset of the whole. This platform model deviates significantly
from traditional grid scheduling models [56, 57, 58, 1].

There are four complementary strategies for scheduling in desktop grid environments,
namely resource selection, resource prioritization, task replication, and host availability
prediction. In practice, these strategies are often combined in heuristics.

With respect to resource selection, hosts can be prioritized according to various static
or dynamic criteria. Surprisingly, simple criteria such as clock rates has been shown
to be effective with real-world traces [52]. Other studies [59, 50] have used probalistic
techniques based on a host history of unavailability to distinguish more stable hosts from
others.

With respect to resource exclusion, hosts can be excluded using various criteria, such
as slowness (either due to failures, slow clock rates, or other host load), unreliability,
or hosts which return erroneous or faked results. Thus, excluding those hosts from the
entire resource pool can alleviate the performance bottleneck.

With respect to task replication, schedulers often replicate a fixed number of times.
The authors in the studies [59] and [50] investigated the use of probabilistic methods for
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varying the level of replication according to a host’s volatility. When triggered at the end
of the computation, replication can avoid the slowdown resulting from the host taking an
unexpected amount of time to return their results. This strategy is somewhat similar to
the speculative execution that we can find now in MapReduce runtime environments [5].

With respect to host availability prediction, the authors in [60] have shown that sim-
ple prediction methods (in particular a naive bayesian classifier) can allow one to give
guarantees on host availability. In particular, in that study, the authors show how to
predict that N hosts will be available for T time. In [61] classification methods are used
to predict and avoid computing on likely to fail resources.

2.2.3 Volatility Resilience

Because nodes can join and leave the system at any time, Desktop Grid systems have
been designed in such a way that resilience to volatility handles failures as a normal
events whereas, in traditional systems, failures were considered as exceptional events
which require special treatment to restore a correct state of the system.

Volatility detection is usually implemented following two approaches whether the sys-
tem considers host or task failure. The first one, followed by systems such as XtremWeb [28]
and Entropia [34], relies on heartbeats sent from the computing nodes, which periodi-
cally signal their activity to the server. BOINC [27] implements the second approach
and uses job deadlines as a indication of whether the job has permanently failed or not.
Unfortunately few works have investigated alternative failure detectors.

When a failure has been detected, one can resolve the failure in a number of ways.
Task checkpointing is ones means of dealing with task failures since the task state can
be stored periodically either on the local disk or on a remote checkpointing server; in the
event that a failure occurs, the application can be restarted from the last checkpoint. In
combination with checkpointing, process migration can be used to deal with CPU un-
availability or when a “better” host becomes available by moving the process to another
machine.

As a consequence, several distributed checkpointing systems have been designed to
schedule and store the execution snapshots. The authors in [62, 63] develop a dis-
tributed checkpoint system where checkpoints are stored in peers in a P2P fashion using
a DHT, or using a clique. StdChkpt [64] is a checkpoint storage system that gathers
local storage desktops. StdChkpt is specialized in many ways for managing of checkpoint
images: handling of write series for high-speed I/O, support for data reliability as well as
versioning, incremental checkpointing, and lifetime management of checkpoint images.
[65] proposes to cluster nodes in a hierarchical topology and uses replication to improve
checkpoint images reliability and performance when getting checkpoint images. An idea
proposed in [66] is to compute a signature of checkpoint images and use signature com-
parison to eliminate diverging execution. Thus, indexing data with their checksum as
commonly done by DHT and P2P software permits a tolerance to basic sabotage even
without having to retrieve the data.

Another approach for masking failures is replication. The authors in [67, 59, 50] use
probabilistic models to analyze various replication issues. The question of failure is even
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more important when executing parallel applications, as a single node failure may slow
down the whole parallel execution. Several works have investigated these issues with
various platform models and tightly-coupled or loosely coupled applications. [67] and
[68] examine analytically the costs of executing task parallel applications in desktop
grid environments. In this context, understanding and modeling the availability of a
collective group of resources is of great importance [69]. This research axis is still a hot
topic in the community.

2.2.4 Data Management

Although Desktop Grids have initially been built for high throughput computing, since
the middle of the 2000’s, a large research effort has been done to support data-intensive
applications in this context of massively distributed, volatile, heterogeneous, and network-
limited resources. Data-intensive applications require secure and coordinated accesses
to large datasets, wide-area transfers, and broad distribution of TeraBytes of data while
keeping track of multiple data replicas.

Most Desktop Grid systems, like BOINC, XtremWeb, Condor, and OurGrid rely on
a centralized architecture for indexing and distributing the data, and thus potentially
face scalability and fault tolerance issues. However, researches around DHTs [23, 70, 24],
collaborative data distribution [26, 71, 72], storage over volatile resources [73, 74, 75], and
wide-area network storage [76, 77] offer various tools that can be leveraged to circumvent
entirely or partly this bottleneck.

Parameter-sweep applications composed of a large set of independent tasks sharing
large amounts of data are the first class of applications which has driven a lot of efforts
in the area of data distribution. In the initial works exploring this idea [78], we have
shown that using a collaborative data distribution protocol such as BitTorrent over FTP
can improve the execution time of parameter-sweep applications. In contrast, it has also
been observed that the BitTorrent protocol suffers a higher overhead compared to FTP
when transferring small files. Thus, one must be allowed to select the correct distribution
protocol according to the size of the files and the level of “sharability” of data among the
task inputs. Later, similar studies have been conducted with the BOINC middleware
and led to similar conclusions [79, 80, 81, 82, 83]. If the P2P approach seems efficient
to distribute large data, it assumes that volunteers would agree that their PC connects
directly to another participant’s machine to exchange data. Unfortunately, this could
be seen as a potential security issue and is unlikely to be widely accepted by users. This
drawback has so far prevented adoption of P2P protocols by major volunteer computing
projects.

The alternative approach to Bittorrent is to use a content delivery approach where files
are distributed by a secure network of well-known and authenticated volunteers [84, 85].
This approach is followed by the ADICS project [86] (Peer-to-Peer Arhictecture for Data-
Intensive Cycle Sharing). Instead of retrieving files from a centralized server, workers
get their input data from a network of identified cache peers organized in a P2P ring.

Large data movement across wide-area networks can be costly in terms of performance
because bandwidth across the Internet is often limited, variable and unpredictable.
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Caching data on the local storage of the Desktop PC [87, 88, 75] with adequate schedul-
ing strategies [89, 78] to minimize data transfers can thus improve overall application
execution performance.

2.2.5 Security Model

A key point is the asymmetry of Volunteer Computing security model: there are few
projects well identified and which belong to established institutions (by example, Uni-
versity of Berkeley for the SETI@Home project) while volunteers are numerous and
anonymous. The notion of users exists in BOINC. It allows users to participate to fo-
rum and receive credits according to the computing time and power given to the project.
The security mechanism used to authenticate the project and its applications is simple
and based on asymmetric cryptography. If volunteers trust the projects, the reverse is
not true. To protect against malicious users, result certification mechanism [90] is needed
to ensure that results are not tampered by malicious users. Result certification has been
subject of many researches that have investigated several combination of strategies such
as black-listing, replication, vote or probabilistic spotting [91, 92, 93, 94, 95, 96, 97, 98].
More recently, these works have addressed the issues of nodes that would cooperate to
launch attacks [99, 54, 100].

The second aspect of security is the protection of the computing resources which
must be insured in the case where any user has the possibility to submit his/her own
applications and input data. This protection is known as sandboxing. It consists either in
confining the execution the program, so that attempts to corrupt the host system can be
detected and corrective actions can be taken to stop, isolate, or modify the execution, so
that attacks would be directed to a system different than the host system. If early works
have relied on specific solutions, such as kernel security extensions [3], this technique has
become implementable since the development of Virtual Machine (VM) technologies,
which are widely available both in the server market (XEN) and the Desktop market
(VMWare, Virtual Box). VMs offer many desirable features such as security, ease of
management, OS customization, performance isolation, checkpointing, and migration to
improve security and deployability.

There are several ongoing works that aim at bringing virtualization technologies to
Desktop Grid. Daniel L.G et al. [101] present a method to run legacy applications on
BOINC using the standard BOINC Wrapper and a special starter application to set
up the environment for the application. The capability of VMs to save and resume
their state image is used to provide a checkpoint/restart mechanism. LHC@Home [102]
chooses to use virtualization to increase the portability of the Atlas [103] physics appli-
cation. Atlas requires the Athena framework which is around 8GB and it is closely tied
to a specific Linux distribution. LHC@Home provides VMware images with Linux and
the whole software stack needed to run Atlas plus a BOINC client executed within the
virtual machine.
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2.3 Evolution of the Distributed Computing Infrastructures
Landscape

The landscape of distributed computing has known several radical evolutions during the
past two decades, in particular with the rise of Grid and Cloud systems [1, 104]. Some-
how, Grid, Cloud, and Desktop Grid systems share the same concept of using on-demand
remote computing facility. They ultimately aim at allowing for a ”flexible, secure, co-
ordinated resource sharing among dynamic collections of individuals, institutions, and
resources” [105]. However, at the beginning of their existence, Desktop Grid systems
and in particular Volunteer Computing systems were adopting rather radical princi-
ples that were far from other Grid or Cloud systems, which has made them to evolve
autonomously. In this Section, we situate Desktop Grid Computing in the context of
the recent evolution of Distributed Computing Infrastructures and while explaining the
differences and contrasts, we give reasons and trends of their convergence.

2.3.1 From Grid Computing. . .

The history of Grid Computing starts with the availability of wide-area high speed net-
works, which has allowed to integrate computing resources from different sites. Meta-
computing was the name given to the computing model aiming at running parallel ap-
plications using several super-computers. Amongst the first experiments, I-Way [106]
was the first large project to establish the model and gave a basis for both the main
concepts and problematics as well as a the middleware and infrastructure foundation.

Grid Computing has since then been developed following four directions: infrastruc-
ture, virtual organizations, software, and standards.

One key scientific communities which has pushed forwards Grid Computing is the
High Energy Physics and in particular the international collaboration around the Large
Hadron Collider (LHC). The LHC experiments were anticipated to generate yearly
petabytes of data, and only a large worldwide infrastructure, federating storage and
computing resources from hundreds of sites would be adequate to allow thousands of
scientists to collectively analyze these data sets. This has lead to the creation of the
Data Grid [107] project in Europe, and the Grid Physics Network [108] in the US, which
later continued their existence as the Enabling Grids for E-sciencE (EGEE), followed
by the European Grid Infrastructure (EGI) and the Open Science Grid, and the LHC
Computing Grid (LCG) [109]. Similar infrastructures, but geared towards different sci-
entific communities or built on top of different regional collaborations, have continuously
spread worldwide. One can cite for example: ChinaGrid [110] in China, NorduGrid [111]
in the northern european countries, TeraGrid [112] in the US, EEULA in South America,
Naregi [113] in Japan to name a few of them. Some of these infrastructures have been
set up to coordinate access to high-end supercomputers, such as Deisa [114] while others,
such as Grid5000 [6] and FutureGrid [115] have been designed to explore, develop and
study very large distributed systems.

Alongside with infrastructures, virtual organization (VO) has been the cornerstone
concept to drive the organization of the Grids. The term VO denotes a set of individuals
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or institutions that agrees to federate their resources and on a set of rules that define
“clearly and carefully just what is shared, who is allowed to share, and the conditions
under which sharing occurs” [105].

Supporting these large and distributed infrastructures and VOs has required complex
software stacks to enable resource management, running application across multiple
sites, users authentication and authorization, resource access logging and bookkeeping,
organizing data movement, storage and replication, . . . The Globus Toolkit [116], is a
popular collection of software components, which have been enhanced and extended
by several other Grid toolkits such as ARC [117] or gLite [118]. In these toolkits,
security is usually achieved through X.509 proxy certificates [119] and VO manager
VOMS [120], GridFTP [121] implements high performance data management service,
and job submission and management relies on GRAM [116] or CREAM [122]. In contrast
with Grid toolkits, Unicore [123], XtreemOS[124] and DIET [125] are integrated Grid
middleware.

It is eventually the need for interoperability between Grid middleware that has pushed
for a global standardization process. The Global Grid Forum, and later the Open Grid
Forum, have been established to foster cooperation and agreement on document defining
the standards. The most noticeable results have been the definition of X.509 certificates
that underpins the Grid Security Infrastructure [126], the job description languages (JDL
and JSDL [127]), the Basic Execution Service (BES) [128] and the DRMAA [129] speci-
fication for resource management. Eventually, this standardization effort has facilitated
interoperability between software by the emergence of portable multi-software toolkits,
such as CoG [130] or SAGA [131] and Grid applications portals such as P-Grade [132]
or GridPort [133].

2.3.2 . . . To Cloud Computing

Recently, with the emergence of Cloud computing platform, a new vision of distributed
computing infrastructures has appeared where the complexity of an IT infrastructure
is completely hidden from its users. Cloud Computing provides access through web
services to commercial high-performance computing and storage infrastructure (IaaS
– Infrastructure-as-a-Service), distributed services architecture (PaaS – Platform-as-a-
Service) or even application and software (SaaS – Software-as-a-Service). This vision
is achieved through the extensive use of virtualization technologies which allow users
to deploy and manage virtual images of their computing environment directly on the
Cloud.

A Cloud computing platform can dynamically configure, reconfigure, purvey, and de-
prive computing resources. The interfaces to access resources, provided by Amazon Web
Services have emerged as the de facto standards and most IaaS vendors sells compat-
ible platforms. Eucalyptus [134], OpenStack [135], and OpenNebula [136] are Cloud
computing software based on web services.

The economical model asssociated with Cloud Computing makes this approach com-
petitive for scientific communities compared with traditional Grid computing. Compute
resource consumers can eliminate the expense inherent in acquiring, managing, and op-
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erating IT infrastructure and instead lease resources on a pay-as-you-go basis. Some
studies also compared Clouds and Desktop Grids, and also conclude to the attractive-
ness of Cloud for small scale projects [137]. In [138], authors investigate the viability of
using Amazon S3 storage service for science.

As a consequence, Cloud Computing becomes more and more attractive, which push
forwards the design of a Cloud framework dedicated to scientific usages. The Nim-
bus [139] Cloud computing platform is an early representative of such trends. Following
a complementary approach, StratusLab [140] is a project of a distributed Cloud for sci-
entific simulations which can be used by the Grid communities. ElasticSite [141] is a
project which enables to supplement Globus infrastructures with EC2 Cloud resources to
meet user peak demands. They investigate several strategies to decide when to provision
such additional Cloud resources.

Desktop Clouds, or Clouds made of Desktop PCs is a new and on-going research
direction that combines virtualization and Desktop Grid technologies. This consists in
building virtual cluster such as Violin [142], WoW [143] or PVC [144] on top of volunteers
PCs and which could be deeply configured on demand by DG users. The expected benefit
is that a much broader range of applications could run on Desktop Grids. Furthermore
DG users would have the ability to tune the OS of their own VM images and deploy
their prefered set of services (e.g., scheduler, file system, monitoring infrastructure)
along with the application. Desktop Clouds raise many research challenges: deployment
of VM images on DG resources, scheduling heuristics allowing for the reservation of DG
resources, establishment of virtual cluster despite the network protection of firewalls
and NAT, transparent checkpoint/restart of networked VM and, finally replication of
communicating VM to ensure a better reliability.

