
Secure System Development

Life Cycle (SDLC)

Building Security Into Your System--

Not Bolting It On After the Damage is Done

By Patrick McBride

& Edward P. Moser

Copyright Notice

Copyright © 2000, METASeS™

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without expressed permission in writing from META Secur e-COM Solutions (METASeS)™.

All brand names and product names mentioned in this book are trademarks or registered
trademarks of their respective companies.

METASeS
8601 Dunwoody Place, Suite 700, Atlanta GA 30350
678-250-1250 fax: 678-250-1251
www.metases.com

Printed in the United States of America.

Warning and Disclaimer
No part of this publication shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from METASeS™. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this publication, METASeS
(publisher and author) assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein.

iii

Introduction .1

Audience .1

Key Terms .1

Premise .2

Purpose .3

Organization .4

Background .5

SDLC Phases .7

Requirements Analysis .10

Analyze Security Requirements .10

Confidentiality and Possession .14

Integrity and Authenticity .14

Availability and Utility .14

Auditibility .15

Non-Repudiation .15

Discuss Business Operations .17

Profile Users for the Organization’s Applications/Systems .17

Develop Prioritized Security Solution Requirements .18

Architecture and Design .18

Eliminating Vulnerabilities Upfront .18

Architecture Defined .18

Iterative Steps: Practice Makes Perfect .20

Architecture’s Twin Components .20

Architecture Tasks .20

Architecture and Design Tasks .24

Create System-Level Security Architecture .25

Perform Architecture Walkthrough .25

Create System-Level Security Design .25

Perform Design Review .26

Educate Development Teams on How to Create a Secure System .26

Design End-User Training Awareness Measures .26

Design a Security Test Plan .27

Assess and Document How to Mitigate Key Application and Infrastructure Vulnerabilities 27

Develop (Build/Configure/Integrate) .28

Develop Technical Configuration Standards and Procedures .28

Test Security .29

Conduct Performance/Load Test With Security Features Turned On .29

Table of Contents

METASeS™ Table of Contents

iv

Perform Usability Testing of Applications That Have Security Controls .29

Perform Independent Vulnerability Assessment of System (Infrastructure and Applications) 29

Deployment/Implementation .30

Deploy Training and Awareness Program .30

Operations/Maintenance .30

Perform Ongoing Vulnerability Monitoring .30

Conclusion .31

Appendix A – Checklist of Security-Related Tasks and Subtasks .32

Appendix B – SDLC Overlay .40

Appendix C – Security-Related Processes and Procedures .41

1

This section outlines the key terms, premise, purpose, audience, and background of the report.

Audience

The audience for this report is primarily members of application and infrastructure development
teams.

The security team in an organization will often explain, to the development, infrastru c t u re, and business
teams, the importance of having a plan to build security into the life cycle process. We’ve often found
that the security personnel then "fall victim to their own marketing success". The teams in question,
duly lectured, and enlightened, will often then request guidance on how to accomplish the task. These
kind of requests are growing more frequent as computer security becomes a more pressing need.

In addition to enhancing communication between the security and application development teams,
a security framework also can be used to better define requirements for outside consultants
responsible for system development initiatives.

This report assumes a certain level of understanding of System Development Life Cycle (SDLC)
processes, but not necessarily a comprehension of security issues. We define any security-related
matters that arise in the report.

Key Terms

Important terms contained in this report are defined below.

Asset Classification -- Classifying and labeling of information so that users understand its value
to the organization, and what they need to do to protect it.

Assets -- The type and value of data or information to be protected. Assets refer to the data
contained in or traversing computer networks.

Asset Value -- The value of the different assets that you are trying to protect. The worth of the
data that intruders target.

Introduction

METASeS™ Introduction

2

Controls -- Technical and non-technical measures put in place to eliminate or mitigate risk.

Denial of Service (DoS) – The inability of a Web site to function for an extended period.

Risk -- The likelihood of loss, damage, or injury. Risk is present if a threat can exploit an actual
vulnerability to adversely impact a valued asset.

Risk Management -- Identifying, assessing, and appropriately mitigating vulnerabilities and
threats that can adversely impact the organization’s assets.

SDLC -- The integrated, iterative process of analyzing, designing, developing, deploying, and
enhancing applications or infrastructure, including both third-party and in-house applications.

System – In the context of this report, refers to both applications and infrastructure (hardware,
operating systems, software, etc).

Threat -- The actual people or organizations that could exploit a vulnerability (or hole) in your
organization and put your information assets at risk.

Threat Analysis -- Evaluation of would-be attackers and of the damage that they are likely to
purposefully or accidentally perpetrate.

Vulnerability Assessment -- Activity in which an organization identifies and prioritizes technical,
o rganizational, procedural, administrative, or physical security weaknesses. A vulnerability
assessment should yield a traceable, prioritized "road map" for mitigating the assessed vulnerabilities.

Premise

The growth of the Internet and e-Commerce is taking place at an exponential rate. From 1998 to
2003, according to industry analysts, business-to-business sales will rise from $131 billion to $1.5
trillion. The security risks to business are comparably dramatic. Companies are responding to the
growing threat by purchasing more security applications.

Before the emergence of the Internet, most organizations, in Information Security terms, resembled
castles with very big moats. Except for occasional forays outside, the employee "foot soldiers"
stayed inside the walls. The only way a hostile force could enter the premises was by storming the
walls, that is, by physically breaking in. Today, organizations are akin to armies in the field, ever on
the march through the outside world. In-house employees are in constant electronic interaction
with customers and employees off-site in distant lands, and exposed to ambush from shadowy
intruders slipping past electronic sentries and barriers.

The transition from the "old economy" to the "new economy" reflects these new security concerns.
In the past, airline company employees, for example, would make all the passenger reservations
themselves through a back-end computer system. Today, the passengers themselves make the
reservations, through a Web front-end that is integrated through the back-end system. Similarly, in
the manufacturing environment, partners are linking their systems via sophisticated supply chain
networks. In essence, customers and partners – and potentially malicious intruders – have been
granted access to the electronic fortress.

Despite a greatly altered security landscape, the security aspects of computer applications
development are too often ignored, given low priority, mishandled, or simply misunderstood. Many
application development and business teams do not understand or know how to handle the new
risks. Quite a few development teams and business teams – in human resources, manufacturing,
finance, etc. -- are not properly trained in the security aspects of application development. Some
are aware in a general way or at a high level of increased security risks, but not at the detailed or
application levels that involve knowledge of security procedures and techniques.

METASeS™ Introduction

3

Further, many organizations often treat security as an afterthought. This approach leads to insecure
applications, and adds considerable expense when security fixes are retrofitted onto existing systems.

To date, most security activity has focused on securing infrastructure such as firewalls or network
access controls. Although the base infrastructure is very important, it does not cover every
security concern. Developers must realize that on-line attackers can not only penetrate networks,
but can misuse applications. Thus, organizations need to put just as much effort into securing
applications, and must design security into applications. (For detailed information on application
security, see the METASeS report, Building Secure e-Commerce Applications.)

It is vital to put non-technical controls on an equal footing with technical controls. ("Controls", both
technical and non-technical, refer to measures put in place to eliminate or mitigate risk.) Non-
technical controls such as training and education are just as important as technical controls. Yet all
too often the attitude is, "All we have to do is put in a firewall, and we’ll be secure." .

Security teams have to work more closely with the application, infrastructure, and business teams
to train them on defending against "vulnerabilities", that is, the "holes" in your organization -- the
potential weaknesses in information systems and procedures that intruders and threats can exploit.

An initial step to take is to make the application teams aware that security is an issue. They must learn
to make this an overt design point in new systems. A follow-on step that many organizations should
take is to provide assistance, such as training, arc h i t e c t u re assistance, and review teams, in
application-level security.

At the same time, it is important for application developers to realize that not every risk should be
handled the same way. Not everything in your organization can be or should be completely
protected against attack. You will want to fashion an "appropriate" level of security controls based
on the value of an asset and the risk posed to it.

In short, security needs to incorporate both technical and non-technical controls. Most importantly,
it must be integrated into the applications and infrastructure instead of bolted on afterwards. It
should be addressed in each phase of the life cycle, from requirements planning to maintenance
and operations. If you do not address a concern in its respective phase, it will only pose more of a
risk and become more expensive and more difficult to fix later on.

Purpose

This goal of this research paper is to help ensure that systems have security that is both
appropriate and adequate.

"Appropriate security" means security that is geared to an application’s level of risk. As George
Orwell wrote in his classic satire Animal Farm, "All animals are created equal, but some animals are
more equal than others." The same applies to computer systems and the data/information assets
they house. Some systems are much more valuable, and thus require more resources devoted to
their protection. A corporation might be little concerned about protecting a computer file with
records on meetings from two years prior. But a blood bank would be very concerned about
protecting a database containing the medical history of its donors. Similarly, a police department
would want to achieve a high level of security for files on Mob investigations, or for internal
investigations of its own officers. Systems containing Defense Department information have very
specific requirements based on the information classification. The amount of security built into a
system is directly related to the importance of the data to the organization. In other words, the
criticality of the data, and determines the organization’s risk tolerance toward it.

A safety belt installed on a poorly designed car will not make the car safe. Similarly, a firewall will
not sufficiently protect a system that was not designed with appropriate security in mind. The point

METASeS™ Introduction

4

is that security must be built into new systems and applications, rather than "bolted on" afterwards
at considerable trouble and expense. A comprehensive, systematic approach to implementing
security from the very start of applications development is essential. Organizations need a
blueprint for building security into applications development, that is, a schema they can
incorporate into every phase of the SDLC.