2.4 Emerging Challenges of Desktop Grid Computing

In the previous section, we have seen how the research efforts have led to substantial
developments and innovations. However, considering actual large scale applications,
one can observe that, in practice, Desktop Grid systems have little diverged from the
original concepts. Although the most popular deployments have strengthened the model,
showing that it was indeed able to provide effective computing infrastructures at a very
competitive cost, the model was still restricted to a limited class of applications, namely
Bag-of-Tasks applications with very few I/Os. More detrimental, none or very few of the
existing Desktop Grid systems that have been largely deployed have been able to engage
a broad base of scientific users, such as the Grid systems have been doing for years. In
this section, we review some the main challenges Desktop Grid have to address before
being a first-class citizen in the e-science infrastructure landscape.

2.4.1 Broadening the Application Scope of Desktop Grids

The first research challenge is to broaden the applicability of Desktop Grid systems to
applications that require more coordination, storage and better quality of service. Figure
2.2 presents a simplified, incomplete, arbitrary, and somewhat naive view of the main
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Figure 2.2: Parallel Applications Complexity Scale

typology of parallel applications. Nevertheless, it will help us to figure out the effort
needed to fulfill our objectives. The gradient view orders parallel application classes
according to their execution requirements and complexity. On the left, we find the Bag-
of-Tasks applications, which constitute a large part of nowadays Grid applications and
the main type of applications supported by Desktop Grid. The more we move to the
right of the Figure, the more applications require stronger coordination, such as control
between a master and its workers, managing dependencies between the tasks, steering
iterative and branch and bound computations or enforcing deadline constraint for soft
real-time applications. Data-intense BoT requires the ability to distribute efficiently
large amounts of data, usually using P2P protocols. On the rightmost part, we find
first MapReduce computations which add collective communications, and storage and
then we find under the term MPI applications, the SPMD applications which rely on the
message passing communication paradigm. All along the past decade, many research ad-
vances, on the front of algorithms (e.g., scheduling, programing model) and middleware
(e.g., data management, communication libraries, QoS services) have allowed to move
the cursor to the right. However, there are still intrinsic limitations. The network ca-
pacity of Desktop Grids is orders of magnitude less efficient than super-computers. The
communication links of broadband Internet are asymmetric and usually do not allow for
direct connections between peers. The result of this gap is that while knowledge has
greatly progressed, we have not seen actual Desktop Grid infrastructures supporting ad-
vanced parallel applications. In my research activities, I focused mainly on two classes of
applications at both ends of the spectrum: (i) Bag-of-tasks applications, because already
highly prevalent, progress in this area will have an immediate impact on the performance
and efficiency of existing infrastructures, and (ii) the MapReduce programming model,
because of the potential it could open to the DG to perform data-intensive applications.

The second factor to greater acceptance of Desktop Grid systems is the ease to pro-
gram and port applications to these infrastructures. Developed in the context of the
European EDeGS/EDGI projects, the EDGeS Application Development Methodology
(EADM [145]), is a framework offering a clear methodology to help the porting of appli-
cations. EADM consists of several stages. The first one is the identification of potential
applications that could benefit from the EDGeS/EDGI infrastructure and consists of
analyzing the candidate applications in terms of type of parallelism and computing
platform used before the platform, data access and volume, licencing, programming lan-
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guage, execution environment, computational load, type of user interface, information
confidentiality and security requirements, etc. The next stages concern application de-
sign and development and ensure that an optimum service is provided to the end-user,
within the existing technical constraints and limitations of the platform. In addition,
the DCI-API [39] is a programming library which helps the programmers to develop
their applications for the EDGI infrastructure by addressing the portability across the
various DG middleware. I always considered that the use of virtual machines can greatly
improve the portability of application [146, 147], and I still conduct several researches
in this area. Flying Grids [148] and GBAC [149] are two frameworks based on virtual-
ization technologies to ease the porting of complex applications to XtremWeb-HEP and
BOINC respectively. The first results with Flying Grid indicate that it is now possible
to run complex applications such as High Energy Physics (HEP) ones on non special-
ized and/or dedicated ressources. First, those HEP applications rely on complex and
software libraries such as Geant41 and ROOT2, and second, may be especially designed
to run on Scientific Linux OS. The capability of deploying and using specific VM such
as the CernVM, allows us to target major HEP applications and software stacks such as
SuperNemo3 and Atlas4.

2.4.2 Integration of Desktop Grid Computing in the Cyber Infrastructure

Desktop Grid technologies are now considered as a viable solution tocomplement regular
Grid infrastructures. For instance, the European Union, through several FP7 projects
(EDGeS, EDGI, DIGISCO) [150], supports a large research and development effort to
make Desktop Grids easily available to the scientific public and in particular through
the EGI community. Several Memorandum of Understanding have been signed between
EDGI, the European Middleware Initiative (EMI), and the European Grid Infrastructure
(EGI) to sustain the development of Desktop Grid technologies and bridge middleware.

Because these DCIs have different characteristics, there are many scenarios which
advocate for hybrid infrastructures which assemble Clouds, Desktop Grids, and Grids
to mitigate the disadvantages of certain aspects of some infrastructure and enjoy the
benefits of others. Actually, it is reasonable to think that such hybrid infratructure
could become a next trend in distributed computing, as an extension of the concept
of Sky Computing, introduced by Keahey et al. in [141] to denote an infrastructure
composed of multiple Clouds.

Desktop Grid middleware plays an “enabler” role in hybrid DCI, because they have
several desired features to manage resources: resilience to node failures, no reconfigu-
ration when new nodes are added to the system, task replication or task rescheduling
in case of node failures, and push/pull protocols that help with deployment issues. Al-
though there are many solutions for BoT execution on cross-infrastructure deployments,
we have found that in several cases, a Desktop Grid middleware is used to schedule tasks

1http://geant4.fnal.gov
2http://root.cern.ch/drupal
3http://nemo.in2p3.fr/supernemo
4http://atlas.web.cern.ch/Atlas/Collaboration
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on the computing resources. For instance, early in the development of XtremWeb, we
have used the prototype to schedule jobs on several Condor pools [151] using a mech-
anism known as PilotJobs. The XtremWeb worker is scheduled as a regular Job on
the Condor pool. Once the XtremWeb worker is executed on the Condor resource, it
retrieves jobs from the server, execute the job and send results to the XtremWeb server.

The first motivation for assembling DCIs is to obtain greater computing power. In
this configuration, Desktop Grids can play a supplementary role for Grid users by of-
fering a vast amount of computing power for a little additional cost. Unsurprisingly,
several projects have created bridge technologies which allow Grid users to use resources
provided by Desktop Grids. GridBot [152] puts together Superlink@Technion, Con-
dor pools, and Grid resources to execute both throughput and fast-turnaround oriented
BoTs. The Desktop Grid middleware used is BOINC augmented with the matchmaking
mechanism of Condor to implement more sophisticated scheduling policies. Following
a similar path, the Latin America EELA-2 Grid has been bridged with the OurGrid
infrastructure [153].

In the scope of the European FP7 projects EDGeS (Enabling Desktop Grids for E-
science) [150] and EDGI (European Desktop Grid Infrastructure), we developed the
bridge technologies to make BOINC [154] and XtremWeb [155] transparently available
to any EGI Grid users as a regular Computing Element. The cornerstone of the EDGeS
and EDGI projects is the 3G bridge software which implements bi-directional jobs trans-
missions between Service Grids and Desktop Grids [156] (see Section 3.4).

Then, at the end of the EDGI project, I was convinced that Desktop Grid middleware
could be an excellent scheduler capable of efficiently using hybrid DCIs at the condition
that specific scheduling heuristics would take into account the differences between the
infrastructures. This is the goal of the Promethee scheduler [157], presented in Section
4.3, which allows for multi-criteria and satisfaction oriented scheduling for hybrid DCIs.

The next scenario, known as Cloud bursting [141], is a mechanism which offload part
of the Grid workload to the Cloud when there is a peak demand. It is noteworthy that
several studies have compared the cost of running large scientific on the Clouds. In [138],
authors investigate the cost and performance of running a Grid workload on Amazon
EC2 Cloud. Similarly, in [137], the authors introduce a cost-benefit analysis to compare
Desktop Grids and Amazon EC2. In [158], authors propose a Pareto efficient strategy
to offload Grid workload, which consists of Bag-of-Tasks application whith deadlines on
the Cloud.

However, because Desktop Grids trade reliability for lower prices, they offer poor
Quality of Service (QoS) with respect to traditional DCIs [159]. Besides Desktop Grid,
other particular usages of an existing infrastructure can also provide unused computing
resources without any guarantee that the computing resources remain available to the
user during the complete application execution. For example, the Grid resource man-
agers such as OAR [160] manage a best effort queue to harvest the idle nodes of a cluster.
Tasks submitted in the best effort queue have the lowest priority. At any moment, a
regular task can steal the node and abort the on-going best effort task. In Cloud com-
puting, Amazon has recently introduced EC2 Spot instances [161] where users can bid
for unused Amazon EC2 instances. If the market Spot price goes under the user’s bid,
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a user gains access to available instances. Conversely when the Spot price exceeds his
bid, the instance is terminated without notice. Similar features exist in other Cloud ser-
vices [162] as well. In Section 4.2, we will present SpeQuloS, a framework which provides
QoS for applications executed on Desktop Grids by offloading a part of the application
execution on reliable resources provided by Clouds.

2.4.3 Data Desktop Grid

Enabling e-Science has been one of the fundamental objective pursued by the computa-
tional science community. This effort aims at allowing large communities of researchers,
which collaboratively extract knowledge and information from huge amounts of scientific
data. This has lead to the emergence of a new class of applications, called data-intensive
applications which require secure and coordinated access to large datasets, wide-area
transfers and broad distribution of TeraBytes of data while keeping track of multiple
data replicas. Despite the attractiveness of Desktop Grid platform, little work has been
done to support data-intensive applications in this context of massively distributed,
volatile, heterogeneous, and network-limited resources. Most Desktop Grid systems (eg.
BOINC, XtremWeb, OurGrid or Condor) rely on a centralized architecture for index-
ing and distributing the data, and thus potentially face issues with scalability and fault
tolerance.

As we have seen in Section 2.2.4, P2P protocols can be efficient at distributing large
data to large number of nodes. Experiments on Grid5000 confirmed that the BitTorrent
was protocol was significantly improving Desktop Grid performances when executing
Data-intensive BoT [79, 163, 164, 165, 78] .

However, at the time of those experiments, the P2P protocols were only able to cope
with a one-to-many file distribution pattern. This limitation convinced me that it was
necessary to dispose of high level abstractions to precisely steer the distribution of data,
which would allow the execution of more advanced parallel computations. After con-
ducting a deep analysis of application requirements in terms of data management, I
proposed the BitDew middleware, presented in Section 5.1. BitDew relies on a set of
services to implement data scheduling, indexing, transfer, and storage.

Innovative in several ways, BitDew promotes the idea of using meta-data (called at-
tributes), so that users can control data distribution, resilience, and life time. Once, the
behavior of a data item has been set, the runtime environment implements the necessary
actions to manage the data accordingly. Using these attributes allows the user to im-
plement complex data management, such as resilient collective file operation that were
infeasible before. In the meantime, several services for storage and data management
appeared that address the issue of data management on multiple infrastructures. For
instance, MetaCDN [166], proposes to unify several Cloud storage providers in a single
namespace and provides smart placement of users’ content based on QoS, coverage, and
budget requirements.

At the same time, the challenge of executing data-intensive applications on Desktop
Grid became a major concern in the community. In particular, the MapReduce program-
ming model [5] started to attract a lot of attention [167, 168, 169, 170, 171]. Supporting
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MapReduce on Desktop Grid [172] would allow to take advantage of storage resources of
volunteer PCs to run application that process very large amounts of data, opening the
way to large and scalable Big Data processing on Desktop Grids.

Leveraging BitDew, we proposed the first implementation of MapReduce for Internet
Desktop Grid computing [173, 174, 175], which relies on a set of optimizations dedicated
to this kind of platforms: overlap of Map and Reduce computations with data trans-
fers, distributed results checking, collective file transfers and more. Moreover this early
research has opened the way to MapReduce on hybrid DCIs [176, 171, 177, 178, 179],
where the long term objective is to take advantage of multiple data storage services, each
of them having different characteristics in terms of reliability, cost, and performance. We
can then design storage strategies which offer the desired level of reliability, durability,
and cost, and the system will coordinate the different services to transparently implement
the policy [180].

2.5 Conclusion

In this Chapter, we have reviewed the evolution of the Desktop Grid concept following
a chronological and thematic order. This encompasses several topics around algorithms
and technologies, such as: scheduling and resource management, fault tolerance, security,
and data management. We have seen that it is a rich area, where many innovations have
influenced all distributed systems.

This Chapter outlined only some of the most interesting aspects of Desktop Grid
Computing. Of course, it would not be possible in this Habilitation thesis to give an
extensive chronology of the domain, neither to cover all the research topics and results. I
would rather invite the reader wishing to deepen their knowledge of the domain to refer
to the book ”Desktop Grid Computing” at CRC Press, co-edited by Christophe Cérin
and myself [2].

High performance and distributed computing is a fast evolving domain, which has rad-
ically changed over the last decade. We also introduced other Distributed Computing
Infrastructures, in particular Grid and Cloud Computing. Detailing out these different
paradigms has allowed us to understand the differences as well as the possible conver-
gences. We observed a remarkable trend, which is the emergence of Hybrid DCI, i.e.,
the assemblage of Grid, Cloud, and Desktop Grid in a single infrastructure.

Several evolutions in DCIs may pose significant challenges to Desktop Grid Comput-
ing. The first challenge is the switch towards data oriented science, and the advent of
data-intensive applications, which requires to re-think Desktop Grid architectures. The
second challenge is the integration of Desktop Grid computing in the e-science cyber-
infrastructures, which requires considerable technological and algorithmic advances.

However, to address these complex issues, one needs a new methodology that allows
to precisely understand the characteristics of Desktop Grid platforms and that allows to
test, develop, and evaluate experimentally our propositions. This is the subject of the
next Chapter.
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Chapter 3

Research Methodologies for Desktop Grid
Computing

The best way to observe a fish is to become a fish

(Jacques Cousteau (1910-1997))

In this Chapter we explore the various methodologies at our disposal to study Desktop
Grid Computing. We start with the observation of existing infrastructures in order to
characterize computing resources. Simulation is a classical way to investigate distributed
systems. We report on several solutions for simulating and emulating a Desktop Grid
on the Grid5000 experimental platform. Then we present the DSL-Lab experimental
platform that will allow us to perform experiments on the DSL broadband Internet using
real software. Finally, the European Desktop Grid Infrastructure (EDGI) is introduced,
which is a unique effort to establish an international computing infrastructures based on
Desktop Grid technologies.

3.1 Observing and Characterizing Desktop Grid Infrastructures

Observing existing Desktop Grid systems has been the primary methodological approach
for characterizing these systems. Although we know that these projects have attained
considerable computing power for high-throughput applications, we still need to under-
stand what would be their potential applicability to more demanding applications in
terms of storage or communication.

3.1.1 Observing a Volunteer Computing platform: SETI@Home

In collaboration with D. Anderson from the University of Berkeley, we have studied
the computing resources provided by the participants to the SETI@home project [181].
SETI@Home database collects a great number of host information, which can either
report about the hardware (e.g. CPU, RAM, used and free storage, host location),

37



Chapter 3 Research Methodologies for Desktop Grid Computing

about the performance (e.g CPU Whestone and Dhrystone benchmarks, average net-
work throughput) and about users’ preferences (preferred applications, resource shar-
ing, period of availability). When we started this research, we knew very few about host
availability characterization. Fortunately, SETI@Home contains several relevant infor-
mation: i) host lifetime is the interval from creation to last communication for hosts
that had not communicated in at least one month, ii) on-fraction is the fraction of real
time during which the BOINC client is running on the host, iii) connected-fraction is the
fraction (of the time that BOINC is running) that a physical network connection exists,
iv) active-fraction corresponds to when the host is allowed to compute and communi-
cate, for instance because no mouse/keyboard activity has been detected, and finally
v) CPU efficiency measures the percentage of CPU load, which has been allocated to
execute a BOINC application. Clearly there are several levels of availability which are
somehow nested: the host has to be turned on, then connected, then active to be able
to join a computation. Combining the various factors, and assuming that the factors
are statistically independent, we have the following expression for the total computing
power X available to a project:

X = Xarrival.Xlife.Xncpus.Xflops.Xeff .Xonfrac.Xactive.Xredundancy.Xshare

Where Xarrival is the average arrival rate of hosts, Xlife is the average lifetime of hosts,
Xncpus is the average number of CPUs per host, Xflops is the average FLOPS per CPU,
Xeff is the average CPU efficiency, Xonfrac is the average on-fraction, Xactive is the
average active-fraction, Xredundancy is the reciprocal of the average redundancy, and
Xshare is the average resource share (relative to other CPU-intensive projects). Although
this work presents several limitations, in particular regarding the modeling of each of this
variable, this was a first step towards understanding the components on which depends
performance of Desktop Grid systems.

3.1.2 Characterizing Host Availability

As we can see from the previously presented formula, one of the key aspect impacting
performance is host availability. In the previous work, we obtained aggregate measure-
ments in time, which did not allow to understand host availability variability during
time. During my postdoctoral stay in San Diego, I collaborated with Derrick Kondo
who proposed a new methodology for availabilities studies [182]. It consists in gathering
traces by submitting measurement tasks to a Desktop Grid system that are perceived
and executed as real tasks. These tasks perform computation and periodically write
their computation rates to file. This method requires that no other Desktop Grid ap-
plication is running, and allows us to measure exactly the compute power that a real,
compute-bound application would be able to exploit. Our measurement technique dif-
fers from previously used methods in that the measurement tasks consume the CPU
cycles as a real application would, thus measuring both host and CPU availability. Also,
this approach captures all the various causes of task failures, including but not limited
to mouse/keyboard activity, operating system and hardware failures, and the resulting
trace reflects the temporal structure of availability intervals caused by these failures.
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Moreover, the method takes into account overhead, limitations, and policies of access-
ing the resources via the Desktop Grid infrastructure. Together, we gathered traces
from four different Enterprise Desktop Grid deployments relying on the Entropia and
XtremWeb systems [183, 184].

3.1.3 The XtremLab Project

Later, following my return to France as a newly appointed INRIA research, I started the
DSLLAB project supported by a ANR Young Researcher Grant. The objectives were
to provide accurate and customized measures of availability, activity and performances
in order to characterize and tune the models of the ADSL resources and to provide a
validation and experimental tool for new protocols, services and simulators and emulators
for these systems. Derrik Kondo and Paul Malécot joined the project respectively as
Postdoc and PhD student, with the task of setting up XtremLab: a volunteer project
based on BOINC in order to obtain traces from an Internet Desktop Grids [185].

The findings of our characterization studies cannot be summarized easily. We consid-
erably increased our knowledge about those platforms by allowing to get new insights
about correlation between tasks failure rates, host and user profile, machine activity and
availability, as well as determining sources of correlated failures. This knowledge in turn,
allowed us to improve scheduling and fault tolerance algorithms in terms of optimal tasks
duration, optimal checkpointing interval during tasks execution, and building improved
performance model that takes into account host availability, resource selection based on
host characteristics and many more.

To highlight one particular result, which received the Best Paper Award at the Eu-
ropar conference in 2007, [185] has been authored in collaboration with Filipe Araujo,
Patricio Domingues and Luis Moura Silva from the University of Coimbra, Portugal.
One critical issue of Desktop Grid is the errors in results, which are almost inevitable
because of the high number of unreliable nodes involved. Errors can stem from different
sources, such as, to give few examples: computational, an error could result from a CPU
miscalculation due to overclocking and overheating; related to failures during applica-
tion input or output (I/O), if a machine crashes when the application is writing to an
output file or checkpoint; or sabotage, if computed by a malicious host. To study error
rates, we analyzed the XtremLab computation results to give quantitative and empirical
characterization of errors stemming from input or output (I/O) failures. We find that in
practice, error rates are widespread across hosts but occur relatively infrequently: about
35% of hosts will commit at least a single error over time and the mean error rate over all
hosts is 0.0022. A large fraction (e.g. about 70%) of errors result from a small fraction
(e.g. 10%) of hosts. Moreover, we find that error rates tend to not be stationary over
time nor correlated between hosts.

In light of these characterization findings, we evaluated and compared the effective-
ness of several error prevention and detection mechanisms namely blacklisting, majority
voting, spot-checking, and credibility-based methods. We concluded that when one
requires a small error rate (less then 2x10−4) and can afford high redundancy, then
majority voting should be considered. For greater error rate then spot-checking with
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blacklisting should be strongly considered, as long as workload can be formed as rela-
tively long batches. Fluctuations in error rates over time may limit the effectiveness of
credibility-based systems.

Beside direct analyze, such traces of Desktop Grid system can be used for a broad
range of studies: feeding trace-driven distributed system simulator, statistical generative
availability model, and predictive model for availability, host clustering according to
collective availability, and more. Thus, those traces could benefit the whole community
and we made them available to the general public through the Desktop Grid Trace
Archive [186]. Later, when Derrick Kondo joined INRIA, he greatly developed this
research direction, in particular by initiating the Failure Trace Archive[4] project.

3.2 Simulating and Emulating Desktop Grid Systems

For researchers in large scale distributed systems, simulation remains one the fundamen-
tal methodological approach. There are several unavoidable reasons which motivate the
development of Desktop Grid simulators. First, it allows to quickly obtain results on the
hypothesis investigated in the simulation. Second, the environment for the experiment is
reproducible and can be fine-tuned, for instance to create special condition correspond-
ing to specific scenarios. In particular, a requirement is to simulate very large platforms
with very large number of nodes. Last, it allows to explore large set of parameters,
which helps to understand the interactions between several mechanisms and determine
the best combination of parameters. In our research, we have never relied solely on
simulations for performance. In contrast, simulations are part of a toolbox, mainly used
in concert with experimentation on real infrastructure, to explore and evaluate/compare
extensively various algorithms (e.g scheduling, result certification) on various scenarios.
For instance, when evaluating our strategies to provide Quality of Service to Desktop
Grids (SpeQuloS is presented in detail in Section 4.2), we developed a simulator which
was able to simulate SpeQulos, two Desktop Grid middleware (XtremWeb and BOINC),
running on three kinds of infrastructures: Amazon EC2 using Spot instances, Grids in
Best effort mode, and Desktop Grids. Our simulation campaign lasted several months,
corresponding to more than 30.000 executions on Grid5000. More recently, in the scope
of the ANR MapReduce project , we developed a simulator for hybrid MapReduce envi-
ronment based on the SimGrid framework [187]. BigHybrid [178] simulates two MapRe-
duce middleware: Hadoop over BlobSeer [188] and MapReduce/BitDew on two different
computing environments Clouds and Desktop Grids and is being validated on Grid5000.

However, although simulation allows to validate easily and rapidly new ideas for algo-
rithms, it is not always sufficient for validating full and complete technological solutions,
in particular when it comes to software, services and infrastructures. Often papers are
published in the literature on Desktop Grid computing without presenting experiments
that reflects the problematics of an Internet-wide deployment. To evaluate distributed
systems, the tool of choice for the French community is the Grid5000 scientific instru-
ment [6], which is an infrastructure dedicated to support experiment-driven research
in all areas of computer science related to parallel, large-scale or distributed comput-
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ing and networking. Physically, it consists of more than 7.000 cores distributed among
about 1.500 nodes located in ten different sites. Grid5000 experimenters benefit from
a controlled environment and reproducible experimental conditions. To experiment on
Grid5000, users configure the complete software stack using virtual operating system
images and deploy these images on each node. Obviously, this is not enough when eval-
uating a Desktop Grid system, because the computing nodes and networks have very
different characteristics. Thus we proposed a new methodological approach aiming at
assessing the feasibility of running a system in a real world Desktop Grid infrastructure.
The experimental protocol consists of ten experiments, all very simple to set-up and run
on Grid5000, which individually test one aspect of a Desktop Grid deployment, and all
together give a good perspective on how a system would behave when deployed in a
real environment. We call these experiments the Desktop Grid checklist because to be
validated, a system has to pass successfully all the tests that address network connec-
tivity (firewall, NAT), node and network failures, sabotage, heterogeneous network and
computing nodes, stragglers and more. We applied this method broadly to fill the gap
between in-house development and real-world deployment. For example, it has been used
in [173] to compare between regular Hadoop and our own implementation of MapReduce
for Desktop Grid when deployed on WAN.

3.3 DSL-Lab: a Platform to Experiment on Domestic
Broadband Internet

Experimental platforms such as PlanetLab [189] and Grid’5000 are promising method-
ological approaches to study distributed systems. However, both platforms focus on
high-end service and network deployments only available on a restricted part of the In-
ternet, leaving aside the possibility for researchers to experiment in conditions close to
what is usually available with domestic connection to the Internet. High-speed Inter-
net access has become common in home families; ADSL (Asymmetric Digital Subscriber
Line) lines are wide-spread and fiber optic communication is now gaining significant mar-
ket penetration. The progress realized by these technologies allows Internet provider to
offer their customer an Internet connection comparable, in term of bandwidth, to local
area network (up to 1Gb/sec). However, the architecture of a network of home PCs
interconnected by ADSL presents special characteristics: i) the physical characteristics
of the network differ substantially from the LAN characteristics, already well studied,
because of the asymmetric communication performance (download/upload) and the in-
ternal ISP topologies; ii) within each family home, users share their Internet connection
between several machines, using wired and/or WiFi local network as well as NAT and
Firewalls to protect their network; iii) new classes of network appliance, beside the
regular PC join this network: wifi phones, media center and IPTV, Network Attached
Storage, networked gaming console etc. Furthermore, the network resource might be
shared between several communication demanding applications (VOIP, P2P, gaming).

In 2007, I coordinated the DSL-Lab project, which was aiming at establishing a plat-
form to experiment on distributed computing over broadband domestic Internet [190].
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DSLLAB was a collaboration with Laurent Lefevre and Jean Patrick Gelas from the
INRIA Reso team at Lyon and Oliver Richard and George Da Costa from the MESCAL
team in Grenoble. The two main contributors for this platform were two PhD students:
Lucas Nussbaum, advised by Olivier Richard, and Paul Malécot, co-advised by Franck
Cappello and myself.

DSL-Lab is a complementary approach to PlanetLab and Grid’5000 to experiment
with distributed computing in an environment closer to how Internet appears, when
applications are run on end-user PCs. DSL-Lab is a set of 40 low-power and low-noise
nodes, which are hosted by participants, using the participants’ xDSL or cable access to
the Internet. The objective is to provide a validation and experimentation platform for
new protocols, services, simulators and emulators for these systems. DSLLab features:

• Hardware and Network : we had to select specialized hardware so that it would be
powerful enough for conducting all our experiments, but low profile enough so that
it won’t disturb volunteers. We selected the Neo CI852A-4RN10 barebone (Celeron
M 1GHz, 512MB RAM, 2 Gb Compact Flash storage), which belongs to the Mini-
ITX class of PC, characterized by a small size form factor, an absolute silence,
thanks to the absence of fan or moving part, and low power processor. In January
2009, 32 DSLnodes were distributed on the French major DSL providers (Orange,
Free, Neuf, Tele2), giving a good perspective on the broadband heterogeneity, as
4 technologies are allowed in France: ADSL, ADSL2, ADSL2+ and ReADSL.

• Remote OS Deployment The DSL-Lab system is able to deploy remotely a new
OS on every DSLnode without asking for volunteer intervention. One of the major
concerns when designing the DSL- Lab platform was to avoid as much as possible
volunteer intervention on the nodes. So, we needed to be able to re- install (in case
an experimenter breaks the installed system by mistake) and upgrade (for security
reasons, or to install additional software) the whole software stack, including the
operating system installed on DSLnodes.

• Connectivity and Security The platform is managed in such a way that only identi-
fied experimenters have access to it. Experimenters first log into a central DSLLab
server, which acts as a gateway and provides remote access to each DSLnode within
a VPN through SSH.

• Resources and Power Management Most of the DSL-Lab experimenters are fa-
miliar with the Grid’5000 platform. To leverage their knowledge acquired on
Grid’5000, we have adapted the Grid’5000 batch scheduler, called OAR [160], to
the DSL-Lab platform so that: i) experimenters have a similar work environment
and ii) it would eventually facilitate the connection of both platforms. Thanks to
OAR, several experimenters may reserve some nodes in advance and deploy their
experiments simultaneously. Because DSLnodes are hosted on a volunteer basis,
a request of the volunteers is that the DSLnode does not waste power. Besides
selecting thrifty hardware, the system ensures that the DSLnodes are powered-off
when not used, thus reducing electricity consumption. The node stays up if the
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next experimentation starts soon enough, or re-schedules its next wake-up time
accordingly. Even if not reserved, the nodes wake up on a regular basis to check if
new reservations have been created.

We evaluate the power consumption of DSLnodes, in order to price DSLnode hosting as
our volunteers are not refunded for the electricity consumed. A node consumes around
1.5W when turned off (due to wake-on-LAN and software power switch); 9-10W when
the CPU is idle and 13-14W at 100% CPU load. According to the French regulated
electricity price, the cost per hour is 0.00182e if the DSLnode is used and 0.000195e
otherwise. If we assume usage of the platform to be 8 hours a day, 5 days a week, 11
months a year, it costs 3.57e/year for a volunteer to host a DSLnode.

3.4 The European Desktop Grid Infrastructure

In the previous sections, we introduced the experimental methods and platforms on
which we relied to investigate, design and build Desktop Grid systems. Obviously sys-
tems shouldn’t restrict to “in-vitro” study, but eventually should follow their faith and
reach the real world. In this Section, we report on a unique attempt to promote Desktop
Grid infrastructures as an effective solution to enable the scientific community to solve
their grand-challenge problems: the European Desktop Grid Infrastructure (EDGI).

E-infrastructures play a distinguished role in enabling large-scale innovative scientific
research in Europe. In 2007, the European Union started to fund several FP7 projects
with the aim of establishing a new kind of distributed computing infrastructure to pro-
vide a large amount of affordable computing resources that would supplement the already
established EGI (European Grid Initiative). The aim of the project was several folds :

• Establish a global and unified infrastructure based on the interconnection of ex-
isting local institutional Desktop Grids and public Volunteer Computing systems.
Two Desktop Grid technologies were supported: SZTAKI Grids (based on BOINC)
[39] and XtremWeb-HEP [38]. The goal was to reach more than 100K connected
machines on a dozen different sites.

• Bridge the EDGI infrastructure to the main Grids existing in Europe so that jobs
submitted by regular Grid users can possibly be executed transparently on Desktop
resources provided by EDGI. The technologies to connect the Service Grids and
Desktop Grid aim at the following properties: secure, transparent to use, scalable,
provides QoS, keep traceability and accountability, compliant with Grid standards,
able to transmit large data. In addition, EDGI aims at being connected to several
European Grid Infrastructures, which implies to be compliant with the major Grid
middleware developed in Europe.