To accomplish this aim, we outline the tasks that organizations need to perform in each phase of
the System Development Life Cycle (SDLC). The SDLC refers to the integrated, iterative process of
analyzing, designing, developing, deploying, and enhancing applications or infrastructure, including
those purchased or generated in-house.

For each phase of the SDLC, we spell out the issues to raise, the tasks to accomplish, and the
output to generate. Our focus is on applications developed in-house. In later versions of this
document, we will discuss packaged applications -- ones purchased commercially off-the-shelf
(COTS), for example, SAP and PeopleSoft.

While this paper often discusses Web-based applications, it is also appropriate for more traditional
(legacy) applications. It especially emphasizes the requirements analysis and architecture/design
phases of the SDLC -- areas that organizations most typically overlook in developing systems.

You can employ this document in two broad ways:

1. Use it as a companion document, on a project-by-project basis, to superimpose a security
"overlay" on your SDLC processes.

2. Use it as a master template to incorporate security-related functions into the organization’s
existing SDLC.

Organization

This paper is composed of:

1. Narrative text
2. Appendix A – SDLC Security Overlay Checklist
3. Appendix B -- SDLC Overlay
4. Appendix C -- Security-related Processes and Procedures

The body of the document discusses, for each phase of the SDLC, key aspects of security that you
need to incorporate into the life cycle. These cover tasks that are relatively more important or that
need amplification. They are the minimum actions you need to take: we do not attempt to cover
every security task.

Appendix A is a key part of this document. It supplies a comprehensive checklist of security-related
tasks that should be performed during each SDLC phase. It will help you ensure that appropriate
security is designed or built into specific systems.

We’ve organized the body of the document and Appendix A sequentially by phases – requirements
analysis, design, development, testing, etc. Each phase is broken down into security-related tasks
you should perform for it. Appendix A also explains why certain actions should be performed, who
should perform them, and what the output of the actions should be.

The report contains two other appendices. Appendix B contains an overlay for Microsoft’s
commercial SDLC. Future versions of this report will provide overlays of other SDLCs. This
appendix basically provides a mapping between our "typical" SDLC and the Microsoft SDLC.
Appendix C contains a list of common security-related processes and procedures.

METASeS™ Introduction

5

Background

In today’s environment, software systems are much more vulnerable to security risks. There is an
ongoing explosion of new tools, applications, and technologies. At the same time, vendors usually
do not adequately test new applications for security defects.

Present-day systems have more "moving parts", such as Graphical User Interfaces (GUIs),
middleware, network connections, etc., that make them more susceptible to intrusion by malicious
users. An analogy to make is with the electric motor and the internal combustion engine. An
electric motor has few moving parts, can run for long periods without mechanical problems, and
needs little maintenance. The internal combustion engine, on the other hand, has many moving
parts, breaks down frequently, and requires a lot of maintenance at the repair shop. In a related
way, older computer applications have fewer parts, and tend to be easier to secure. Newer, Web-
based applications have many parts, from many vendors, and are therefore more susceptible to
security vulnerabilities.

Therefore, ensuring security nowadays is a complicated process. Figure 1 illustrates this.

METASeS™ Introduction

6

It depicts the layers of a typical system: the applications layer, application programming interfaces
(APIs), middleware layer, and infrastructure layer. (Note that the figure is illustrative; there is no
such thing as a perfect application model.) The problem from a security perspective is that, for any
of the layers, multiple components for multiple internal and external sources need to work together
securely.

Each section of the figure is explained below:

• Infrastructur e – Includes hardware (routers, servers, etc.) and operating systems (for example,
NT, UNIX, MVS). There are two types of infrastructure: general infrastructure and security-
related infrastructure. Some components, such as firewalls, relate specifically to security.

• Application Programming Interfaces (APIs) -- Applications, whether programming languages
or commercial-off-the-shelf (COTS) systems, use a set of APIs to call and receive various
middleware and infrastructure services.

• Middlewar e – Middleware can be divided into traditional and security-related services.
Traditional services include communications services (sockets, FTP, etc.), Web servers
(HTTP), and messaging services, for example, queuing, and store and forward. Certain items
are security-related, for example encryption and authorization.

• Applications – Applications include languages such as Java, C++, Perl, COBOL, and CGI. They
also include COTS applications such as PeopleSoft and SAP.

In the past, most security attention focused on network infrastructure layers as opposed to
application layers. Application layers were much less of a concern because they were typically not
exposed to external attack. But today, due to the growing use of networks and the growing
dominance of the Internet, intruders can penetrate an organization’s infrastructure through the
application layer as well as the network infrastructure layer. Moreover, after an attack, they can
misuse or destroy data and make applications perform unintended functions. Security, therefore,
needs to address the various layers of the system as a whole.

7

There are various kinds of SDLCs. This section discusses the following two major types:

1. Waterfall
2. Rapid Application Development (RAD)

Refer to Figures 2 and 3.

In an ideal world, development teams generate a complete and perfect set of requirements to
smoothly drive the design, development, and other phases of the life cycle. This sort of process
may be represented by the waterfall application development process. It is characterized by an
orderly, separate, and sequential flow of tasks performed in discrete phases, from initial concept, to
design, development, testing, implementation, maintenance, and revisions.

Unfortunately, this kind of problem-free, uninterrupted process rarely takes place in today’s
development setting. More typically, the development team has to jump back a number of times to
previous phases in order to fix incorrect, overlooked, or incomplete parts of an application.

A related concern arises from the often errant presumption that the business team sponsoring an
application can clearly describe what it wants and needs. It frequently has a good idea of what the
application should accomplish, but is usually unable to outline the application in adequate detail.

One way to grapple with these issues is to use an iterative or circular development technique, the
so-called rapid application development (RAD). RAD uses iterative, cross-functional development
techniques, and program tools such as Visual Basic, to develop prototypes and quickly design new
systems. RAD evolved out of artificial intelligence (AI) systems in which it was difficult for subject
matter experts to explain their complex knowledge in such a way that it could be readily coded into
applications. This challenge led to the use of prototypes and iterative development. Later, RAD
methodologies were adapted to the development of traditional, non-AI systems.

Companies can adopt various commercial incarnations of SDLCs, for example, Microsoft’s Microsoft
Solutions Framework (MSF) (see Appendix B).

Some modeling techniques, for example, Unified Modeling Language for object-oriented
development, also contain life cycle elements. While they are not SDLCs themselves, they often
provide development project guidance in addition to modeling techniques.

While each system development process differs within phases, it generally adheres to the standard
life cycle phases. Some may follow the waterfall model, others the RAD model, and still others a
hybrid of the two. Appendix B overlays our general SDLC onto Microsoft’s SDLC.

SDLC Phases

METASeS™ SDLC Phases

8

The various models use different terminologies, but follow the same basic phases, as outlined in the
next section.

Note that, for various functions, many organizations purchase commercial off-the-shelf (COTS)
applications instead of developing their own applications. Security-related SDLC variations for these
"buy and integrate versus build" projects are covered at the end of this document.

METASeS™ SDLC Phases

9

SDLC Phases

A typical SDLC has six phases:

1. Requirements Analysis
2. Architecture and Design
3. Development
4. Testing
5. Deployment/Implementation
6. Operations/Maintenance

F rom a security perspective, each phase has its own set of tasks that need to be
accomplished to infuse the appropriate level of security into the final system. Each phase and
its set of tasks is discussed in turn. For each, we define the phase, explain in general term s
what we are trying to accomplish from a security perspective, and discuss key security-
related tasks.

We won’t get into the many non-security-related tasks that application developers face; we focus on
security alone. We discuss the relatively more important tasks, and ones that need further
elaboration. Appendix A includes a more comprehensive list of security-related tasks.

METASeS™ SDLCPhases

10

Requirements Analysis

When you build a home, you first determine your requirements for the house before settling on
particular features. You would decide on, for example, whether to build a landscaped house or a
townhouse. Then you would choose the number of rooms, the kind of heating system, the amount
of open space, etc. In a similar way, the requirements analysis phase identifies the parameters for
building a system by defining the business requirements for the system, its number of users, types
of data, required output, etc. It defines what the system is supposed to do by providing high-level
statements of system functionality.

The security-related requirements analysis is typically performed in facilitated sessions between the
application developers and the business teams.

Key security-related tasks in requirements analysis are:

1. Analyze security requirements.

2. Discuss business operations.

3. Profile users for the organization’s applications/systems.

4. Develop prioritized security solution requirements.

Analyze Security Requirements

Analysis of the security requirements is a critical task, in part because application teams either
ignore or get this function wrong. All too frequently, they put the "cart before the horse", and design
a security solution before tackling the true business-level security needs.

You want to bring together business managers and application development and security team
executives to better understand the key sensitivities and business consequences of Inform a t i o n
Security risk, including various breach scenarios in which information is illicitly accessed or damaged.
Your aim is to gather the information re q u i red to drive the next phase -- arc h i t e c t u re and design.

A security requirements analysis may be split into these subtasks:

1. Evaluate security risks and consequences.

2. Perform asset value analysis.

3. Discuss the potential threats.

4. Analyze potentially malicious or harmful activities.

5. Analyze high-level vulnerabilities.

6. Discuss the security goals.

7. Review regulatory requirements and corporate Information Security policy.

8. Review future business goals.

Each subtask is discussed in the sections that follow

For the output of the security requirements discussion, you begin to determine what security risks
your business should be concerned about, that is, what you want to protect against. The subtasks
are sequenced in such a way to help guide the business team into articulating their needs, thus
providing the basis for a prioritized requirements document. The prioritized requirements
document will logically lead you into the next phase, architecture and design.

METASeS™ SDLC Phases

11

1. Evaluate Security Risks and Consequences

The real risks to your business need to be understood, both by business personnel and by
application owners.

This process is in part educational. Executive teams normally have considerable expertise with risk
management, but do not necessarily possess much knowledge about Information Security. Rolling
through the types of security risk and the associated business consequences can constitute a
bracing primer on this subject.

As a start, you should examine the main classes of security risk, as identified in following table.

The classes of security risk are briefly defined below.

Fraud – False representation of a product or service with the intent to steal or falsely solicit
funds or assets.

Theft – Stealing of information. Crackers might access, for example, customer credit cards to
conduct purchases under false pretenses. Industrial espionage agents may steal future product
plans or other intellectual property and sell them to commercial competitors or foreign
governments.

Destruction – Damage to your Web site or database. A common act of destruction is the
defacement by crackers of Web sites. Perhaps the most feared risk is the destruction of your
hard drives by intruders.

Breach of Privacy – Public disclosure of sensitive customer information. The effect of breach of
privacy can be devastating to an online business. Imagine the effect on an online book and video
store of crackers posting the buying habits of customers. Or the effect on an online drug store of
crackers posting the medical test results of clients with sensitive ailments such as AIDS. The
impact on your bottom line, where vendors are changed with just a click of a mouse, can be
huge.

Denial of Service (DoS) – The inability of your Web site to function for an extended period. In
early 2000, the launching of undetectable DoS attacks against a number of high-profile Web sites
made headlines. DoS attacks can literally cripple an online business dependent on the Internet
for interaction with its customer base.

METASeS™ SDLC Phases

12

Before attempting to architect and design technical and non-technical controls, it is critically
important to know what needs to be protected (assets), and what you need to be protected from
(threat and activities), and what the resulting business consequences would be if protective
measures are not taken or prove inadequate. For commercial businesses, there are many
consequences, all funneling down to either revenue impact or profit impact, or both. In the non-
commercial world, the loss of reputation or trust from employees and constituents is another major
consequence.

2. Perform Information Asset Value Analysis

Let’s start this discussion with some definitions. Assets refer to the type and value of data or
information to be protected. In this context, assets refer to the data contained in or traversing
computer networks, not the computer networking equipment itself. Asset value means the value of
the different assets that you are considering trying to protect. It refers to the relative worth of the
data that intruders target.

In this analysis, we are not primarily concerned about the cost of the underlying hardware and
software systems, but with the value and sensitivity of the data riding or residing on them.

You want to perform an analysis of the information assets associated with the system. This is a key
step that is sometimes overlooked. You have to know what you’re trying to protect, and what it is
worth to your organization, in order to appropriately protect it. A key tenet of Information Security
is that you cannot protect 100 percent of your assets with 100 percent assurance. Again, although in
theory all assets are equal, some assets are more equal than others. The steps or controls taken to
protect it have to be in accord with the value of the assets. The goal is to ascertain what
information assets and even intangible assets (such as corporate image and investor confidence)
are most valuable and worthy of protection.

Defining the important items that need protection will help weed out unnecessary security goals,
tighten the requirements, and help your organization formulate its security budget.

A complementary exercise is asset classification, the classifying and labeling of information so that
its users understand its value to the organization, and what they need to do to protect it.
Organizations typically have a classification scheme with different levels, for example, for
proprietary and confidential.

3. Discuss Potential Threats

One key input that is often overlooked, or given too little attention, is threat. Again, threats refer to
actual people or organizations that could exploit a vulnerability or hole in your enterprise and place
at risk your information assets.

You have to understand the potential threats in order to devise a practical security solution. The
security solution you devise will in part be a function of the level and likelihood of the threat. (If
you lived far out in the countryside, for example, the danger of someone breaking into your house
would be minimal, and you might not bother to lock your doors. If you lived in the middle of a big
city, where there were many burglars, and lots of other threats, you might bolt and padlock every
door and window.) In the computer realm, crackers engaging in random pinging of your Web site –
the cyber equivalent of a thief driving through a neighborhood looking for targets - would constitute
a frequent yet low level of threat. In contrast, a foreign espionage agent or organized crime ring,
that targeted a particular prized asset, would constitute a high-level threat. In some other
situations, the threat will be small enough to warrant a minimal response, or no security controls at
all.

4. Analyze the Potential for Malicious Activities or Accidental Harm

Earlier in this phase, during discussion with the business teams, you cover general Information
Security risks. The goal is to bring the business team up to speed on Information Security. In this
subtask, the key is to understand more specifically what potentially damaging activities need to be
protected against. A key goal is prioritization of these activities. Having just discussed threat, we
now turn to analyzing and prioritizing the activities where threats are likely.

METASeS™ SDLC Phases

13

These activities can be either malicious or inadvertent, and from internal or external sources. They
include activities like Denial of Service, theft, destruction, and alteration of data. In addition, they
include the chance of accidental destruction or alteration of data, or the repudiation by end users
of transactions, among many others. From an information protection perspective, some of the
security controls you architect and design will help mitigate or avoid many of these activities. The
key is to draw up a comprehensive, prioritized list so that controls address the most likely
threatening activities.

5. Analyze High-Level Vulnerabilities

Vulnerabilities, to restate, are holes in the system or organization that threats can exploit to impact
the organization’s information assets. At this juncture, it is not important to discuss each of the low-
level vulnerabilities. Rather, it is important to understand the various classes of vulnerabilities that
the system-level security architecture must address. Some high-level classes of vulnerabilities are:

• Education/Awareness-Related Vulnerabilities – Lack of security awareness from end users,
developers, IT infrastructure, or operations teams, etc. causes potential holes. Examples
include using easy-to-guess passwords, or posting passwords on yellow sticky notes attached
to terminals. They also include susceptibility to "social engineering" attacks where intruders
might pose as legitimate personnel, for example a security administrator, in order to obtain
sensitive information or gain additional access.

• Configuration Vulnerabilities – Threats can exploit poorly configured software or hardware
systems to gain direct access to or to sniff out the weak links in a system. Examples include
missing or incorrectly configured security controls or the running of unnecessary or
potentially vulnerable services on a susceptible network system.

• System Vulnerabilities – Sometimes jokingly referred to as "unplanned features", these
vulnerabilities occur when either hardware or software vendors or applications development
teams inadvertently, or sometimes purposefully, incorporate holes in the system. This issue
was prominent during the Y2K remediation, as many organizations hired outside contractors
to debug programs -- and hopefully to not add "back doors".

6. Discuss Security Goals

After analyzing general risks, asset valuation, threats, specific activities and high-level
vulnerabilities, you can then prioritize the security goals for the system. There is a limited set of
security goals. As with analyzing potentially malicious activities, the key is to prioritize the goals so
that the security solution designed in subsequent phases meets the objectives.

The security goals are:

• Confidentiality and Possession
• Integrity and Authenticity
• Availability and Utility
• Non-repudiation
• Auditing

The following text provides definitions for these key security goals. Figure 4 illustrates the security
goals.

METASeS™ SDLC Phases

14

Confidentiality and Possession
Confidentiality is the goal of keeping private the organization’s vital information, such as partner or
customer data in custodial care, and intellectual capital, which in many cases is the core,
competitive advantage of the business. Possession involves data that a user owns, but is not
necessarily familiar with or aware of. It especially true in an increasingly computerized world with
massive amounts of information, all of which a user cannot possibly hope to be familiar with.

The chief methods for achieving confidentiality and possession are:

• Authentication -- Provides the means for identifying systems or people through the proper
credentials. The tools that enable this method include simple ID/password combinations,
software or hardware tokens, two-way authentication, biometrics, etc.

• Authorization -- Used in parallel with authentication to protect system or network resources.
The authorization process will use the information that has been captured by the
authentication process, such as user ID, group, domain, etc., to allow access to resources
based on permissions and rights granted to the entity. The tools that can facilitate
authorization may be a collaboration of authentication, system tools, and application code.

• Encryption -- Helps to protect data that is transmitted across a network or stored locally on a
machine. It scrambles the data to render it unintelligible unless it is decrypted, or
unscrambled. In support of confidentiality, encryption ensures that credentials or personal
and system identification information (keys, passwords, addresses, etc.) that are used to
authenticate and authorize a person or system cannot be compromised. Some tools to
accomplish this include encryption algorithms such as triple DES or protocols such as IPSec.

Integrity and Authenticity
Integrity refers to the consistency of the data. The goal specifically relates to the need to ensure
that an unauthorized person or system cannot inadvertently or intentionally alter data. Imagine a
database of pricing information where the data stored is not inspected properly and could be
altered for the financial advantage of the perpetrator, or a financial report on a Web site that is
intentionally altered for stock trading advantage.

In an e-Commerce environment, integrity is a critical factor in the validity of the data being
exchanged and stored. To ensure data integrity, cryptographic algorithms and data inspection
techniques can be used. Tools such as cryptographic hash functions (e.g., MD5 and DH), in
combination with sound programming techniques for data inspection, allow you to check data
integrity.

Authenticity refers to the ability to know that the information accessed is genuine. An example of a
breach of authenticity would be a perpetrator falsely posting an official-looking company press
release in a public place like a news portal. Digital signatures and other hard-to-duplicate
techniques, such as holograms, can help ensure the authenticity of information.