• Although scientific users of EGI are already well engaged in Grid technologies, EGI
communities are restricted by the capacity of the VOs they can access. An impor-
tant objective of the project is to raise awareness of the availability of increased
capacities among new user communities and to attract them and actively engage
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them in exploiting this enhanced e-infrastructure. New users should be trained to
“gridify” their applications for the combined EGI/EDGI e-infrastructure.

In total, four projects were funded by the E.U.: EDGeS (Enabling Desktop Grid for
e-Science), EDGI (European Desktop Grid Initiative), DEGISCO (Desktop Grid for In-
ternational Scientific Collaboration), IDGF-SP (International Desktop Grid Federation
Support Program) that were focusing respectively on enabling the infrastructure, devel-
oping advanced technologies and providing support to user. Thus, I’ve enthusiastically
joined this large collaboration lead by Peter Kacsuk, which involves directly several
partners: SZTAKI in Hungary, INRIA and CNRS in France, University of Coimbra in
Portugal, University of Cardiff and Westminster University in the U.K., CIEMAT, Iber-
civis and Fundecyt in Spain, AlmereGrid in the Netherland, University of Paderborn in
Germany and University of Copenhagen in Denmark. I took leadership of two key Joint
Research Activities (JRA) work packages: “Bridge Service Grid to Desktop Grid (3G
Bridge)” (EDGeS) and “Quality of Service for the EDGI infrastructure (SpeQuloS)”
(EDGI).

Under the scope of these projects, two people joined me as research engineers: Haiwu
He, who worked on the 3G bridge, and Simon Delamare, who worked on the SpeQuloS
middleware. In addition, we closely collaborated with Oleg Lodygensky and Etienne
Urbah at LAL, for all the activities that implied XtremWeb-HEP. I report now on the
main achievements of the project with a focus on the scientific results on which my group
was actively involved.

The Bridging of Grids and Desktop Grids : The Generic Grid to Grid bridge (3G Bridge),
developed in collaboration with SZTAKI institute and other members of the con-
sortium, [191, 156, 150, 155, 192, 154, 193, 194, 195] allows to route jobs between
Grid, Clouds and Desktop Grid infrastructures. Architecture of the 3G Bridge is
presented in Figure 3.1, it’s a generic middleware that interconnects infrastructures
through plug-in adaptors for the various Grid (gLite, Unicore, ARC), Desktop Grid
(BOINC, XtremWeb-HEP) and Cloud (OpenStack, OpenNebula) middleware. An
example of integration is shown in the Figure: on the left-hand side of the figure is
shown typical EGI VO, while on the the right-hand side, one can see three Desk-
top Grid systems: one public BOINC (SZDG: SZTAKI Desktop Grid), one private
BOINC (UoW: Univ. of Westminster) and one public XtremWeb-HEP (CNRS).
To route jobs between infrastructures, the 3G bridge appear as one regular comput-
ing element (DG-CE) of the Grid. Jobs, submitted through gLite, are first check
to ensure that the application to be executed is part of the Application Repository,
which contains a managed list of applications eligible to run on the EDGI infras-
tructure. If so, the 3G bridge submits the job to the corresponding Desktop Grid,
ensuring key tasks of events logging, resource monitoring and conveying security
information, in particular X509 proxy.

Security model The security concepts of the two bridged Grids are different. For in-
stance, on one hand, BOINC does not require X509 certificates, but permits adding
of new work units only to the BOINC project owner, and on the other hand, EGI
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EDGeS: Bridging EGEE to BOINC and XtremWeb

Fig. 5 Architecture of
the EDGeS 3G bridge EDGeS 3G Bridge 
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• The Source Grid Handler Interface is imple-
mented via MySQL and as such it accepts SQL
queries, inserts and updates. Besides the task
of placing generic descriptions into the Job
Database, its other task is to get job status
information from it. Jobs/WUs coming from
various source Grids are received by specific
handlers that transfer the incoming jobs/WUs
to the Source Grid Handler Interface. So, in
order to connect a Grid as a source Grid to
the 3G Bridge, a Grid-specific handler should
be written for this source Grid.

• The Queue Manager periodically reads jobs
from the Job Database and transmits them to
the Target Grid Plug-in Interface.

• The Target Grid Plug-in Interface enables to
connect various target Grids via their plug-in.
The Target Grid Plug-in Interface provides a
generic set of interface functions that should
be implemented by the target Grid plug-ins. In
order to connect a Grid as a target Grid into
the 3G Bridge, a Grid-specific plug-in should
be written for this target Grid. Note that the
Grid plug-in is also responsible for querying
the status of job/WU execution in the target
Grid and retrieving the output of submitted
jobs/WUs.

As Fig. 5 shows, the EDGeS 3G Bridge per-
forms the three following bridging functionalities:

1. BOINC to EGEE bridge: Fig. 6 shows the
BOINC handler and the EGEE plug-in.

2. EGEE to BOINC bridge: Fig. 8 shows the
BOINC plug-in and the customized EGEE
GRAM manager as EGEE handler of the 3G
Bridge.

3. EGEE to XtremWeb bridge: Fig. 9 shows the
XtremWeb plug-in and the modified EGEE
GRAM manager as EGEE handler of the 3G
Bridge. Note that the advantage of using 3G
Bridge is that the EGEE handler can be the
same for both the EGEE to BOINC bridge
and for the EGEE to XtremWeb bridge.

5.2 Bridges BOINC → EGEE
and XtremWeb → EGEE

The goal is to receive BOINC work units or
XtremWeb jobs, and to make them execute in-
side the EGEE service Grid. The challenges are
to securely authenticate the submitter with an
X509 proxy acceptable by EGEE, and to wrap the
incoming work unit or job as an EGEE job.

5.2.1 Bridge BOINC → EGEE

The main principle of the BOINC → EGEE
bridge is to fetch work units from a BOINC server
and to use the 3G bridge architecture presented
in the previous section in order to translate these
work units into EGEE jobs. Thus, in order to
have a fully functional BOINC → EGEE bridge,
two main additional components are needed: a
BOINC handler and an EGEE Target Grid Plug-In.

Figure 3.1: Architecture of the EDGeS 3G bridge

provides access to every user with a registered X509 certificate [156, 196]. In or-
der to gain access to EGI resources and run the project’s work units on EGI, the
BOINC project owner has to send (just only once) the DN of his X509 proxy to
the 3G bridge administrator. Then, following standard EGI rules, he stores his
X509 proxy inside a MyProxy server which unconditionally trusts the EDGeS 3G
bridge. As a consequence, the EDGeS 3G bridge must be operated with at least
the same security level as a MyProxy server. The bridge components generate
detailed logging, so that the bridge administrator can quickly identify the BOINC
project and work unit for an incidentally maliciously working EGI job started by
an EGI plug-in.

Quality of Service An important challenge with provide QoS support for those appli-
cations that require a faster execution in the public DG part of the infrastructure.
For example, a public DG system enables clients to return work-unit results in
the range of weeks. We developed the SpeQulos system (detailed in section 4.2)
[197, 55, 191], which provides a probabilistic guarantee of job throughput during
the execution. The principle is that SpeQuloS will dynamically deploy fast and
trustable clients from some Clouds that are available to support the EDGI DG
systems. SpeQuloS offers strategies that take the right decision about assigning
the necessary number of trusted clients and Cloud clients for the QoS applications.

Handling Data-intensive Application Applications that have high data requirements
are challenging to execute for EDGI [164, 78]: i) large files have to be distributed
efficiently on a very large number of nodes, ii) data input files cannot be directly
transferred from the Grid storage elements to the Desktop Grid nodes for security
reasons. The solution developed in the scope of the project is AtticFS [86, 163, 79],
which is a dedicated distributed storage system. This protocol is implemented
by having a group of computers on the Internet that act as “Data Centres” that
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replicate the files amongst themselves (in a P2P fashion) and distribute them when
needed as requests from clients are processed. Depending on the security needs of
an individual project, these Data Centres can either be known and secure hosts,
or (potentially less secure, however, more flexible and freely available) volunteered
resources donated by people in the community.

Virtualization Support for the Desktop Grids Porting application to the Desktop Grid
infrastructures can turn into a complex and tedious task due to the: i) the necessity
to instrument the source code using the BOINC API, ii) provide the application
binaries for different architectures (e.g. Intel, ARM) and operating systems (e.g.
Linux, Windows, and Mac OS X). Fortunately, thanks to virtualization technolo-
gies, Desktop can execute applications in a customized environment regardless of
the host operating system. We gave BOINC and XtremWeb-HEP such capabili-
ties, so that EDGI users can provide an execution context (OS, librairies, tools) as
VM images for their application [146]. Thanks to this new capability, we have been
able to execute extremely complex applications, such as the ROOT high energy
physics applications [148].

Besides these technical developments, the EDGI consortium has advanced towards the
Grid community on several fronts: i) standardization. Following several round tables
organized by the consortium at the Open Grid Forum, discussions happened to decide of
the relevant GRID standards that should be followed by EDGI, or, alternatively, if the
consortium should propose new ones. The results can be found in the implementation of
the 3G bridge, which supports several standards and common API such as, for instance
the HPC profile job submission mechanism which ensures that the EDGI Bridge will be
compatible with the middleware supported by EGI; ii) by providing Grid users a clear
methodology to easily port their applications to the infrastructure. This methodology
includes a questionnaire to match application requirements with infrastructure capabil-
ities plus a sandbox testbed to develop and try the application [145], iii) an application
repository and a Grid portal to facilitate usage of the infrastructure by Grid end-users.

At the end of the project, the infrastructure allowed to inter-connect 9 Desktop Grid
systems, both local and public, providing more than 200.000 computing nodes; 5 Clouds
systems providing around 300 cores; connected to 17 EGI VOs, 3 ARC VOs and 2
UNICORE VOs. Several high profile applications were able to take advantage of this
very powerful infrastructure. One of the killer application was the Docking portal for
biologists and chemists which comprises the Autodoc and Vina applications, which was
used by more than 70 registered users submitting more than 60.000 jobs [198, 199, 200,
201, 202].

3.5 Conclusion

The problematic of evaluation is one of the most difficult challenge of Desktop Grid
research. It concentrates many difficulties such as reproducing experimental conditions,
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experimenting in a controlled environment, lack of knowledge of the underlying infras-
tructure.

In this Chapter, I have presented our methodology to develop, validate and evaluate
the products of our research. This broad range of tools concerns: i) observation of ex-
isting Desktop Grid platform with the main goal of understanding the characteristic of
the infrastructure and characterizing the computing resources in terms of availability
and dependability, ii) simulation with the aim of designing algorithms and testing them
over a wide range of parameters and scenarios, iii) emulation of Desktop Grid infras-
tructure over Grid5000 in order to develop and improve our software in conditions close
to the one of a real Internet deployment. In addition, we developed a new experimental
platform called DSLLab, specifically designed for experimenting on broadband Internet.
DSLLab presents several original innovations that are not found elsewhere; in particular
it has been developed with the objective of maximizing its energy efficiency, both by the
selection of specific hardware and by the resource management strategies that we have
developed.

Overall, EDGI has been one of the first real-world infrastructure that went so far in
integrating Desktop Grid in every-day life of scientists and HPC users. Several con-
clusions can be drawn from the EDGI experience. First, being used by actual users
community has helped us to understand deeply what is expected from such users. Even
if the workload can flow from the Grid to the Desktop Grids transparently, thanks to
the huge effort of development, the user experience is still significantly different be-
cause of the lack of performance model for Desktop Grid computing. This has lead me
to considerably reconsider how performances of Desktop Grid should be measured and
assessed. Second, the EGI/EDGI combined e-infrastructure has been one of the first
hybrid DCI, combining several distributed computing infrastructures relying on differ-
ent characteristics and paradigms. We’ll see in the next Chapter that this emergence of
hybrid infrastructure has also a strong impact on the design of algorithms in particular
with respect to resource management.
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Chapter 4

Algorithms and Software for Hybrid
Desktop Grid Computing

Why Computer Science is No Good
In the past, computer scientists have found it convenient and
productive to adopt a model of the computational universe that was
very different from our models of the physical universe. This is
changing. As we build bigger computers out of smaller components,
our models of computation are forced to change. There is reason to
hope that our new models for specific systems will be similar to the
models of physics.
A computer designer is constrained by mundane problems that have
no counterparts in the theoretical models of computer science: the
size of connectors, the cost and availability of components, the
mechanical layout of the system. Recently these factor shave
dictated a dramatic change in the way we design computers. Things
don’t look the same. Wires cost more than gates, software costs
more than memory, and the air conditioner takes up more room
than the computer. Our current models of computation are
inadequate for designing or even describing our new architectures.
An abstract model is powerful only when it allows us to pay
attention to certain aspects of a situation while ignoring others.
Our current models seem to emphasize the wrong details.

(The Connection Machine, Daniel Hillis (1956-))

The previous Chapter presented our methodology toolbox to experiment and evaluate
Desktop Grid Computing research. Based on this methodological stand, we now present
the proposed algorithms, their implementation, and the main evaluation results. The
goals of our research have been to improve Desktop Grid systems and to enlarge their
application domain, by overcoming the barriers that prevented the execution of a new
range of applications and by improving user experience when using Desktop Grid in-
frastructure. Explored research topics include: scheduling, security, quality of service
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and virtualization. Over the years, the general context of Desktop Grid computing has
evolved greatly with the advent of hybrid DCIs, which has led us to strongly recon-
sider many aspects of the techniques and algorithms for resources management. The
challenge now is not only to make Desktop Grid efficient, but also to combine several
types of infrastructures together. For instance, we revisited several of our work around
resource management to consider stable and volatile resources. This allowed us to de-
velop new QoS policies that rely on the stable resources provided by Cloud platforms
to compensate for the volatility of Desktop Grid resources. This evolution led us to
explore multi-criteria scheduling that takes into account both application requirements
and user preferences and match them with infrastructure characteristics. This Chapter
completes with a short description of the CloudPower technology transfer project, which
aims at building a business model based on the Desktop Grid technologies co-developed
by INRIA and CNRS.

4.1 Scheduling for Desktop Grids

Research in scheduling and resource management has always been an active topic in
Desktop Grid computing for the following reasons: i) in order to overcome the loss of
performance due to host volatility, extreme heterogeneity, lack of trust and reliability, ii)
to support new classes of applications beyond the Bag-of-Tasks applications: workflows
with tasks dependency, data-intense applications, parallel applications with communi-
cations, application with hard or soft-realtime constraints and more.

Our first investigation on resource management began as a continuation of host avail-
ability characterization [184, 183, 3]. In XtremWeb, the detection of faulty nodes is
ensured by a heart-beat mechanism, and the faulty task is rescheduled to the next avail-
able host. We explored several strategies to improve task redundancy and replication
and showed that such strategies were effective, in particular at the end of the computa-
tion, when the application execution termination only depends on the few last remaining
tasks and there are still available computing resources. There are several reasons for task
replication in such case. First, it avoids the cost penalty to reschedule the task in case
of node failure. Second, it preemptively prevents the lagger effect, where a very slow
computing resource would be attributed a task. Last, there is a greater chance to ob-
tain a fastest computing resource, which is important in case of strongly heterogeneous
platform.

Going further, with Derrick Kondo and Bruno Kindarji, student at Ecole Polytech-
nique, we looked at executing soft real-time applications on Enterprise Desktop Grids
– soft real-time applications often have a deadline associated with each task but can
afford to miss some of these deadlines. A number of soft real-time applications ranging
from information processing of sensor networks, real-time video encoding, to interactive
scientific visualization could potentially benefit from Desktop Grid platforms. While
this challenge entails a myriad of issues (such as timely data transfers), the contribution
we developed in [53] is to achieve probabilistic guarantees on task completion rates via
buffering. That is, we determined how large a buffer must be allocated to ensure that
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fraction of tasks meet their corresponding deadlines. Thus, we developed a model of
the successful task completion rate as function of the server’s buffer size, and showed
that the aggregate compute power of Desktop Grid systems can be modelled using a
normal probability distribution. Our model can be used by system developers who wish
to determine an adequate buffer size for their (soft real-time) application to guarantee
a certain task completion rate.