Availability and Utility
Availability refers to the accessibility and usability of information. It is essential for an organization
that provides e-Commerce to incorporate availability in the initial design and deployment of the
network. Imagine the customer dissatisfaction and loss of revenue if an on-line store were disrupted
from servicing customer orders during the Christmas season -- especially as the Internet places the
customer only a few clicks away from a competitor.

Utility refers to the usefulness of information. By utilizing new cryptographic techniques,
organizations can protect information from confidentiality breaches. However, if keys are lost then
the information may be useless.

Methods for achieving availability include backup of data, redundancy, and fail-over methods that
provide continuity of services. The tools that can help achieve availability include:

METASeS™ SDLC Phases

15

• Local or network backup systems
• Cold or hot stand-by equipment that can be swapped or automatically activated to start

processing information
• Mirroring that allows data to be available in physically separate sites, thus minimizing the risk

of single point of failure
• Load balancing techniques that help minimize the impact of potential system failures

Utility can be achieved by maintaining backup copies of information and the various keys used to
encrypt them.

Auditibility
Auditibility refers to the necessity of keeping historical records of events and processes such as
authentication, resource access, or data exchanges. These records can make it possible to detect
inappropriate use of resources or signs of intrusion. They must be handled with the proper care
(e.g., stored in a safe place, digitally signed, encrypted) to be admissible in court, in the event they
are used to prosecute someone who stole or damaged your data.

Event logging is a method for recording historical data. Typically, computer systems are configured
by default to record general events such as operational errors, access requests, failures, or
successful logins. Although this provides some accounting capabilities, it may not provide the
required level of detail to recreate a clear picture of security events. A system that maintains
customer information may be configured to record only general events such as program errors or
run-time library errors. In fact, a system with customer data may require additional security
logging.

Non-Repudiation
Non-repudiation provides evidence for verifying the identity of an entity (person or system)
engaged in a business transaction, such that it cannot deny being a party to the transaction. In the
non-digital world, this is typically accomplished through a signature and, in certain instances,
backed up by a third-party witness such as a notary public.

A typical instance of non-repudiation involves a person sending a message, and the re c i p i e n t
having to verify that the originator is the author of the message. Furt h e r, the originator must not
be able to deny ownership of the message. For example, in the event of a dispute with a
c u s t o m e r, an on-line brokerage firm must be able to prove in court that transactions submitted to
p u rchase or sell stock are authentic and came from the person in question. Cry p t o g r a p h i c
methods such as generating digital signatures or digital fingerprinting help implement non-
repudiation.

You must incorporate the goals of confidentiality and possession, integrity and authenticity,
availability and utility, non-repudiation, and auditing, while building and maintaining any computer
system, especially systems that provide e-Commerce services prone to attack. They are the
fundamental business requirements of the security architecture.

Understanding these fundamental security goals, and their fundamental priority for a given system,
will help the organization formulate a sound security solution. It is one of the most important inputs
to the next phase -- defining an appropriately secure architecture.

It is important to clarify your goals at this point, during the discussion of security goals, before you
start devising methods and tools to accomplish your objectives. Avoid discussing the nitty-gritty of
technical solutions during this time. All too often, the team will focus on specific security methods
or tools such as PKI (public key infrastructure), before deciding what the broad goals are. This puts
the technological cart before the horse – avoid that!

You must determine your high-priority goals. For example, in an online dru g s t o re, where large amounts
of pharmaceutical products are sold online, protecting customer re c o rds is paramount. In any online
business, the availability and integrity of the Web site is key. It is critical to prevent crackers fro m
taking down the site (availability), or from placing unauthorized material on it (integrity).

METASeS™ SDLC Phases

16

Executives must exhibit "due care", that is, take prudent steps to understand the security
requirements and goals required to mitigate key business risks and avoid negative consequences.
Corporate executives also have a fiduciary responsibility to shareholders to protect the value of the
business. In short, they must "protect their assets while covering their asses." Therefore,
articulating and prioritizing the security goals is a crucial and fundamental step.

7. Review Regulatory Requirements and Corporate Information Security Policy

An often-overlooked chore is to understand the regulatory requirements affecting the computer-
related aspects of your business.

It is important to review previous audit findings by either internal or external auditors. You should
examine which conditions to mitigate, which to leave alone, and which are likely to worsen.

For example, with an online drugstore, a key set of requirements is the Health Insurance Portability
and Accountability Act (HIPAA). It sets stringent requirements on the confidentiality of health care
information. Your business may be liable for expensive lawsuits if crackers get their hands on
customer health care data. According to HIPAA, all health clearinghouses and healthcare providers
that transmit or maintain electronic health information must conduct a risk assessment and
develop a security plan to protect this information. They must document these measures, keep
them current, and train their employees on appropriate security procedures. Wrongful disclosure of
individually identifiable health information is punishable by $50,000, imprisonment of one year, or
both.

Airline and aerospace firms must comply with strict Federal Aviation and Administration (FAA)
guidelines. Publicly traded firms face tight Security and Exchange Commission (SEC) rules against
premature disclosure of financial information, especially information that can have a material

METASeS™ SDLC Phases

17

impact on stock prices or public offerings. To the extent that such data could be accessed illicitly
over the Web, it must be tightly safeguarded.

While reviewing the regulations affecting your business, don’t forget to make sure that your team is
also following your corporate Information Security policy (refer to the link at the top of this
document).

8. Review Future Business Goals

Current and future business goals refer to what the business system and information owners want
to achieve with the system today and down the road. This activity ensures that the team, by
considering the future business requirements during the architecture and design process, does not
build itself into the proverbial box. An example of such an error would be a system model that
originally accounts only for internal users (employees and partners), even though the business
goals envision opening the system to external customers. An unfortunate result may ensue:
authentication techniques such as tokens (e.g., SafeWord Soft Token, Security Dynamics, etc.) that
might work for internal users could fail for an external audience consisting, potentially, of everyone
on the Internet.

Discuss Business Operations

The next major task in supporting the security of the enterprise is to understand the business
operations. Knowing the processes and procedures that constitute business operations will help
you understand the vulnerabilities facing them. Additionally, you can begin to realize how other,
related security operations fit into the equation. For example, security administration, which
involves among other things adding and maintaining user privileges, needs to be integrated with
various business processes, such as adding and servicing customers and partners.

You will also consider what other non-technical vulnerabilities may exist, and how you might
mitigate them (for example, through audit reviews, dual entry, or separation of function). To
accomplish this task, security personnel and members of the application development team should
meet with mid-level business managers. One output of this task should be a list of business
processes with potential vulnerabilities that require controls, for example, credit card transactions.
A second output should be processes that need to incorporate security processes and procedures,
for example, the adding and maintaining of customers. Another example is the IT change
management process for placing new systems into production environments. Note that both of
these lists may overlap.

Profile Users for the Organization’s Applications/Systems

An important task in defining requirements for any system is determining who its users are.
Specifying the users helps determine key project scope issues and design considerations, including
those of a security-related nature. For example, if only internal users are to access a system, you’ll
be far less concerned about external access control issues. An online drugstore might have a
limited set of users, for example, a certain number of regional centers, or bulk customers such as
hospitals or nursing homes. A public key infrastructure (PKI) scheme might be a good solution for
such a limited set of customers. On the other hand, a Web site that sells pharmaceutical products
to users throughout the world demands a different kind of authentication scheme because of its
larger scope, far greater volume of users, and changing set of subscribers. In such a case, you might
employ a password ID login scheme for every user trying to access the system. The key goal of this
task is to understand who will be using the system so that architecture team can better understand
user-related requirements and constraints.

1 The use of public key cryptography to authenticate users.

METASeS™ SDLC Phases

18

Develop Prioritized Security Solution Requirements

Prioritizing the security requirements is critically important. You must define what requirements are
more important and what ones are less critical. This is especially true for Internet projects in which
time, perhaps the most valuable of all resources, can be very scarce. Knowing what is most critical
gives you a solid foundation for tackling the next phase, architecture and design, where you put pen
to paper (or mouse to keyboard), and actually start to formulate your security solution.

Architecture and Design

NOTE: Some general principles of security architecture and design follow. The specific key tasks
of this phase are discussed later in this section.

But first, we discuss the upfront elimination of vulnerabilities, offer an architecture definition,
discuss the use of iterative steps in architecture, and outline technical and non-technical
controls.

Eliminating Vulnerabilities Upfront

The final security architecture and non-technical controls should attempt to eliminate as many of
the security vulnerabilities as possible, and assuage the others as appropriate, given the threat- and
asset value-based budget considerations. This is a subtle but very important point.

Some would-be system vulnerabilities can be eliminated altogether by modifying the business or IT
processes. If the value of the asset and the extent of the threat warrant, eliminating a vulnerability
is often more effective than developing a set of technical or non-technical controls to mitigate it.
Another consideration is how to mitigate or recover from the impact of malicious or harmful
activity, either deliberate or inadvertent, that can impact the business. Examples of mitigation
practices are developing a recovery or failover capability to deal with Denial of Service incidents,
incorporating the public relations team in the security incident response process to help "media
spin" a public embarrassment, or creating backups to assuage the loss of or damage to an asset.

Architecture Defined

Architecture means many things to many people. For the purposes of this report, architecture is a
set of principles and directions (a road map) that guides the engineering process and product
selection. It includes detailed design; product selection; construction; implementation; support; and
management of an organization’s information systems and technology infrastructure.2 Architecture
is NOT simply an approved product list or a network diagram.