It is sometimes the support for new classes of application that has driven the research
on scheduling algorithms. Executing BoT applications that have very large input data
was the contribution of Baoha Wei during the beginning of his PhD thesis. Preliminary
experiments on using a P2P content distribution protocol, such as Bittorrent [78, 163, 79],
have shown that the protocol was efficient at distributing large files to great number of
nodes. In [163], we worked with Fernando Costa and Luis Silva from University of
Coimbra and Ian Kelley from the Cardiff University to validate this approach on the
BOINC platform. However, the Bittorrent protocol suffers from a high overhead when
transmitting small files. In [164, 165], we explored performance model that allows one to
select the best file transfer protocol according to the file size and the number of receiving
nodes. Furthurmore, we proposed an enhancement of the built-in incentive mechanism
of BitTorrent in order to implement more predictive and deterministic communication
ordering. By constraining the BitTorrent protocol to accomplish the file transfer in a
pre-determined sequence, we were able to calculate a prediction of the communication
cost. Therefore, we proposed BitTorrent dedicated variants of well-known scheduling
heuristics such as MinMin, MaxMin and Sufferage [203], that obtained a speed-up of 3
when compared to classical round robin algorithm with the FTP protocol.

4.2 SpeQuloS, a QoS Service for Best-Effort DCIs

Although the aforementioned research work has focused on Desktop Grid, some of the
results could be generalized to other Best Effort DCIs. Best-Effort DCI (BE-DCI) is an
infrastructure or a particular usage of an existing infrastructure that provides unused
computing resources without any guarantees that the computing resources remain avail-
able to the user during the complete application execution. For instance, the OAR [160]
Grid scheduler manages a best effort queue to submit tasks on the idle nodes of the
cluster with the lowest priority. At any moment, a regular task can steal the node and
abort the on-going best effort task. In Cloud computing, Amazon proposes EC2 Spot in-
stances [161] where users can bid for unused Amazon EC2 instances. If the market Spot
price goes under the user’s bid, a user gains access to available instances. Conversely
when the Spot price exceeds his bid, the instance is terminated without notice.

Because BE-DCIs trade reliability against lower prices, they offer poor Quality of Ser-
vice (QoS) with respect to traditional DCIs. This loss of QoS was particularly noticeable
on the EDGI infrastructure, where Grid users’ jobs could be executed either on a Grid
or on a Desktop Grid. In the former case, the completion time for similar jobs would
have a greater variability, with sometimes very long execution time.

The main source of QoS degradation in BE-DCIs is due to the tail effect in BoT
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Figure 4.1: Example of BoT execution with noteworthy values

execution. That is, the last fraction of the BoT causes a drop in the task completion
throughput as illustrated in Figure 4.1. To characterize this tail effect, we investigated
the difference between the BoT actual completion time and an ideal completion time.
The ideal completion time is the BoT completion time that would be achieved if the
completion rate, calculated at 90% of the BoT completion, was constant. Intuitively, the
ideal completion time could be obtained in an infrastructure, which would offer constant
computing capabilities. We define the tail slowdown metric as the ratio between ideal
completion time and actual BoT completion time. The tail slowdown reflects the increase
factor of the BoT completion time resulting from the tail effect.

We observed and characterized the tail slow-down on several Best-effort DCIs. About
one half of BoT executions are not extremely affected by the tail effect, meaning that
the execution is slowed by less than 33%. Other cases are less favorable; the tail effect
doubles the completion time from 25% of executions with XtremWeb-HEP middleware
to 33% with BOINC. In the worst 5% of execution, the tail slowdown is up to 400% with
XtremWeb-HEP and 1000% for BOINC. Moreover, a few percent of BoTs’ tasks belong
to the tail, whereas an significant part of the execution takes place during the tail. These
results are mostly due to host volatility and the fact that Desktop Grid middleware has
to wait for failure detection before reassigning tasks.

To enhance QoS of BoT execution in BE-DCIs, we proposed a complete framework
called SpeQuloS [55, 197] that addresses the tail effect issue. SpeQuloS improves the
QoS in three ways: i) by reducing time to complete BoT execution, ii) by improving
BoT execution stability and iii) by informing user about a statistical prediction of BoT
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completion.
SpeQuloS is a service which provides QoS to users of Best Effort DCIs managed by

Desktop Grid middleware, by provisioning stable resources from Cloud services.
SpeQuloS implements various strategies to ensure efficient usage of Cloud resources

and provides QoS features to BE-DCI users. As access to Cloud resources is costly,
SpeQuloS provides a framework to regulate access to those resources among users and
accounts for their utilization.

SpeQuloS collects information on BoT executions, which is relevant to implement QoS
strategies. Careful exploitation of history of collected BoT execution traces as well as
real-time information about the progress of BoT execution enable to compute a predicted
completion time for the running BoT. The statistical uncertainty returned to the user
is the success rate (with a ± 20% tolerance) of predictions performed on previous BoT
executions, observed from the historical data.

We designed several different strategies to decide when and how many Cloud resources
should be provisioned to handle the tail execution. Simplest strategies launch Cloud
instances when the number of tasks which has completed or are assigned to workers
reaches a threshold, corresponding to a fraction of the total BoT size. More elaborate
ones monitor the execution variance, i.e the difference between the task completion rate
and the task assignation rate to anticipate that the system in no longer in steady state.
The second leverage is how many Cloud resources should be allocated. We propose
two approaches: a greedy one maximizes the Cloud resources and a conservative one
estimates the remaining time to complete the tail assuming a constant BoT completion
rate to adjust the number of provisioned Cloud resources. Finally, SpeQuloS has several
options in the way of using Cloud resources, depending if the Cloud workers are not
differentiated from any regular workers by the DG server.

We evaluated combinations of these strategies not only using Desktop Grid trace-
driven simulations, but also against Grids traces and simulated Amazon spot instances.
All the strategies are able to significantly address the tail effect: the tail has disappeared
in one half of the BoT executions and for 80% of the BoT executions the tail has been
at least halved, which is satisfactory. The impact on the BoT execution is significant,
leading in the best cases to a speed-up of 2. Still, these strategies consume few Cloud
resources, actually, less than 2.5% of the BoT workload is executed in the Cloud. In
terms of QoS, SpeQuloS increases the execution stability, meaning that BoTs executed
in similar environments will present similar performance. Furthermore, SpeQuloS can
accurately predict the BoT completion time and provide this information to BE-DCI
users. The predicted completion time given by SpeQuloS is correct within ± 20% in 9
cases out of 10, which is remarkable given the unpredictable nature of BE-DCIs.

I proposed SpeQuloS as the QoS JRA leader in EDGI. Simon Delamare, recruited as
a postdoc on this project, is a major contributor. It is also a joint work with Derrick
Kondo and Oleg Lodygensky. With Oleg Lodygensky, we validated the framework on
a complex infrastructure of the Desktop Grid IN2P3, grid nodes and EGI G5K. Other
members of the consortium, in particular Peter Kacsuk and his team at SZTAKI, Tamas
Kiss at Westminster University have helped us to achieve quality production, which is
necessary for deployment on the EDGI infrastructure.
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4.3 The Promethee Multi-criteria Scheduler for Hybrid DCIs

Since users now have a choice of infrastructure to run their applications, the question
arises of how to allocate the use of resources between infrastructure based on user pref-
erences: speed, low energy consumption, budget etc.

One of the lessons learnt from EDGI, is that Desktop Grid middleware is an excellent
candidate for managing hybrid DCI. The pull-based scheduler offers several desirable
properties, such as scalability, fault resilience, ease of deployment and ability to cope
with elastic infrastructures. On the other hand, a pull-based scheduler has a limitation:
when a computing resource asks for work, the scheduler has no or very limited choice to
select the best resource to execute a task. This issue is particularly relevant in the context
of hybrid DCIs, where the infrastructures have very heterogeneous capabilities in terms
of computational power, reliability, security mechanisms, type and frequency of failures,
cost, and power efficiency. Using efficiently these infrastructures requires taking into
account different parameters when making resource management decisions. Thus, new
schedulers are required, which can implement strategies allowing multi-criteria decisions,
such as cost/energy/performance. For this reason, providing multi-criteria pull-based
scheduling that is both scalable and smart remains a challenge.

In collaboration with Mircea Moca, during his stay as invited professor in our team,
Cristian Litan and Gheorghe Cosmin Silaghi from the University of Babes-Bolyai (Roma-
nia), we addressed this issue in [204] and [205] by proposing a new pull-based scheduler
which relies on the Promethee decision-making method for selecting tasks by taking
into account user preferences and resource characteristics. Promethee [206] is a non-
parametric decision model which employs pairwise comparisons to produce a ranking of
potential alternatives [207].

Promethee considers the set of criteria C = {cic , ic ∈ N} characterizing a set of
alternatives A. Like other multi-criteria decision methods, Promethee starts from an
evaluation table, then, by making pairwise comparisons of the evaluations within each
criterion, computes a dominance relation.

Promethee requires a preference function: i) between criteria defined by giving crite-
rion importance weights ωic ≡ ω(cic), and ii) within each criterion, by using a preference
function P that takes as input the amplitude of the deviation between two criterion eval-
uations. The literature [207] proposes several models for the preference function P , such
as Linear, Level, V-shape or Gaussian; otherwise one can define his own function. The
design of the preference function influences the output of Promethee. It consists in ad-
justing the threshold for the amplitude of the deviation between the criteria to determine
the alternative selection.

When applied to pull-based scheduling, the Promethe method computes for each task a
set of criteria according to the characteristics of the node requesting the task. The criteria
that we propose are: Expected Completion Time represents an estimation of the
time interval needed by a pulling host to complete a particular task; Price represents the
estimated cost eventually charged for the completion of a task; and Expected Error
Impact indicates the estimated impact of scheduling a particular task to the pulling
host taking into account its reputation (error proneness) and the size of the task.
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Figure 4.2: Satisfaction Oriented FilTering (SOFT) method

We simulated the Promethee scheduler managing a hybrid DCI composed of Internet
Desktop Grid (IDG), Cloud and Grid infrastructures, where node failures, laggers and
erroneous results were taken into account. We observed that the Promethee scheduler
outperforms First Come, First Serve, the baseline Desktop Grid scheduler, at different
degrees according to the type of DCI. While in Cloud environment the gain is 9-12%, it
can reach up to 32% for IDG. For hybrid DCI, the Promethee scheduler shows a 38%
improvement for the combined IDG/Grid infrastructure.

The Promethee scheduler allows application developers to empirically configure the
scheduler to put more emphasis on criteria that are important from their own perspec-
tive. However, such configurable multi-criteria schedulers have two strong limitations: i)
there is no guaranty that the user preferences expressed when configuring the scheduler
actually translate in an execution that follows the favored criteria, and ii) the number
of possible scheduling strategies explodes with the number of criteria and the number of
application profiles, rapidly leading to an intractable situation by the user.

In [157], we proposed Satisfaction Oriented FilTering (SOFT), a new methodology
that explores all the scheduling strategies provided by a Promethee multi-criteria sched-
uler to filter and select the most favorable ones according to the user execution profiles
and the optimization of the infrastructure usage. The methodology, illustrated in Fig-
ure 4.2 begins with the definition of criteria to be integrated into the scheduler and a
corresponding metric for each. On the constructed set of possible scheduling strategies
a selection method is applied in order to find those that provide high and stable user
satisfaction levels (Filter1). On this resulting subset a second selection method is applied
in order to retain the strategies that are also the most efficient from the resource owners
perspective (Filter2).
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4.4 Virtualization and Security

Due to the anonymity and the lack of trust of participants, Desktop Grid Computing
raises many security issues. In this Section, we review some of our most significant
results concerning participants’ machine protection, result certification and secure inter-
operability with Grid environment.

As mentioned in Section 2.2.5, sandboxing constitutes a cornerstone approach in the
Desktop Grid security model. In collaboration with Attila Csaba Marosi and Peter
Kacsuk, from SZTAKI and Oleg Lodygensky, we presented in [146] an method to provide
a secure and transparent sandbox, common for XtremWeb-HEP and BOINC, for running
untrusted DG applications. The sandbox environment is based on Virtual Machines
(VM) techniques and can be easily integrated with DG worker with few extra overhead.
It has the following features:

• simplify legacy application deployment by having a separate operating system
available inside the VM, which contains all libraries and data needed to execute
the application, regardless of the host OS configuration.

• System-level checkpointing. VMs have the ability to save their current state of
execution to stable memory. The checkpoint image can be used to resume the
execution on the same host, or can be migrated to a remote host.

• Enforce resource limits. The VMs can be configured in such a way that the DG ap-
plication is limited in accessing the host resources; possibly denying some resources
that could cause security issues, such as local disk or local network.

The sandbox environment consists in daemon software and APIs which allow to create
and start VM instances, upload input files and executables into the instance, start tasks
using the uploaded files, request status information and when finished retrieve the output
files. We evaluated the environment against several virtualization approaches: Bochs
and QEMU [208], which are open source processor emulators; and VMware Player and
VirtualBox, which are two virtualization software.

A key security component of Desktop Grid systems is the result certification, which is
needed to check that malicious volunteers do not tamper with the results of a computa-
tion. In collaboration with Mircea Moca, during his summer internship as a PhD student
from University of Babes Bolyai and Gheorghe Cosmin Silaghi, we have proposed a new
approach for result checking adapted to MapReduce computations. In classical Desktop
Grid, the result certification is often centralized on the server. Unfortunately, this cen-
tralized approach in inefficient with MapReduce computation (See Section 5.2), because
intermediate results might be too large to be sent back to the server. As a result, we
have proposed in [174] a decentralized protocol for result certification based on majority
voting. Although majority voting involves larger redundant computations, the heuristic
is efficient at detecting erroneous results, which are likely to be significantly higher for
disk bound jobs.

In [196], we propose the security issues when bridging Grid with Desktop Grid. The
contribution is a new Desktop Grid security model to bridge this anonymous environment
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to the strongly securized Grid one. XtremWeb-HEP introduces mechanisms aimed to
secure and confine distributed resources usage; this new features permit to extend user
actions over the platform as well as to secure resource usage and confine application
deployment. The security model relies on anonymous and trusted resources, which can
be users, data, application, and computing resources. The model defines access rights
between each of these resources. When the resources are authenticated by the Grid,
XtremWeb-HEP and the Grid↔ Desktop Grid bridge convey all the security credentials
(usually X.509 proxies) to ensure authentication and activity logging.

4.5 CloudPower: a Cloud Service Providing HTC on-Demand

CloudPower starts from the observation that HTC is a key factor in knowledge and
innovation in many fields of industry and service with high economic and social issues:
aerospace, finance and business intelligence, energy and environment, chemicals and ma-
terials, medicine and biology, digital art and games, Web and social networks. However,
acquiring HTC dedicated machines is very expensive, making HTC prohibitive to SMIs /
SMEs for their research and development. The goal of CloudPower is to offer a low cost
Cloud HTC service for small and medium-sized innovative companies. CloudPower lever-
ages on the open-source software XtremWeb-HEP previously developed by the CNRS
and INRIA. With CloudPower, companies and scientists will run their simulations to
design and develop new products on a powerful, scalable, affordable, reliable and secure
infrastructure.

CloudPower is a project of technology transfer supported by the ANR Emergence
program, which I coordinate since 2013. Avalon/ENS-Lyon is the team leading the
project, with the IN2P3/CNRS as the second technical and scientific partner, and the
“Valorisation” office of ENS-Lyon as a partner for the business and legal development.
Haiwu He and Sylvain Bernard have been recruited as research engineer and business
developer respectively. Building on the network of SMIs from the competitiveness clus-
ters System@tic and LyonBiopole, we implement scenarios and/or demonstrators which
illustrate the ability of CloudPower to increase competitiveness, research and marketing
of innovative SMEs. If the business model is conclusive, we envision the creation of a
new and innovative company operating the platform.

4.6 Conclusion

In this Chapter, I presented algorithm and software contributions to Desktop Grid com-
puting.

I introduced several scheduling algorithms aiming at improving Desktop Grid resource
management when executing Bag-of-Tasks applications. We also addressed new classes
of applications by considering the execution of BoT with soft-realtime constraints and
BoT with large input data-sets distributed with a P2P protocol.

Security in Desktop Grids systems is a necessity for a broad acceptation and inte-
gration into actual cyber-science infrastructures. This issue was tackle from multiple
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perspectives. We proposed a sandboxing environment, which is generic enough to be
integrated to other DG systems, and which provides protection of the participant ma-
chine, while facilitating legacy application deployment. A new hybrid security model for
Desktop Grid has been introduced, which cooperates with DCI by enforcing strong secu-
rity requirements. Finally, we proposed a new approach for distributed result checking
able to cope with data-intensive MapReduce computations.

Then I focused on two contributions that outline Hybrid DCIs problematics. The
first contribution illustrates the benefit of having two classes of infrastructures so that
one can minimize the drawbacks of the other. SpeQuloS, is a service which provides
Quality of Service to execution that relies on volatile resources by provisioning stable
resources from Cloud infrastructure. The second contribution explores the design of
multi-criteria and user-oriented scheduling heuristics. The Promethee scheduler is able
to use efficiently several DCIs, while allowing users to configure scheduling strategies
according to their preferred execution profiles. However, such approach can lead to a
combinatorial explosion of the possible scheduling strategies. This led us to propose
Satisfaction Oriented FilTering, a method to filter and select the strategies that respond
to application requirements and infrastructure usage. Our experience has shown that
Desktop Grids were able to integrate the e-science cyber infrastructure, providing sci-
entists large amounts of computing power at low-cost. The next step is to investigate
how we can build business models based on Desktop Grid technology. This is the goal
of the CloudPower project, which is proposes, a low-cost, on-demand and secure HTC
solution for small and innovative business.
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Chapter 5

Large Scale Data-Centric Processing and
Management

(L’apprenti sorcier (”The Sorcerer’s Apprentice”) is a concert
scherzo by Paul Dukas based on the poem Die Zauberlehrling by

Johann Wolfgang von Goethe (1797))

Before jumping in the technical part of the Chapter, I would like the reader to remem-
ber Goethe’s poem “The Sorcerer’s Apprentice”, popularized by the musical cartoon,
produced by Walt Disney in 1940 and wonderfully accompanied by Dukas’s symphonic
piece. In this cartoon, Mickey is the Sorcerer’s Apprentice and must fill a tank located
in the wizard’s underground laboratory. The apprentice has two pails of water in hands
and he must walk from the water source to the tank, which appears to be a daunting
task. By invoking maliciously a magic spell, Mickey animates a broom to get help car-
rying the water. Unfortunately the broom gets out of control and the situation quickly
gets carried away. Mickey tries to stop the broom using an axe, but each of the pieces
becomes a new broom, grabs a bucket and continues fetching water, now at twice the
speed. At the height of the disaster, water waves engulf the laboratory and myriad of
uncontrollable brushes are pursued by Mickey with an axe in hand.

This parable illustrates the challenge of the Data deluge that science and IT world is
facing and what may happen if we consider the magic Cloud as the only recipient, and
if no effort are pursued to control the data flow beyond the data center.
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Increasingly, the next industrial innovative breakthroughs and the next scientific dis-
coveries will depend on the capacity to extract knowledge and sense from the enourmous
amount of Big Data information [209]. Examples vary from processing data provided
by scientific instruments such as the CERN’s LHC, the LSST Telescope in Chile, or the
OOI large-scale underwater sensors network; grabbing, indexing and nearly instanta-
neously mining and searching the Web; building and traversing the billion-edge social
network graphs; anticipating market and customer trends through multiple channels of
information. Collecting information from various sources, recognizing patterns and re-
turning human scale results from this “data deluge” is the new challenge the community
is facing[210]. In this Chapter, we cover the research directions we pursued to enable
large scale data processing and management in the context of Desktop Grid and Hybrid
Distributed Infrastructures. Efficient data management, i.e ensuring data availability,
multi-protocols file transfer, collective data distribution operation, scalable data index-
ing is considered a difficult issue by the Grid and Cloud communities. It is even more
difficult, when we consider Hybrid DCIs, in particular because the characteristics of the
nodes have a great impact on the design of the storage.

We believe that scientific applications require a fundamentally different paradigm for
handling large scientific datasets when they are distributed on complex e-science cyber
infrastructure. We present BitDew and BitDew-MapReduce, two environments for large
scale data management and processing on Desktop Grid and Hybrid DCIs. The Chapter
also introduces Active Data, our approach for data life cycle management, which has two
distinguishing characteristics: data-centric (as opposed to task-centric) and event-driven
(as opposed to task-completion triggered).

5.1 Environment for Large Scale Data Management

We identified Data management and distribution as being a major bottleneck in Desktop
Grid computing. We conducted several studies with Bittorent, BOINC and XtremWeb [79,
163, 164, 165, 78] that showed that a P2P approach is a key advantage when executing
Data-intense applications on Desktop Grids. In 2007, Haiwu He obtained an INRIA
postdoc fellowship with the initial objective of building an environment for file distri-
bution based on P2P protocols. Together, we initiated BitDew, which is a subsystem
which can be easily integrated into Desktop Grid, Grid and Cloud systems. It offers
programmers (or an automated agent that works on behalf of the user) a simple API
for creating, accessing, storing and moving data with ease, even on highly dynamic and
volatile environments. Later, when the software became more complex, I recruited José
Saray as an engineer to develop new features and improve the quality of the code, thanks
to the support of an ADT INRIA grant.

The key feature of BitDew is to leverage on special metadata, called here Data At-
tributes. In addition to traditional metadata that are used to index, categorize, and
search data, as in other Data Grids System, data attributes control dynamically the
repartition and distribution of data onto the storage nodes. Thus, complexity of Desktop
Grids systems is hidden to the programmers who is freed from managing data location,
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host failure and explicit host to host data movement. We have proposed different types
of metadata, which correspond to data distribution abstractions : i) replication indi-
cates how many occurrences of data should be available at the same time in the system,
ii) fault tolerance controls the resilience of data in presence of machine crash, iii)
lifetime is a duration, absolute or relative to the existence of other data, which indi-
cates when a data item is obsolete, iv) affinity drives movement of data according to
dependency rules, v) transfer protocol gives the runtime environment hints about
the file transfer protocol appropriate to distribute the data. Programmers tag each data
with these simple attributes, and simply let the BitDew runtime environment manage
operations of data creation, deletion, movement, replication, as well as fault tolerance.

While seeming simple at a first glance, the combination of these abstractions offers a
powerful mechanism to implement complex data distribution pattern. For instance, we
demonstrated in [211, 212] the ability to implement collective communication, à la all-to-
all, along with replication and fault-tolerance on Internet volatile nodes. Such a scenario
is still impossible using classical Desktop Grid middleware. In the next Section, we’ll see
how these abstractions enable us to implement a full MapReduce runtime environment.

An other remarkable design decision is the architecture of the BitDew services. Be-
cause BitDew is also aiming at being deployed on Grid infrastructures, where the storage
resources and services span over several administrative domains, we wanted to break
the monolithic architecture into a set of core services : data catalog, data scheduler,
data repository and data transfer. Thus, the BitDew runtime environment is itself dis-
tributed, so that several service nodes can be instantiated in order to enhance reliability
and scalability or to adjust with an existing infrastructure where data are distributed
over multiple data servers. Thanks to this flexibility, we demonstrated for the first time
that a Desktop Grid was able to execute efficiently a data-intense application, namely
BLAST, by using a combination of data staging approach and P2P protocol [213].

The last point which makes BitDew suitable not only for Desktop Grids, but also for
hybrid DCIs is the support for a wide variety of file transfer and storage protocols [214];
Traditional client/server protocols FTP, HTTP, SCP; P2P protocols such as BitTorrent;
Grid protocol through SAGA interface [131], and more recently Cloud storage such as
Amazon S3 and Dropbox. These unique features form a complete framework and toolbox
that allows researcher to rapidly prototype their data-oriented application and experi-
ment their ideas. To give few examples of such usages: When Adriana Iamnitchi and her
PhD student Nikolas Kourtelis from the University of Florida studied distributed P2P
social network dedicated to data sharing, they rapidly design a mock-up of the architec-
ture to evaluate the relevance of DHT protocols in this context [215]; For the European
FP7 EDGeS project, Ian Taylor and Ian Kelley, from University of Cardiff sketched-up
the first design principles of P2P-Attics [85]; Mohamed Labidi, built an environment for
data-driven master/worker computing [216]; To validate her simulation of a distributed
hierarchical checkpointing system, Fatiha Bouabache and Franck Cappello implemented
the protocol and conducted experiments on Grid’5000 [65, 217, 218, 219]. Obviously,
BitDew has been the substratum to our own research around data management for
hybrid infrastructure, some of them are described in the next sections.

Another BitDew follow-up work, which is still on-going, is the WukaStore hybrid stor-
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age system [220], which is a joint work with Bing Tang. The objective of WukaStore is to
propose configurable, reliable and scalable storage with file availability guaranty that can
take advantage of the huge storage capacity provided by Desktop PC and stable Cloud
storage. In this set-up, we imagine that participant would offer unused part of their
online storage that online applications and services provide: for instance Flickr provides
each users 1TB online capacity. We conducted a first opportunity study that was aiming
at evaluating different storage strategies in term of data availability and durability, as
well as storage overhead [180] using trace-based simulations. To use WukaStore, the
user determines the requirements for their data storage in term of overall storage space,
storage cost, probabilistic availability and durability. For instance, some file, such as the
input or the output of a simulation may require strong availability and durability, even at
the cost of a high storage overhead while very large intermediate results can accomodate
a lower availability, because they can be computed again, as long as the storage overhead
is minimized. Once the data requirements are understood, the user selects an adequate
combination of several storage strategy leverage: chunk replication, recovery on failure,
reconstruction based on erasure codes and repartition between stable and volatile nodes.
Thus Wukastore is an example where taking advantage of infrastructure heterogeneity
allows to overcome pure Desktop Grid limitations: stable but sparse or expensive storage
(such as Cloud storage or reliable file servers) and large, inexpensive but volatile storage
(such as idle storage harnessed from desktop PCs over the Internet). We’ll see in the
next section that this principle can be applied to data-intensive computing as well.

5.2 Implementing the MapReduce Programming Model on
Desktop Grids

Since its introduction in 2004 by Google, MapReduce has become the programming
model of choice for processing large data sets. MapReduce borrows from functional
programming, where a programmer can define both a Map task that maps a data set
into another data set, and a Reduce task that combines intermediate outputs into a final
result. Although MapReduce was originally developed for use by web enterprises in large
data-centers, this technique has gained a lot of attention from the scientific community
for its applicability in large parallel data analysis (including geographic, high energy
physics, genomics, etc.).

We started this research direction because we thought that applications requiring an
important volume of data input storage with frequent data reuse and limited volume
of data output could take advantage not only of the vast processing power but also
of the huge storage potential offered by Desktop Grid systems. There exists a broad
range of scientific applications, such as bioinformatics and simulation in general as well
as non scientific applications such as web ranking or data mining which meet these
criteria [221]. After co-organizing the MapReduce workshop with Geoffrey Fox from the
Indiana University, I became convinced that supporting the MapReduce programming
model on Desktop Grid was a necessary step to support the execution of data-intensive
applications.
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However, enabling MapReduce on Desktop Grids raises many research issues with
respect to the state of the art in existing Desktop Grid middleware. In contrast with
traditional Desktop Grids which have been built around Bag-of-Tasks applications with
few I/O, MapReduce computations are characterized by the handling of large volume
of input and intermediate data. The challenges includes: i) support for collective file
operations which exist in MapReduce, in particular the Shuffle phase, which is the redis-
tribution of intermediate results between the execution of Map and Reduce tasks; ii) the
result certification, which is a key security component, has to be decentralized because
the volume of intermediate data would be too large to be sent back to the server for
certification; iii) dependencies between the Reduce tasks and the Map tasks, combined
with hosts volatility and laggers can slowdown dramatically the execution of MapRe-
duce applications. Thus, there is a need to develop aggressive performance optimization
solution, which combines latency hiding, data and tasks replication and barriers-free
reduction.
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Figure 5.1: MapReduce flow of execution

In [175, 172], we have proposed an implementation of MapReduce runtime environment
for Desktop Grid systems based on BitDew. Mircea Moca, during a 6 month PhD
internship in our team and Stéphane Chevalier, during his ENS Master’s internship
designed the first prototype of the environment. To our knowledge, this was the first
implementation specifically designed to execute MapReduce applications on an Internet
environment, which fully addresses the problematics of this platform: nodes connectivity,
malicious computing resources, and extreme nodes heterogeneity and volatility. We list
some of the high level features that have been specifically developed:

• Latency hiding and collective file operations Implementing efficient communication
in Desktop Grid present a considerable challenge. The latency can be orders of
magnitude higher than latency provided by interconnection networks found in clus-
ters. We overlap communication with computation thanks to the multi-threaded
worker design, which can concurrently transfer several files, and execute several
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Map and Reduce tasks with a high degree of control. A MapReduce execution
comprises several collective file operations which in some aspects, look similar
with collective communications in parallel programming such as MPI (see Figure
5.1).

• Fault tolerance and scheduling In Desktop Grid, computing resources have high
failure rates, therefore the execution runtime must be resilient to a massive num-
ber of crash failures. Our implementation tolerates failures that can happen during
the computation, either execution of Map or Reduce tasks, or during the communi-
cation, that is file upload and download. The protocol takes advantage of data and
file transfer resilience provided by BitDew to redistribute file chunks when crashes
are detected: the input chunks in case of mapper failure and intermediate results
in case of reducer failure. Traditional cluster implementations of MapReduce such
as Hadoop introduce several barriers in the computation and in particular between
the execution of Map and Reduce tasks. In Desktop Grid systems, because there
can be a long period of time before nodes reconnect, it is necessary to remove
any barriers so that the Reduce task can start as soon as intermediate files are
produced. To do so, we have slightly changed the API of the Reduce task to
allow the programmer to write the reduce function on segment of keys interval.
The early reduction combined with the replication of intermediate results allowed
us to remove the barrier between Map and Reduce tasks. Traditional scheduling
associates computation to processing nodes. In contrast, our implementation re-
lies on a two-level scheduler. First, the placement of data on hosts is ensured by
the BitDew scheduler, which is mainly guided by the attribute properties given to
data. However this would not be enough to efficiently steer the complex execution
of MapReduce application. The second scheduler is the MapReduce master, which
detect laggers, that is, nodes which spend an unusually long time to process the
data and slow down the whole computation. The master determines if there are
more nodes available than tasks to execute. In this case, increasing the replication
factor of the remaining tasks to compute can avoid the lagger effect.