An arc h i t e c t u re can be formulated at multiple levels. For example, an organization can define an
enterprise-wide arc h i t e c t u re that guides all development activities, including information systems and
i n f r a s t ru c t u re development (networks, servers, middleware, etc.) (see Figure 5). An enterprise-wide
a rc h i t e c t u re helps steer discrete projects towards a desired future state. In this context, arc h i t e c t u re
enables organizations to develop systems that meet business goals and objectives over a period of time.

Architecture also can refer more specifically to a subnetwork or a specific business system. Such a
system-level architecture typically includes a more specific set of goals and requirements that drive
the system design. In this discussion, we will refer to system-level security architecture as it applies
to a specific business system project (see Figure 6). Our focus is on only the Information Security
aspects -- the technical and non-technical controls used to achieve the business security goals. In
this document, we will spend the majority of time discussing the technical control mechanisms.

2 Source: META Group, “Enterprise Architecture Strategies”

METASeS™ SDLC Phases

19

METASeS™ SDLCPhases

20

The line between arc h i t e c t u re and system design is often blurry. In its pure form, which is rare l y
e n c o u n t e red "in the wild", arc h i t e c t u re is expressed as a set of goals or re q u i rements. Design, on the
other hand, is the integration of the hard w a re, software, processes, and pro c e d u res re q u i red to achieve
the goals. For example, security arc h i t e c t u re may express the goal of restricting perimeter network
access, but would not necessarily mandate a specific firewall, which might fall under design’s purv i e w.

Academic musing about the split between architecture and design is not important. What is critical
is that you express the architecture at some level in terms of specific goals or requirements.

Iterative Steps: Practice Makes Perfect

We will walk through this phase, like the others, in a linear series of steps. However, note that
finalizing the architecture and designing a security solution is often in practice an iterative process,
that is, it requires several passes to get it right. The idea behind these repetitions is to catch design-
level vulnerabilities that can be mitigated or effectively removed through a change in design. For
example, a help desk often performs the function of resetting user passwords. This can introduce
vulnerabilities into the system if the help desk employees have access to the system tools used to
change the passwords. You could permit customers to reset their passwords themselves (with the
appropriate authentication processing of course), or provide the help desk with only "reset"
capabilities. Such steps would remove the vulnerability outright.

In the first iteration, you review the requirements set forth in the previous requirements analysis
phase, along with the current enterprise-wide technical architecture or enterprise-wide security
architecture and processes. With those items as input, you will begin to formulate the system-level
Information Security architecture.

Architecture’s Twin Components

The architecture will have two components:

1. Technical Controls -- System controls defined in the architecture and enumerated in a system
design. Technical controls might include methods such as data redundancy and tools such as
Redundant Array of Independent Disks (RAID) to achieve the security goal of data availability,
or token-based authentication methods like SecureID cards, to attain the confidentiality goal.

2. Non-Technical Controls -- Controls embodied in processes and procedures. For example:

• Dual Entry – The requirement of multiple signatures or approvals to allow a sensitive
transaction to proceed.

• Separation of Duties – The separation out of business functions so that no one individual
has sole responsibility for a type of transaction.

• Audit Reviews – The review of processes in an attempt to identify malfunctions or
inconsistencies in operation.

• Awareness Programs – Training courses or internal advertising to help modify potentially
harmful end-user behaviors

System-Level Architecture Development

Formulating system-level security architecture is basically a process of inputs and outputs. In this
section, we will illustrate both the traditional architecture development process, and a "fast path"
method for meeting some of the stringent time requirements of the new Internet business world.

Figure 7 depicts the traditional process flow for developing a system-level security architecture.
Some general principles of system-level security architecture follow. The specific tasks of this phase
are discussed later in this section.

METASeS™ SDLC Phases

21

Key Inputs

The fundamental security goals are one of the main inputs to the system-level security architecture
of a Web or e-Commerce business system. The key inputs to the system-level security architecture
derive from the requirements analysis tasks above. They include:

• Security Goals
• Assets
• Threats
• Activities
• Current and Future Business Direction
• Infrastructure
• External Regulatory Requirements and Corporate Security Policy

METASeS™ SDLC Phases

22

Architecture/Design Considerations

There are two sets of architecture/design considerations:

1. First order, business-focused considerations
2. Second order, technical considerations

The output of the first set of discussions, completed in the requirements phase, will provide the
grist for another series of more technical discussions that cover the second-order
architectural/design considerations. These include:

• Business and IT Operational Considerations -- Characterization of business operational and
IT operational items that may impact the security architecture. For example:

- How will new customers be set up and by whom?

- How will users of the system be updated (e.g., password resets, changes in access
rights), or removed from the system?

- Will disparate systems be maintained, or are plans in place to further consolidate the
types of systems that are operational within the IT environment?

- Does the organization’s security philosophy support central security administration and
management, or is a decentralized approach preferred?

• System Use Considerations – Who and what will use the system, and when, where, and why
will the system be used? For example:

- Who are the end users of the system (novice or expert user, employee or non-employee,
etc.)?

- From where will users be accessing the system (home, office, company network, within
the country or across country borders, etc.)?

- When will users be accessing the system?

• Technical Environment/Architectur e – Characterization of the current IT infrastructure that
will either help or impede security.

• Current Enterprise Security Architectur e -- The current and future direction of the
organization relative to security. For example, a common enterprise security architecture goal
is to externalize the user authentication processing from applications to enable easier
administration of user rights and privileges across multiple systems. Thus, the system
architecture team needs to consider if and how this should be accomplished for the system-
level security architecture. Further, many organizations are establishing a set of infrastructure
security services – PKI, or proxies – that the system architecture team may want to – or be
forced to – take advantage of.

These second-order discussions need to include mid-level business management as well as the
applications development, IT infrastructure and security teams.

The system-level security architecture will flow out of these second-order discussions, and should
include the specific prioritized goals and requirements of the architecture. At this level, the output
will likely include an initial top-level design, and also should include non-technical process and
procedural controls (often identified in a Concept of Operation (CONOP)).

METASeS™ SDLCPhases

23

Walkthrough Bench Test

A best practice recommendation at this point in the architecture/design process is to go engage the
architecture and mid-level business management teams in a bench test -- sometimes referred to as a
walkthrough. The teams review the theory behind the system-level security architecture and top-
level design. They apply a series of scenarios against the proposed architecture -- technical and
non-technical controls -- to see if they achieve the desired goals prior to moving onto the detailed
design.

Of course, effective security also requires sound design, construction, testing, implementation,
maintenance and, in particular, training. In addition, since the new system will likely run across
existing infrastructure, the architecture team will necessarily have to consider whether the current
infrastructure provides adequate baseline controls for the new system. In our experience, many
organizations lack appropriate technical security standards and configuration procedures that
serve as the basis for a secure infrastructure. Like a house built on a shaky foundation, an
application hosted on a vulnerable infrastructure is at risk. Thus, you must also include
architectural requirements for the associated infrastructure, even for a system-level security
architecture focused on a single application.

Baseline Best Practice Template for Internet Speed

One of the most precious business commodities in the new Internet world is speed. The ability to
get to market more quickly with a business system than a competitor – "time to market" -- can
provide a decided competitive advantage.

Thus, the notion that "speed matters" is very appropriate to the new Internet business models.
However, the traditional architecture and design process can be a lengthy one, with cycle times that
are longer than many Internet business endeavors can endure. Therefore, many best practice
organizations adopt new architecture development process models that improve their ability to
quickly deploy new system-level architectures in general and system-level security architecture
specifically. We recommend the use of best-practice base line templates. Figure 8 shows how an
organization can develop and use baseline best-practice architectures to speed up the process.

The premise of this approach is that there are a relatively small number of different types of Web-
based systems. Further, similar types of business systems share a set of similar information
protection requirements. These requirements can be enumerated and captured as a predefined set
of "best practice" system-level security architecture/design templates.

Thus, when business units decide to develop a new business system, the first hurdle for the
security team is to decide what "type" of business system it will be, and to choose the template that
it most closely matches. Then the first-order and even the second-order discussions can be
focused on where the new business application diverges from the baseline template -- this delta is
often called the GAP in consulting circles. The first facilitated discussions focus on the gap between
the typical security goals, threats, assets, vulnerabilities, etc. captured in the template, and the
unique requirements of the application at hand. Similarly, the secondary set of discussions would
use this gap information to provide the basis for a rapid development of a new system-level security
architecture/design.

To use a homebuilding analogy again, this process is similar to the use of model homes.
Homebuyers can pick a style, customize just a few components, and move into their development
tract in no time.

Using baseline best practices also helps you achieve the legal or regulatory standard of due care in
protecting company-owned assets, and assets in which the company plays a custodial role. By
benchmarking the baseline templates against the industry and continuing to evolve them to meet
best practice, the organization is taking prudent and responsible steps, which are typically part of
the due care considerations that regulators and courts review.

Finally, do not forget to appropriately size the infrastructure to meet the overall performance goals
of your applications. Performance is especially important when dealing with an Internet
environment. User calls to Web servers usually place a great load on the system. Turning on the

METASeS™ SDLC Phases

24

security features, for example, the logging services, will negatively affect system performance by
taking up a lot of system cycles. Encryption services for securing data transmitted over the Web are
notorious for being resource hogs. The underlying hardware infrastructure may not have been
adequately sized in order to take security programs into account.

Architecture and Design Tasks

We now again pick up the discussion of key architecture and design tasks.