• Distributed result checking As mentioned in Section 2.2.5, we have adapted the
majority voting heuristics, as it exists in BOINC to the decentralized network
of storage Reducers [174]. Once a reducer has obtained n out of p intermediate
results, the result that appears most often is assumed to be correct.

Although this architecture has been specifically planned with Internet Desktop Grid
as a target, it shows several similarities with Hadoop design, i.e master/worker, fault-
tolerance, speculative execution, etc. Xuanhua Shi, from HUST University in Wuhan,
China has been a XtremWeb user and after organizing a France-China workshop, with
the help of the French consulate of Wuhan about Big Data and Cloud Computing, we
decided to work together, and to organize a 6 months internship for his PhD student Lu
Lu. Lu Lu extensively compared Hadoop and BitDew-MR to assess the contribution of
each of these features to the feasibility of running MapReduce as an Internet Desktop
Grid [173]. The evaluation was conducted on Grid’5000 using a set of independent
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experiments, where each one were evaluating one aspect of the Desktop Grid: emulation
of firewall, host churns, sabotage, massive node crashes and more. This new methodology
approach allowed to assess with a great confidence, that our prototype was able to run
in conditions close to an actual Internet deployment.

There are several scenarios that motivate the use of MapReduce on multiple infrastruc-
tures (for instance to increase storage and computing capacity or to reduce data transfer
during the computation), and more specifically on Desktop Grid and Cloud systems.
Enabling MapReduce on hybrid infrastructures is the purpose of the ANR MapReduce
project [171, 222], funded by the French National Research Agency, on which collaborate
INRIA, IBM France, the University of Rennes, Argonne National Lab and the Institut de
Biologie et Chimie des Protéines. In this project, we investigate a runtime system that
would allow to split a MapReduce computation over two different runtime environments;
Namely BitDew-MR for the execution on Desktop Grid resources, while the execution
on Cloud infrastructure is being handled by a combination of Hadoop with BlobSeer, a
file system optimized for high concurrent write [223]. Julio Anjos, is a PhD student from
UGFS, Brazil who is spendind one year in our team working on these issues. Julio’s first
result is a simulator of the whole environment (See Section 3.2), and he is now looking at
strategies to split and distribute data between the two kind of infrastructures according
to their computational capabilities.

A particular use-case for hybrid MapReduce concerns data privacy. During her Mas-
ter’s internship, Asma Ben Cheick proposed an approach [179] to protect data privacy
by spreading data-sets on a combination of public and private clouds so that the compro-
mise of an infrastructure would not allow the attacker to reconstruct the whole data-set.
To do so, we rely on Information Dispersion Algorithms (IDA), which allow to split a
file into pieces so that, by carefully dispersing the pieces, guarantees there is no method
for a single node to reconstruct the data if it cannot collaborate with other nodes. An
interesting and somewhat unexpected development of this work would be to take benefit
of Desktop Grids, where collaborative attacks are much harder to perform to increase
the overall security of the computation [99].

5.3 Handling Data Life Cycles on Heteregeneous Distributed
Infrastructures

E-Science infrastructures form complex assemblages of data management services and
computational software, which often span over multiple heterogeneous infrastructures.

As the volume of data grows exponentially, the management of this data becomes
more complex in proportion. A key challenge is to handle the complexity of data life
cycle (DLC), i.e. the course of operational stages through which data pass from the time
when they enter a system to the time when they leave it. The DLC starts when data
enter the system either acquired by an instrument, or as results of a computation; the
DLC terminates when data are physically erased, or when moved to storage outside of
the system. Between these two points in time, data progress through a series of different
stages (e.g., acquisition, cleanup, duplication, archival, transfer) that are either appli-
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cation initiated (e.g., transformation, aggregation, metadata extraction) or triggered by
external events (e.g., failures that lead to data unavailability).

The result is that life-cycles of scientific data set are becoming very complex and
controlling the whole life-cycle almost intractable without understanding and monitoring
the interaction between data-sets and e-infrastructures.

Active Data: Principles & Features

System programmers expose their system’s internal data life cycle with a
model based on Petri Nets.
A Life Cycle Model is made of

I Places: data states

I Transitions : data operations

Created

t1

•
Written

t2

Read

t3

t4

Terminated

public void handler () {

computeMD5 ();

}

Code may be plugged by clients to transitions.
It is executed whenever the transition is fired.
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Figure 5.2: Representation of the “Write-Once, Read-Many” data life cycle: Places, rep-
resented by circles are the states of the life cycle; Transitions, represented by
rectangles are the operations that happen on data items; Tokens, represented
by • on Places, are data items in a particular state of the life cycle.

Active Data [224, 225] is the contribution of Anthony Simonet’s PhD thesis, whom I
advise since 2012. Active Data proposes a different and innovative paradigm for data
life cycle management. We started this joint work with Matei Ripeanu (UCB, Canada),
when he was invited professor at ENS-Lyon.

Active Data allows to reason about data sets handled by heterogeneous software and
infrastructures. It’s composed of:

• a formal model that captures the essential life cycle stages and properties: cre-
ation, deletion, faults, replication, error checking. The model is based on Petri
Networks [226], which is a formalism and a graphical tool widely used for the anal-
ysis of systems with concurrency and resource sharing. An example of a DLC is
presented in Figure 5.2.

• a programming model which allows code execution at each stage of the data life
cycle. In Active Data, the programmer, specifies the set of data-related events
(e.g., data item creation, replication, transfer completion, data loss, deletion) to
be monitored per data item and programs the operations to be executed when
these events happen. In the example presented in Figure 5.2, the transition t2 is
associated with a code that automatically compute the MD5 signature for each file
copied in the system.

This programming model allows developing a broad range of data life cycle manage-
ment (DLM) applications such as automated tiered storage, processing attached to any
stage of the life cycle, coordination between data acquisition mechanisms and remote
storage, content delivery networks, deep storage archival, incremental data management,
and so forth.

The Active Data framework developed by Anthony Simonet has several high level
features: i) it allows legacy data management systems to expose their intrinsic DLC and
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to report about DLC events; ii) compose DLC to represent data movements from one
system to the other, reconciling identifiers and offering a high-level and flat view of large
data life cycles, abstracting hardware and software complexity; iii) powerful filters based
on automatic Data Tagging, and guarded transitions, which only executes on data item
having specific tags; iv) a scalable runtime system based on publish/subscribe paradigm.

Use Case: Advanced Photon Source
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Figure 5.3: The Advanced Photon Source

As a use-case for this work we use a real-world application from the Advanced Photon
Source (APS) at Argonne National Laboratory. This is a joint work with Ian Foster
and Kyle Chard [227] from ANL and the University of Chicago, which took place in the
context of the INRA/ANL Joint Laboratory on exascale computing. In this example,
the researchers use a near-real time workflow in which data is automatically analyzed
as it is acquired. The workflow is both compute and data intensive, requiring 1000
nodes for near-real time analysis and 3-5TB of data is generated per week. The workfow
can be split in five stages : 1) data acquisition from a detector, 2) initial transfer to a
larger shared cluster using Globus Online transfers, 3) data reduction and aggregation ;
e.g., refinement operations and calculation of stresses and strains for individual grains,
grouping of files into “datasets” per experiments or sample, 4) meta-data extraction;
data is then cataloged in the Globus Catalog system, 5) data is moved to large scale
compute resources where Swift-based analysis pipeline is run to fit a crystal structure
to the observed image.

While the APS use case described above achieves the goals of its users, there is poten-
tial for significant inefficiency, unreported failures and even errors due to the complexity
of dealing with several terabytes of data and a number of different operations. Modeling
the whole life cycle of data in an APS experiment, from end to end, gives the abil-
ity to expose what happens inside the three systems that compose the infrastructure:
Swift, Globus Online and Globus Dataset Catalogs. Based on the APS life cycle model,
we design a Data Surveillance Framework, which allows Scientist to fully monitor their
data-sets processing with the following features:
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• Progress Monitoring, which consists in: i) generate reports on progress, get rel-
evant notification when a workflow fully completes, ii) get a single relevant no-
tifications when several related events occurred in different systems; iii) identify
bottlenecks in executions, allowing backtracking the chain of causality, helping to
fix the problem at runtime and optimizing the workflow for future executions;

• Automation: The workflow used by APS scientists requires human interventions to
progress between stages and to recover from unexpected events. Such interventions
cannot be integrated in a traditional workflow system, because they reside a level
of abstraction above workflow systems. The data-surveillance framework allows
to coordinate between systems, and eventually automate several tasks that were
performed manually: e.g start the meta-data extraction script when files have been
correctly transferred.

• Sharing : accelerating data sharing with the community by pushing notifications to
collaborators and colleagues. We believe the best way for scientists to automati-
cally integrate new datasets in their workflows is to rely on widely used tools—such
as Twitter that can be furthermore easily integrated with other systems as well.

• Recovery : Even if systems may individually have failure recovery features, they
cannot detect all errors because they lack a global vision of the entire process.
Thus, when unexpected events occur, systems often fail ungracefully, leaving the
scientists as the only one able to resolve the problem through costly manipulations.

5.4 Conclusion

Handling data-intensive science is pushing the Desktop Grid paradigm to its limits.
This has forced us to revisit the Desktop Grid architecture by breaking the monolithic
server in a set of independent services to catalog, store, transfer and schedule data and
by integrating P2P protocols when a centralized approach might induce a performance
bottleneck.

We proposed new abstractions, which help developers to perform complex tasks asso-
ciated with large scale data management, such as life cycle, transfer, placement, repli-
cation, fault tolerance, storage and processing. Particular care was taken to obtain
well principled foundation to define the data life cycle. After several years of develop-
ment, we now have a software portfolio which implements these abstractions: BitDew,
MapReduce/BitDew, and Active Data.

These frameworks have been designed to cope with a large number of volatile re-
sources, and they have the following high-level features: multi-protocol file transfers,
data scheduling, automatic replication, data privacy, parallel processing, data affinity
and transparent data placement. Moreover, they can take advantage of Cloud storage
to mitigate Desktop resources volatility.

These frameworks make possible many usage scenarios that were not feasible or dif-
ficult to perform before on Desktop Grid or on hybrid DCIs: provide reliable storage
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from hybrid DCIs with configurable storage strategies, organize complex communication
pattern transfer with replicated data, realtime data surveillance framework, incremental
MapReduce processing, and more. We showed that although MapReduce is significantly
more complex than traditional Bag-of-Tasks application, it is possible to build an effi-
cient and secure runtime to enable data-intensive application on Desktop Grid.

Active Data is a new paradigm for data life cycle management and we are just starting
to explore the possibilities of the model. Here are some open perspectives:

• Big-Data deployment on the Cloud. Asma Ben Cheick, PhD student advised by
Heithem Abbes from the University of Tunisia, is proposing a system that takes
the data life cycle as a specification for deploying the required data management
systems on IaaS infrastructures.

• Big Data inter-systems optimization. With Haiwu He, who is now Professor at the
Chinese Academy of Sciences, in Beijing, we are investigating the use of Active
Data to instrument some elements of the Apache Big Data stack (HDFS, Hadoop,
PIG, HBase etc.) and provide generic inter-system optimizations.

• Data traceability and provenance. Once a data life cycle is known and the software
involved have been made “Active Data-aware”, it is trivial to record information
about all the events that happened to the data set. Some possible applications
are: i) data resource consumption traceability, that can allow for global energy
optimization (with Laurent Lefevre), and ii) data derivation history, that can
allow for workflow optimizations (with Frédéric Suter).
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Chapter 6

Conclusion and Perspectives

In summary, who say Liberty, say Federation or say nothing.

(Joseph Proudhon (1809-1865))

6.1 Conclusion

The Desktop Grid paradigm has evolved considerably over a decade. It started as a
little silly idea to become full-scale and sustainable systems used on a daily basis by
large scientific communities. An evidence of this transformation is the International
Desktop Grid Federation (IDGF)1, established on the base of FP7 EDGI and FP7 EDGeS
European projects. IDGF now brings together more than 40 institutions worldwide. I
believe that students, postdocs, and engineers who worked under my supervision, and
myself have contributed significantly to close the question of the feasibility of Desktop
Grid Computing.

Collectively, researchers and practitioners of Desktop Grid have been able to come
together in a community, albeit small, but active, passionate, and which has been able
to provide the means of its ambitions by organizing regular workshops and user group
meetings and by taking advantage of international opportunities for collaboration. On
my side, I had a lot of fun to animate this community, for instance by co-organizing the
GP2PC, PCGRID and MAPREDUCE workshops and by co-editing the “Desktop Grid
Computing” book.

As a scientist, I have been fortunate to have an awesome playground at my disposal
to develop my research. What is really surprising is the variety of scientific methods
we elaborated to develop, evaluate, and validate our hypothesis and solutions. Methods
range from system observation and resource characterization to platform simulation
and software emulation on Grid5000. To obtain realistic and reproducible experimental
conditions, it has been necessary to build a special purpose experimental testbed. DSL-
Lab has been Paul Malécot’s core PhD thesis contribution. I happened sometimes to

1International Desktop Grid Federation: http://desktopgridfederation.org
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be terribly envious of my colleagues doing Cloud and Cluster computing for the ease
of access to experimental testbeds. On the other hand, it gave me the opportunity
to explore this vast and still mysterious territory, which is the Internet. Thanks to
Derrick Kondo’s postdoc work, we now understand better the impact of node volatility
on Desktop Grid performance.

From a scientific point of view, it is extremely gratifying to see that simple ideas
proposed years ago, are still valid. This is the case with XtremWeb architectural prin-
ciples that were established during my PhD thesis: computing on volatile resources,
fault-tolerance through replication and host failure detection, and push/pull scheduling
protocol. Many algorithms are covered in the manuscript that improve this architecture
on several aspects : scheduling, QoS, security, programming model, and more. We also
proposed new software for Desktop Grid Computing : BitDew, an environment for large
scale Data management on Desktop Grid and Cloud (Haiwu He’s postdoc); SpeQulos,
a QoS service for Best-effort infrastructures (Simon Delamare’s postdoc); and the first
environment for MapReduce computing on Desktop Grid (Bing Tang’s postdoc).

Thanks to these breakthrough, Desktop Grid systems can now offer a user experience
close to the regular Distributed Computing Infrastructures (DCI), such as Cloud and
Grid systems. In addition, we addressed many interoperability issues between Desktop
Grids and other DCIs, such as support for virtualization technologies to improve scientific
application portability, Grid ↔ Desktop Grid bridge, support for Grid standards with
respect to user authentications, logging and bookkeeping, job submissions, file transfer
protocols, and so forth.

The consequence is that scientists now have at their disposal several kinds of DCIs,
that can be used simultaneously to run their Grand Challenge applications. We call
this assemblage of Grids, Desktop Grids and Clouds, an Hybrid Distributed Computing
Infrastructure (Hybrid DCI). Computing on Hybrid DCI introduces many challenges as
the infrastructure and the computing resources may be very heterogeneous in term of
power efficiency, cost of usage, reliability, trust, usage paradigm, resource management,
geographical location, and more. The manuscript presents several results which ad-
dressed the issues of using this emerging class of infrastructure efficiently. In particular,
a promising research direction is the Promethee Scheduler (Mircea Moca’s contribution),
which combines a pull-based scheduler with multi-criteria decision and user satisfaction
oriented methods.

The manuscript reports on several significant progresses towards Data-intensive appli-
cations on Desktop Grids and Hybrid DCIs. We proposed new abstractions for large scale
data management and implemented these abstractions in several middleware. These
abstractions allow to develop complex data-oriented scenarios, such as: configurable
storage for Hybrid DCIs, data surveillance framework for a complex physics workflow,
MapReduce runtime environment for Hybrid DCI, and more. To undertake this riskier
research, I led and participated to several national and international projects: ANR
DSLLAB, ANR Clouds@Home, ANR MapReduce, ANR CloudPower, France-Japan
Sakura P2PLab.