The following tasks are discussed:

• Create System-Level Security Architecture
• Perform Architecture Walkthrough
• Create System-Level Security Design
• Perform Design Review
• Educate Development Teams on How to Create a Secure System

METASeS™ SDLC Phases

25

• Design End-User Training Awareness Measures
• Design a Security Test Plan
• Assess and Document How to Mitigate Key Application and Infrastructure Vulnerabilities

Create System-Level Security Architecture

Key subtasks follow for the task, Create System-Level Security Architecture.

Identify Technical Security Controls
At this point, the task is to develop a list of the technical security controls that trace back to the
prioritized security goals and requirements. These include technical control methods such as:

• Network, and application access controls
• Authentication requirements
• Encryption
• Redundancy
• System hardening (configuration) procedures
• Etc.

Identify Non-Technical Security Controls
Similarly, the task here is to identify a list of non-technical controls that trace back to the previously
determined security goals and requirements. They include items such as:

• Multiple-signatures
• Separation of duties/functions
• Etc.

Other important tasks in the architecture and design phase follow.

Perform Architecture Walkthrough

At this stage, the key is to review the proposed technical & non-technical controls to ensure they
accomplish the security goals.

Create System-Level Security Design

The design process will likely be an iterative process that will start with more basic lists and be
enhanced to provide additional specificity. In the top-level design the tools, services, sub-systems, etc.
that will provide the technical security controls are more fully detailed. This would include detailed
security tools/service lists, top-level network diagrams, data flow diagrams, object lists, etc. On the non-
technical side specific pro c e s s e s / p ro c e d u res are listed and top-level process integration diagrams are
c reated in the CONOP (detailed below). The pro c e s s e s / p ro c e d u res are detailed in subsequent steps.

Top-Level Non-Technical Security Design – Concept of Operations (CONOP)
A Security Concept of Operations (CONOP) is a high-level outline of security-related processes and
procedures.

Its common processes and procedures break down into the following categories:

• Core Information Security Processes -- Address the most critical aspects of security, and are
typically created, owned, maintained, and performed by the security organization, or a matrix
team with security responsibility. Processes are usually of long duration (days, weeks,
months) or ongoing in nature.

• Core Information Security Procedures -- Typically created and refined by the security
organization, or a matrix team with security responsibility. Procedures are typically of short
duration (a few minutes or days).

• Information Technology (IT) Processes -- Typically managed by various IT departments, but

METASeS™ SDLC Phases

26

require some level of integration with security processes and procedures.
• Business Processes -- Maintained outside of the IT department, and require integration with

various Information Security processes or procedures.

Refer to Appendix A for a comprehensive list of security-related processes and procedures.

Perform Design Review

Design reviews tend to be an iterative process. After conducting a high-level review, you work down
to a detailed design review in order to fashion a final design.

The high-level review should include an examination of requirements and current architectures,
design solutions, a review of vulnerabilities, and an assessment of whether and how vulnerabilities
can be eliminated.

The detailed review should include a formal walkthrough. A key security-related area to check is the
performance requirements and sizing of the system infrastructure (networks, servers, etc.), since
security services will often overload services.

It is important to go through a set of design reviews focused on the security aspects of the system.
Depending on the design area being reviewed, business, application development, and security
personnel should take part in these reviews.

The series of design reviews should include the following:

• Technical review geared to the application level
• Technical review geared to the infrastructure level
• Non-technical review (processes and procedures)

Educate Development Teams on How to Create a Secure System

The two main aspects of this task are:

• Provide best practices for secure coding.

• Provide practical education on using the various security tools and services.

Application teams are, naturally, usually well-schooled in the art of development. However, they
frequently do not understand the security aspects of development. The application teams require
education and training in such matters as secure coding practices. They need to learn how to identify
common vulnerabilities, and how to establish secure development environments. In addition,
developers should be exposed, like the rest of the organization, to the general security principles.

Another aspect of this task relates to training developers in specific security tools and services. In
newer systems, developers make frequent use of external security services by means of application
program interface (API) calls. In the "good old days" of mainframe "legacy system coding", many
security-related functions like authentication and auditing were done within the application. In
modern Web environments, by contrast, many security functions like access control are done via
middleware services. In such settings, the developers can use within the operating environment a
set of third-party tools, such as PKI, or services layered into operating systems, such as logging,
auditing, authentication, etc. to accomplish security functions.

Design End-User Training Awareness Measures

The design of a training and awareness program is vitally important. All the security processes and
hardware in the world will do little good if your personnel does not know how to use them. This is
often missed or overlooked in training manuals and courses. In Web applications, especially with
external users, security training and awareness often must be built into the application, or

METASeS™ SDLCPhases

27

incorporated in "getting started" type of user education tools.

Design a Security Test Plan

You should perform a basic check of the components of the system test plan. Security needs to be
wrapped into the overall test plan. It should be communicated to the integration and deployment
teams.

In addition to traditional systems testing, you want to focus on certain specific areas. These
include:

• Usability/Ergonomics Testing – Checks that security features function, and are reasonably
well understood and easy to use. If the security features do not have these characteristics,
they will be ignored or will cause problems. Usability/ergonomics is typically applied to
applications themselves, but can be applied to security-related matters as well.

• Performance Testing – Checks that the system efficiency performs as required. This is
traditionally done as part of the regular SDLC. However, as mentioned above, testing after
turning on the security-related features -- authentication, encryption, etc. -- is important in
determining if system performance is adequate. The impact of security features on
performance is often not noticed until after the system is put into production.

• Vulnerability Testing – Also known as penetration testing or "ethical hacking", attempts to
uncover critical vulnerabilities so that they can be fixed before production. Because
vulnerability testing is not part of the traditional SDLC, it is often overlooked.

Assess and Document How to Mitigate Key Application and Infrastructure Vulnerabilities

This task is a variation of bug tracking, in which you highlight security-related deficiencies. You
have several options for handling these flaws. You can remove or mitigate them by tuning the
design or reconfiguring the infrastructure. Alternately, if you are unable to eliminate or lessen
vulnerabilities, you can deter them, or at least monitor for their occurrence.

A parking lot owner wishing to reduce car thefts, for example, might deter thieves with extra street
lighting, and monitor suspicious activity with surveillance cameras. In the Internet world, you could
deter intruders by posting warning banners or copyright notices on your Web site. Some
vulnerabilities may prove impossible to fix, and others prohibitively expensive to address. You
definitely want to monitor for such vulnerabilities. You might watch for would-be crackers through,
for example, intrusion detection products that detect tell-tale signs of attacks.

METASeS™ SDLC Phases

28

Develop (Build/Configure/Integrate)

The development phase implements the requirements and architecture/design decisions.

Your security goals can be applied during the development phase. With some high-risk systems, a
secure development environment is set up during this phase. This would include the proper
policies and procedures to protect the integrity and confidentiality of the code, the designs, and
underlying development infrastructure from related attacks such as theft or destruction.

The essential part of development is coding, that is, the writing of the actual programming code.
Some companies have coding standards -- specific rules for code structure and appearance.
Standards can prolong the life of the code, and make it easier to maintain. Writing secure code from
the start saves time and money during testing and the remainder of the life cycle.

Many organizations are adopting secure coding standards to ensure that the code is secure. To
achieve this aim, developers should use defensive programming techniques.

Examples of security-related development considerations are:

• Identify, in terms of security, the weaknesses and strengths of the programming language.

• Put system source code and related configuration files in a secure environment, preferably one
isolated from the rest of the network.

• Set up a code/component version control system.

• Develop operational procedures (based on the CONOP). Ensure that network and systems
administrators, partners, customers, and integration firms that deploy the solution or solution
components meet the requirements outlined in the technical standards for the mitigation of
vulnerabilities.

Defensive techniques are further detailed in the METASeS publication Building Secure e-Commerce
Applications.

Develop Technical Configuration Standards and Procedures

Especially in the case of large system rollouts, it is likely that the different teams will roll out the
application and the underlying infrastructure.

You should document how to perform these rollout activities securely, in a set of publications that
outline: 1) technical security standards; and 2) technical configuration procedures.

Technical security standards provide detailed rules that define what should be done at a
technology level to mitigate security risks. The standards are related to network or systems
infrastructure, for example, a router, operating system, network switch, or server. Other technical
standards are related to the business applications being rolled out.

Technical configuration procedures provide step-by-step instructions on how to configure an
operating system or service, or a security software tool, such that it adheres to the rules detailed in
the technical standard. For example, there may be step-by-step configuration instructions on how to
securely configure a Windows NT server, or the newly developed application, to comply with
security standards.

Such publications help ensure that personnel are properly hardening the system by removing
known vulnerabilities such as default passwords or unneeded services. (METASeS offers a full suite
of Security Standards and Configuration Procedures.)

METASeS™ SDLC Phases

29

Test Security

The test phase verifies that all of the security-related components of the system work as advertised,
and meet the expectations of owners and end users. In most cases, the security aspects of testing
are integrated with the regular test plan. The exception is vulnerability testing.

The first two tasks are typical test functions, with a security twist. The third task -- vulnerability
assessment -- is a recently developed test function that is specific to security.

Conduct Performance/Load Test With Security Features Turned On

This task involves verifying that the system performs up to specification and meets production load
requirements with the security components and features that are engaged.

This task is often overlooked. Do not make the elementary mistake of forgetting to turn on all of the
security features, discussed above, that apply to your system.

Perform Usability Testing of Applications That Have Security Controls

You should verify that security-related functions are ergonomically sound. If personnel are not
accomplishing their work through the applications, for example, because the applications are
overly time-consuming or difficult to use, you have to take remedial steps like training the
employees or reengineering the system.

Perform Independent Vulnerability Assessment of System (Infrastructure and Applications)

You must verify that the infrastructure and applications cannot be compromised, and that attackers
cannot use the applications to carry out unintended functions. Verification is essential prior to an
application being implemented on your system or shipped to a customer, before a security flaw can
do any damage.

Vulnerability assessment has traditionally examined the infrastructure through such "ethical
hacking" means as penetration testing. Still, you must not neglect assessing applications as well,
especially in an Internet environment, where a skillful cracker can manipulate Web applications into
performing unintended functions that compromise data. Crackers put large amounts of data into
fields intended for only a few bytes. This technique, called a buffer overflow attack, can enable an
attacker to directly control a system, or take control later by providing commands as part of the
input string. One of the methods of accomplishing partial application-level vulnerability testing is to
have the functional testing team add a set of negative test cases. Negative test cases refer to
checking various functions, input fields, etc. for the result of unintended inputs. This is the
opposite of positive test cases where the functional testing team is expecting certain results based
on various application inputs. As outlined above, hackers will often try things that the application
would not expect – e.g., buffer overflow situations. (For an intensive review of vulnerabilities to
Web applications, refer to the pathbreaking METASeS report, Building Secure e-Commerce
Applications.)

This verification is best performed by an independent organization. This would be an internal
auditing group not associated with the application development effort, or an outside firm. The
development teams have typically worked too closely with the products to objectively assess their
security vulnerabilities.

NOTE: A number of companies, including METASeS, specialize in performing
independent vulnerability assessments.

Independent, third-party verification can help to protect your organization against the threat of
legal liability in the event of security incidents. Vulnerability assessments indicate, in legal
parlance, that your organization is exhibiting "due care" to protect its own assets and that of
clients. The courts recognize that there is no such thing as "perfect security." However, through
the doctrine of due care, they do place the burden of taking prudent measures to protect assets
upon the organization responsible for creating and maintaining the infrastructure and
applications.

METASeS™ SDLC Phases

30

Deployment/Implementation

This phase involves taking an application from the testing environment to the production
environment for limited (e.g., pilot) or full-production uses.

Simply put, you want to make sure the people carrying out the deployment follow the security-
related processes and procedures that you set up in the preceding phases.

Deploy Training and Awareness Program

This task entails implementation of a security training and awareness program. Administrative
personnel and users should be schooled in the system's security functions.

Operations/Maintenance

After the system is deployed, you continue to operate and maintain it. From a security perspective,
operations and maintenance may include:

• Test and migrate to new software versions. Especially important because vulnerability
conditions change over time. Patches and service packs will address known vulnerabilities.

• Conduct periodic risk review and consult with the business/application owner to assess
whether risks have changed. Make appropriate upgrades or downgrades.

• Continue to provide as well as strengthen the security awareness program, reminding end users
of the things they need to do to maintain security. This is important because new users are
added and new vulnerabilities arise continually, and existing users tend to let down their guard .

• Conduct periodic vulnerability assessments. Be aware that hackers are discovering new
vulnerabilities and devising new threats all the time. It is critical to catch vulnerabilities in a
new release before the application is made public. You should perform quarterly to yearly
vulnerability assessments, based on the risk profile of applications. It is particularly important
to perform vulnerability assessments with new releases of the system, as this is often when
new vulnerabilities arise.

• Perform auditing, logging, monitoring, archiving. This should include periodic audits of
processes and procedures, as well as ongoing review of logs, especially when monitoring for
known weaknesses.

Perform Ongoing Vulnerability Monitoring

Crackers continually develop new tools and techniques for exploiting vulnerabilities. You need a
process for the continual monitoring of new vulnerabilities. A number of organizations, such as
Bugtraq, CERT, and METASeS – through its Web Alert service – provide a service that keeps you
informed of the latest security vulnerabilities.

Because you will not be able to eliminate all vulnerabilities, you will want to regularly monitor holes in
your defenses. This is typically done through an Intrusion Detection System (IDS). (METASeS conducts
"ethical hacking" of clients through an IDS to probe for vulnerabilities.) Because it is impossible to
close every hole, a key ability is to react swiftly and effectively in the event of a security incident.

For example, a Denial of Service (DoS) attack is nearly impossible to prevent. However, you can
monitor for DoS attacks, engineer system redundancies and failovers to mitigate the negative
impact of a DoS, and have a plan of action ready in case one occurs.

NOTE: Later versions of this report will discuss packaged applications, including those provided
by application service providers, and those purchased commercially off-the-shelf (COTS), for
example, SAP and PeopleSoft.

METASeS™ SDLCPhases

31

Conclusion

Ensuring system security can seem an overwhelming job, given the complexity of technologies, the
wealth of new applications continually entering the marketplace, and the growing number of attacks
on corporations from external intruders.

You will never to able to provide perfect security for your organization. However, you can
significantly improve security, and save a great deal of time and effort along the way, by marrying
security to every phase of the SDLC.

32

Appendix A -

Checklist of Security-related Tasks & Subtasks

Phases/Tasks Why Who Task Output (What)

Requirements Analysis

Analyze security

requirements

-- Evaluate security risks,

and consequences.

-- Perform information

asset value analysis.

-- Discuss potential

threats.

-- Analyze potentially

malicious or harmful

activities.

-- Analyze high-level

vulnerabilities.

-- Discuss security goals

(confidentiality, integrity,

availability, non-repudiation,

audibility).

-- Review regulatory

requirements and

corporate Information

Security policy.

Ensure security-related requirements

are factored into the system

architecture & design.

Educate business team, understand

key sensitivities & business

consequences of various breach

scenarios.

Understand the value of the assets

that need to be protected so that the

solution (technical and non-technical

security controls encapsulated in

system-level security

architecture/design) are appropriate

for the value of the asset.

Understand who the actual threats

would be so that security controls

can be prioritized.

Understand the types of security -

related activities threats can engage in

so that the controls can address

them.

Understand the types of

vulnerabilities that need to be

addressed.

Understand key security

requirements/goals required to

mitigate key business risks and

consequences.

Understand regulatory requirements

and existing security policy.

Business Execs,

Application

Development

Mgrs., Security

Team

""

""

""

""

""

""

""

Prioritized security-related

requirements (including the

documentation from the sub tasks

below)

None (done for educational

purposes)

A document identifying critical

business assets & protections

required.

Prioritized list of threats

Prioritized list of potential security

activities

Prioritized classes of vulnerabilities

Document with key security

related design goals

Document listing regulatory

requirements and applicable

security policy

✓

METASeS™ Appendix A

33

Phases/Tasks Why Who Task Output (What)

-- Review future business

goals.

Discuss business/IT

operations.

Review current security

program (policy,

procedures, standards,

processes, technology).

Profile users for the

systems.

Understand customer

partner interface

requirements (business-

level, network, etc.)

Discuss project timeframe.

Develop prioritized

security solution

requirements.

Decide cost & budget

constraints for security

solution (development &

operations).

Understand future business goals for

the system to ensure the proposed

solution will be extensible to future

requirements. All potential future

requirements cannot be known, but

at least understanding likely future

requirements will enable the team to

avoid architecture/design dead ends.

Understand the context that the new

system will operate in to ensure it

meets those operational

requirements.

Understand current security

capabilities vs. requirements for the

new application. Highlight any

deficiencies in the current security

program so they can be addressed

either separately from the system

project, or by the system-level

security architecture

Understand key project scope issues

and design considerations relating to

who will be using the system (who,

when, where, why, etc.)

Understand architecture/design

considerations & constraints.

Understand time constraints

Document business- and technology-

related security requirements &

scope for use in the

architecture/design phase

Understand budget constraints and

develop a rough order of magnitude

for security-related budget. It is very

important to cover not only the

upfront development costs, but also

the ongoing operational costs (e.g.,

ongoing vulnerability monitoring and

assessments, ongoing threat

monitoring/log file review, etc.)

""

Business & IT

operational

managers,

Application

Development,

Security Team

Security Team

Business & IT

operational

managers,

Application

Development

Business Team,

Application

Dev., Security

Team,

Infrastructure

Teams

Business & IT

operational

managers,

Application

Development,

Security Team

Business & IT

operational

managers,

Application

Development,

Security Team\

Business Team

Security Exec

Application

Dev. Exec

List of likely future business

requirements

Notes regarding how the system

will function within the business

and IT environment. Who will do

what, when, etc. This list is often

a part of the traditional lifecycle

output. The details are not needed

at this point

Report - Security Program Gap

Analysis. Analysis of the current

Information Security policy,

standards, procedures, processes,

technology.

List of users (who, what, when,

where, why)

List of internal and external

systems/networks where

integration is required. Should

begin to document some of the

technology involved, but detail not

required at this point (e.g., TCP/IP

network, XML and HTTP, Oracle

DB, etc.)

Top-level project plan/milestones

High-level requirements document

(narrative text & bullet points with

appendix of related reference

material)

Security-related budget (initial

development & operational

budget)

METASeS™ Appendix A

34

Phases/Tasks Why Who Task Output (What)

Sign off on security

requirements and budget.

Decide on buy vs. build for

security services.

Architecture and Design

Create system-level

security architecture.

Includes:

-- Technical security

controls

-- Non-technical security

controls.

Perform architecture

walkthrough.

Create system-level

security design. Includes:

Gain approval for documented

requirements & rough order of

magnitude budget.