The latest evolution of this research leads us to have a more comprehensive view of
the interactions between large scientific datasets and the complex infrastructures which
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handle them. The proposition of Anthony Simonet’s thesis is to use data life cycle
as a new abstraction for data management. His contributions are a well principled
model that allows for a unified view of data life cycle across heterogeneous systems and
distributed infrastructures, and a programming model that facilitates the development
of complex applications to manage large, dynamic and distributed data sets. The first
results obtained on a variety of use cases are promising, and we think that Active Data
is a good starting point to tackle more complex problems involving the coordination of
heterogeneous Big Data software stacks, hybrid DCIs, and more dynamic data sets, such
as data streams or large graphs.

6.2 Perspectives

One of the specific features of Desktop Grid Computing that we do not have addressed
so far is the lack of certainty that one can have on its future. If we keep on thinking of
Desktop Grid Computing as a Desktop PC tower running the SETI@Home screensaver
while happily participating in global warming, then in this case, we should no longer
call this Volunteer Computing but instead “Vintage Computing”.

Let’s now look at some possible radical evolutions of the context, i.e infrastructures,
technologies and applications, in order to draw some perspectives for the discipline and
propose some future research directions.

The Death of Desktop PCs. So, this big, ugly, and energy-hungry thing dies –
although we must be cautious here as it seems that the tablet market decreases more than
the Desktop PCs market – ; then, the question is: is it going to be reincarnated? and
how? According to Wikipedia, a Personnal Computer is : “a general-purpose computer
whose size, capabilities and original sale price make it useful for individuals, and is
intended to be operated directly by an end-user”. Following this definition, we can already
see many reincarnation of this machine around us: smartphones, tablets, TV set-top
boxes and in a very next future, camera, car entertainment systems, and a lot more.
Actually, this evolution, has been anticipated almost from the beginning of XtremWeb.
In the early 2000s, we acquired ARM-based PDAs on which we executed a ray tracing
application distributed through XtremWeb. And new opportunities appear constantly.
At the CES’2015 keynote address, Intel CEO Brian Krzanich, announced the ”Curie”
SoC, a low-power 32-bits Quark (2 GHz) processor with embedded sensors, bluetooth,
Flash memory and RAM, that is the size of a jacket button. This platform is likely to
prefigure what will dominate the wearable and IoT market.

Thus, we are entering a new era where we have to take into account new devices,
not only because they are likely to perform computationally intensive tasks, but more
certainly because they will be able to produce or acquire data, while being powerful
enough to handle part the data processing. Of course, there is a practical limit to this
concept: these devices have a short battery life, and using the CPU or network for data
analysis or transfer may shorten it even further.

Thus, the challenge is how to model the energy footprint of running large and dis-
tributed applications, considering both compute-intensive and data-intensive ones and
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comparing diverse scenarios, which involves traditional Desktop resources, mobile devices
and sensors, and Cloud infrastructures, in order to understand what are the infrastruc-
ture mixes that lead to a global power consumption efficiency; while enforcing end-user
device usability.

Do we still need XtremWeb ? Desktop Grid Computing consists in a number of
technologies that have been developed to allow to run HTC workload on a non-dedicated
infrastructure. There is a trend in pushing the machines out of the data-center walls to
lower the power and the cooling cost [228]: some are designing a micro-data center on
the building roof powered by solar panels [229]; some others are transforming a data-
center in the building basement in a furnace [230]. For example, in the scope of the
ANR CloudPower project, we have been working with the French enterprise Qarnot
Computing. Qarnot Computing is designing a product called Q.Rad, which is a heater
embedding high performance processors as a heat source. Q.Rad are installed in each
room of an individual home and the heat is produced when the Q.Rad is processing a
workload distributed by the Qarnot scheduler.

Because Desktop Grid systems have been designed to opportunistically take advantage
of unused or underused resources, they are good candidates for managing such kind of
infrastructures, in particular when augmented with multi-criteria scheduler (see Section
4.3). However there are several challenges to address to make Desktop Grid fully energy-
aware. First a predictive model of host machine energy consumption is needed, to avoid
drying out the device battery. Desktop Grid schedulers require a finer control of the
workload that can be adjusted according to the energy available, in the case of energy-
opportunistic computing or to the energy produced, in the case of a furnace or heater.
Finally, for Hybrid DCI, new scheduling algorithms are expected that can distribute data
and computations according to performance vs. power efficiency criteria, while taking
into account the specific characteristic of each infrastructures: reliability, usage costs,
etc.

Towards Data Infrastructure It is a commonplace, but we are entering the era
of Big Data, a considerable phenomena that is impacting the whole process of scientific
discovery [209]. However, the phenomena is not limited to some fields of Big Science.
The methods and know-how to collect information from various sources, to recognize
patterns and extract meaning out of vast data quantities, to access efficient computing
resources, to share and collaborate on data-sets are critical in this new way of distilling
scientific insights. The challenge of Big Data cannot be restricted to the question of
providing larger storage capacity and scalable computing facilities. One radical way of
entering this area is to consider the dataset as the infrastructure, i.e the data should
stands as a layer between the user and the infrastructure.

However, challenges exist, which prevent to fully exploit the value of the scientific
data-sets, in three key facets of Data-intensive Sciences: Data infrastructures, Data
management and analysis workflows, and collaborative e-Sciences.

Scaling-up Data infrastructure is a great challenge that goes beyond optimizing each
component of the whole system. The reason is that we have a limited understanding of
the interactions between data-sets and e-infrastructure, which precludes tighter coordi-
nation between the various systems involved in data management. This is even more
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complex when we consider dynamic dataset widely distributed on sensor networks or
mobile devices.

Data scientists are facing data analysis workflows that are becoming increasingly more
complex and now requires highly qualified engineers able to mix parallel computing,
statistical programming as well as scripting languages to glue the various tools in an ad-
hoc way. The second challenge is to provide solution to mitigate the overwhelming sum
of human tasks that are not sufficiently automated, and the lack of high-level languages
or programming models to express how systems should cooperate.

A crucial role of data-sets is that they are a vehicle for collaborative work, and in-
creasingly, become communication tool between the disciplines. A popular example
is the Kaggle web site, which by designing “contest” around datasets has been highly
successful for popularizing interesting data analysis problems to the data mining and
machine learning community. The third challenge is to further develop collaborative
data-intensive science, i.e scientist who share common interest in data-sets would be
able to exchange information, share analysis and programs, track similar data-set usage
and receive recognition for publicizing data.

I think that Active Data offers us the good level of abstraction to tackle all the afore-
mentioned challenges. However, we’ll have to adapt our legacy Desktop Grid approach
that was well adapted to data processing with a large to medium granularity to much
finer grain processing, required by data stream or graph computing.

Desktop Grid Computing might not be the most adequate term to describe this new
computing paradigm, and we should probably start to look for a new name. Any sug-
gestions ?
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Perpignan, France, October 2006.

[C83] G. Bosilca, G. Fedak, T. Herault, and F. Magniette. Evaluation de performance de différentes
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Datenverarbeitung mit Map-Reduce, University of Heidelberg, Germany, May 2012. Invited speaker.
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[T100] G. Fedak. Introduction to MapReduce. In in Workshop Langages et paradigmes de programmation
émergents, Lyon, France, December 2010. Cluster ISLE. Invited talk.
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NOTERE’10, Tozeur, Tunisie, May 2010. Invited Talk.

[T102] B. Tang, G. Fedak, and H. He. The BitDew project : Towards Large Scale Data Processing.
In First France-China Workshop on Virtualization Technologies and Cloud Computing, Wuhan,
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[T103] G. Fedak. Recent Advances Towards Data Desktop Grids . In NetSysLab Seminary, University
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[T104] G. Fedak. Hot Topics in Desktop Grids Research. In GRAAL GdT, LIP/ENS, ENS Lyon,
France, January 2009. Seminary.

[T105] G. Fedak. BitDew: A Programmable Environment for Large-Scale Data Management and Distri-
bution. In Innovative Computing Laboratory, Friday Talk, UTK, Knoxwille, USA, November 2008.
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[T106] G. Fedak, H. He, and F. Cappello. Keynote: Distributing and Managing Data on Desktop
Grids with BitDew. In Proceedings of High Performance Distributed Computing (HPDC’08),
3rd Workshop on the Use of P2P, GRID and Agents for the Development of Content Networks
(UPGRADE-CN’08), pages 63–64, Boston, USA, June 2008. Keynote Speaker.

[T107] G. Fedak. Bridging XtremWeb with the EGEE Grid. In 1rst EDGeS User Forum and Industry
Forum, Orsay, France, May 2008. Invited talk.

[T108] G. Fedak. Implementing New File Transfer Protocols in BitDew: Amazon S3 Case Study. In
XW’08 : 2nd XtremWeb Users Group Workshop, Orsay, France, May 2008. Invited talk.

[T109] H. He, G. Fedak, and F. Cappello. Large-Scale Bioinformatic Computing on Data Desktop Grid.
In First IEEE International Scalable Computing Challenge (SCALE 2008) along with CCGRID’08,
Lyon, France, May 2008. Challenge.
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[T110] G. Fedak. DSLLab : Plate-forme d’expérimentation pour les systèmes distribués à large échelle
sur Internet haut-débit. In Colloque ANR JCJC, Montpellier, France, May 2007. Invited talk.

[T111] G. Fedak. Towards Data-Intensive Applications on XtremWeb. In XtremWeb Users Group
Workshop, Hammamet, Tunisia, February 2007. Invited talk.

[T112] G. Fedak, B. Wei, and F. Cappello. Scheduling Independent Tasks Sharing Large Data Distributed
with BitTorrent. In NSF/INRIA Workshop Scheduling for Large-Scale Distributed Platforms, La
Jolla, California, USA, November 2005. Invited talk.

[T113] G. Fedak. XtremWeb: Calcul à Large Echelle. In Rencontres de la Société de Mathématiques
Appliquées, Evian, France, May 2005. Invited talk.

[T114] G. Fedak. Grand Large Desktop Grid. In France-Korea Joint Workshop on Grid Computing,
Rennes, France, July 2004. Invited talk.

[T115] G. Fedak. XtremWeb: A Peer-to-Peer Global Computing Experimental Platform. In Free
Software and Open Source Developers Meeting FOSDEM, Brussel, Belgium, February 2002. Invited
talk.

[T116] G. Fedak. XtremWeb: an experimental platform for Global and Peer-to-Peer Computing. In
HEPiX 2001, UNIX users in the High Energy Physics, Orsay, France, April 2001. Invited talk.

[T117] F. Cappello, G. Fedak, and O. Richard. Systèmes distribués de calcul global et pair à pair. In
Tutoriel à Renpar’2001, Paris, France, April 2001. Tutorial.

Research Reports

[R118] A. Simonet, G. Fedak, and M. Ripeanu. Active Data: A Programming Model for Managing Big
Data Life Cycle. Technical Report RR-8062, INRIA, 2012.

[R119] G. Fedak, O. Lodygensky, Z. Farkas, and P. Kacsuk. Prototype of the generic bi-directional service
grids to desktop grids bridge. Technical report, Deliverable JRA1.3, EDGeS project European
Union, 2009.

[R120] G. Fedak, J.-P. Gelas, T. Hérault, V. Iniesta, D. Kondo, L. Lefèvre, P. Malécot, L. Nussbaum,
A. Rezmerita, and O. Richard. DSL-Lab: a Platform to Experiment on Domestic Broadband
Internet. Technical Report 7024, INRIA, 2009.

[R121] G. Fedak, O. Lodygensky, and Z. Farkas. Prototypes of bridge from service grids to desktop
grids. Technical report, Deliverable JRA1.2, EDGeS project European Union, 2008.

[R122] A. C. Marosi, P. Kacsuk, G. Fedak, and O. Lodygensky. Using Virtual Machines in Desktop Grid
Clients for Application Sandboxing. Technical Report TR-0140, Institute on Architectural Issues:
Scalability, Dependability, Adaptability, CoreGRID - Network of Excellence, August 2008.

[R123] F. Costa, L. Silva, G. Fedak, and I. Kelley. Optimizing the data distribution layer of boinc with
bittorrent. Technical Report TR-0139, Institute on Architectural issues: scalability, dependability,
adaptability, CoreGRID Technical Report, June 2008.

[R124] G. Fedak, O. Lodygensky, and Z. Farkas. Prototypes of bridge from desktop grids to service
grids. Technical report, Deliverable JRA1.1, EDGeS project European Union, 2008.

[R125] G. Fedak, H. He, and F. Cappello. BitDew: A Programmable Environment for Large-Scale Data
Management and Distribution. Technical Report 6427, INRIA, jan 2008.

[R126] F. Boyer, J. Kornas, J.-B. Stefani, N. Parlavanzas, N. de Palma, A. Ouorou, E. Gourdin, N. Amara,
R. Krishnaswamy, L. Navarro, R. Brunner, X. Leon, X. Vilajosana, D. Kondo, G. Fedak, P. Male-
cot, A. Valarakos, A. Papasalouros, G. Vouros, K. Kotis, S. Retalis, J. Quiane-Ruiz, P. Valduriez,
and P. Lamarre. D2.1 requirements for grid4all virtual organisations and resource management
and state of the art analysis. Technical report, European Union, Grid4All project, June 2007.
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[R127] D. Kondo, P. Malecot, G. Fedak, F. Cappello, F. Araujo, L. Silva, and P. Domingues. Charac-
terizing Result Errors in Internet Desktop Grids. Technical Report TR-0040, Institute on System
Architecture, CoreGRID - Network of Excellence, October 2006.

Software and Repositories

[W128] S. Delamare and G. Fedak. SpeQulos: A Framework for QoS in Hybrid Distributed Computing
Infrastructures. http://spequlos.gforge.inria.fr.

[W129] G. Fedak, H. He, and F. Cappello. BitDew: an Open Source Middleware for Large Scale Data
Management. http://www.bitdew.net.

[W130] P. Malecot, D. Kondo, and G. Fedak. XtremLab: Characterizing Internet Volunteer Computing
System. http://xtremlab.lri.fr.

[W131] D. Kondo, G. Fedak, P. Malecot, F. Cappello, H. Casanova, and A. Chien. Desktop Grid Traces
Archive. http://dgtrace.lri.fr.

[W132] P. Malecot, A. Rezmerita, G. Fedak, T. Herault, L. Lefevre, and O. Richard. DSL-Lab: an Ex-
perimental Platform About Distributed Systems Running on DSL Internet. http://www.dsllab.org.

[W133] O. Lodygensky, G. Fedak, and F. Cappello. XtremWeb: an Open Source Middleware for Desktop
Grid Computing. http://www.xtremweb.net.
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Chapter 3: Desktop Grids: From Volunteer Distributed Computing to High
Throughput Computing Production Platforms. In Kuan-Ching Li, Ching-Hsien
Hsu, Laurence Tianruo Yang, Jack Dongarra, and Hans Zima, editors, Handbook
of Research on Scalable Computing Technologies, pages 31–61. IGI Global, July
2009.

[8] Franck Cappello, Abderrahmane Djilali, Gilles Fedak, Cécile Germain, Oleg Lody-
gensky, and Vincent Néri. Xtremweb: une plate-forme de recherche sur le calcul
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89



Bibliography

Wattiau Jacky-Akoka, editors, Encyclopédie de l’informatique et des systèmes
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