Need to determine who can execute

the architecture/design,

development, testing,

implementation, and operational

security tasks (in-house staff, external

staff or some combination)

Document the requirements and

goals for the security solution needs.

To document the technical controls

necessary to achieve the

requirements

To document the non-technical

controls (processes, procedures)

necessary to achieve the

requirements

Ensure that proposed controls will

adequately and effectively meet the

requirements

Document the specific technical and

non-technical controls that will be

used.

Project

Sponsors &

Project

Managers

Security Team,

Infrastructure

Teams,

Application

Development

Team

Application

Development,

Security Team,

Infrastructure

Team

""

""

Mid-level

Business Team,

Business

Application

Development,

Security Team,

Infrastructure

Team

Security Team,

Applications

Development,

Infrastructure

Teams

Appropriate approval signatures

Buy vs. build for various security-

related tasks

High-level statement of

requirements accompanied by

various technical methods of

achieving the requirements (e.g., a

network access control on the

technical side, or audit reviews on

the non-technical end). The

architecture should focus on the

what and why rather than the

how. Some design items will be

obvious, e.g., a firewall to address

network access controls. However,

the key at this point is not to get

into detail design! It is important to

remain high level enough to be

able to review and adjust the

architecture prior to expending too

much time on the design.

List of technical controls needed

(e.g., access control,

authentication, encryption,

deterrence measure, etc.)

List of non-technical controls

needed (see core security

processes & procedures in

appendix C)

List of deficiencies that need to be

corrected in the architecture

Document the specific techniques -

how the goals/requirements laid

out in the system-level security

architecture will be achieved (e.g.,

D27selecting specific methods and

tools for achieving the goals)

METASeS™ Appendix A

35

Phases/Tasks Why Who Task Output (What)

-- Top-level technical

security design

-- Top-level non-technical

security design (CONOP)

-- Detailed technical

security design.

-- Detailed security

processes and procedures

Perform cost/benefit

analysis for various design

elements.

Perform design review.

Should include: technical

review geared to the

application level, technical

review geared to the

infrastructure level.

Educate development

teams on how to create a

secure system.

Document more specifically what

technical security elements are

needed and how they will achieve

the requirements

Develop a security CONOP

(Concept of Operations), a high-level

outline of the required processes and

procedures and their interrelation.

To add additional specificity to the

top-level technical design.

To add additional specificity to the

top-level non-technical design.

This task should be done prior to the

detailed design. The purpose is to

evaluate various design scenarios and

make cost/benefit trade-offs to

establish a final top-level design.

Catch and fix any design flaws in the

system. These reviews are typically

done in an iterative fashion after each

level of design is complete. The

purpose of the more detailed

reviews is to understand vendor/tool

integration, performance issues, and

make product selections that meet

architecture requirements. Top-level

design reviews are typically done

with design walk-through sessions,

while more detailed reviews

sometimes include lab testing for

some of the security infrastructure

Ensure the development teams are

appropriately educated about general

security issues, development-related

security issues (e.g., secure

development environments) and the

security related tools they will need

to utilize

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team,

Applications

Development,

Infrastructure

Teams

List of tools and products that will

be part of the technical solution

and how they will work with other

elements (other technical security

controls, the application system

itself, infrastructure). The output

will likely be in the form of a

document or presentation with a

combination of narrative text and

graphics (e.g., network diagrams).

Narrative document with top-level

process flow charts and procedure

definitions

The detailed design will articulate

specific vendor tools, versions,

integration code, configuration

setting, rule sets, etc.

The detail design will document

the specific process and procedural

steps for each of the processes

identified in the CONOP. This

includes specific technical security

standards and configuration

procedures for appropriately

hardening the system (hardware,

operating software, middleware,

application, etc.)

Cost & Benefits comparison chart

for various design alternatives.

Priority given to the solution(s) that

most closely meet cost/benefit and

security architecture goals

Prioritized list of required design

changes

No output (educational purposes)

METASeS™ Appendix A

36

Phases/Tasks Why Who Task Output (What)

Design end-user training

and awareness programs.

Design security test plan.

Update Information

Security policy, if

appropriate. Updates

should NOT be performed

often.

Assess and document how

to mitigate key application

& infrastructure

vulnerabilities.

Design security for

development & test

environments.

Develop
(Build/Configure/
Integrate)

Set up secure development

environment (e.g.,

development servers).

Train developers on

security-related

middleware and secure

coding practices

(authorization services,

encryption, PKI, etc.)

Train infrastructure teams

on installation &

configuration of the

middleware.

Code application-level

security components.

Install/Configure/Integrate

Infrastructure

Ensure the end users of the system

understand how to use the security

features correctly and how not to do

adversely impact security (use strong

passwords, don't share passwords or

credentials, etc.)

Document how to test the solution

(performance, vulnerability, code

reviews, assurance, etc.)

Some new applications will require a

reevaluation of current Information

Security policy.

To document and prioritize

vulnerabilities and fixes, not only for

the infrastructure and middleware

components, but also for purchased

packaged applications

To ensure the development and test

environments are secure (source

code version control procedures).

Ensure control & integrity of the

source code & component

configurations

Ensure the development teams are

appropriately educated about general

security issues, developmen- related

security issues (e.g., secure

development environments) and the

security-related tools they will need

to utilize.

Ensure the infrastructure teams

understand how to use & configure

the new infrastructure required for

the system.

Develop code per design.

Provide a ready technical security

environment for various

development and testing.

Security Team,

Applications

Development,

Business Units

Security Team,

Applications

Development,

Infrastructure

Teams

Security Team

Security Team

Security Team

& Application

Development

Team,

Infrastructure

Team

Security Team

& Application

Development

Team,

Infrastructure

Team

Security Team

& Application

Development

Team

Security Team,

Infrastructure

Team

Application

Development

Security Team,

Infrastructure

Team

Training and awareness

documentation, system

documentation, help systems,

installation procedures, videos,

awareness aides built into the

system, etc.)

Additional policies, or alterations to

existing policy. This should be the

exception rather than the rule and

not done very often if the policy is

written correctly.

Database of vulnerabilities that

enables the tracking of those that

are addressed and those that are

still outstanding.

Processes, procedures and

technology (e.g., version control

systems, access controls,

segregated development/testing

networks, etc.)

Secure development environment

Trained and educated developers

Trained and educated Infrastructure

Team

Application code

Ready infrastructure (HW, OS,

middleware services, etc.)

METASeS™ Appendix A

37

Phases/Tasks Why Who Task Output (What)

Set up security-related

vulnerability tracking

process.

Develop detailed security

test plan for current and

future versions.

Conduct unit testing &

integration testing.

Test

Perform code review/code

walk-through.

Test the configuration

procedures.

Perform systems test.

Conduct performance/load

test with security features

turned on.

Perform usability testing of

applications with security

controls.

Ensure identified vulnerabilities are

systematically recorded, prioritized,

and appropriately removed

Ensure the security-related testing is

done.

Ensure the security-related services

being used by the developers are

working (e.g., external authentication

or encryption services, network

security services like VPN's, etc.).

This is typically an iterative process

where various developers are testing

specific code components or

subsystems as they develop the

codes.

Verify application code meets security

requirements/specifications

Verify that administrators can use the

procedures to set up network and

systems components to meet the

standards, and that vulnerabilities are

in fact removed or mitigated.

Verify technical components are

functioning together to

design/architecture specifications

Verify systems performance &

production load requirements with

security components/features running

Verify application with security

controls meets customer

usability/ergonomic needs and make

adjustments.

Security Team

& Application

Development

Team

Security Team

& Application

Development

Team,

Infrastructure

Team

Security Team

& Application

Development

Team,

Infrastructure

Team

Security Team

& Application

Development

Team,

Infrastructure

Team,

Independent

Audit team

System

deployment

teams

Security Team

& Application

Development

Team,

Infrastructure

Team, QA

Teams

Security Team

& Application

Development

Team,

Infrastructure

Team

Application

Development

Team, QA

team.

Tracking database (could be a

simple list/spreadsheet). Often

integrated into the QA or bug

tracking system. It will be

necessary to code security-related

issues for easy recognition and

prioritization (sorting, reporting,

etc.)

Documented test plans for

security-related testing

List of code-level security issues to

be corrected

List of procedural issues that need

to be resolved/clarified

List of system-level and system

integration-related issues that need

to be resolved

List of security-related performance

issues that need to be resolved

List of security-related usability

issues that need to be resolved

METASeS™ Appendix A

38

Phases/Tasks Why Who Task Output (What)

Conduct independent

vulnerability assessment of

the system (infrastructure &

application).

Deployment (Pilot,
Full-Scale Deployment)

Conduct pilot solution

(infrastructure, application,

etc.)

Conduct transition

between final system test

and development through

secure means such as

change management

procedures and encrypted

transmissions.

Ensure that system files are

compared to originals to

ensure authenticity.

Deploy training and

awareness program. Train

administrative personnel

and users in the system's

security functions.

Conduct full-scale

deployment.

Operations/
Maintenance

Test and migrate to new

software versions

Conduct periodic risk

review.

Continue to provide as

well as strengthen the

security awareness

program

Conduct periodic

vulnerability assessments

Independent verification to ensure

the infrastructure and application

cannot be compromised

Make deployment & operational

process adjustments prior to full-

scale implementation.

Ensure the integrity of the final

system.

Ensure the integrity of the final

system

Ensure end users are appropriately

trained on the security-related system

features, processes, and procedures

Need to make sure current

infrastructure is secure before

installing new system.

Especially important because

vulnerability conditions change over

time.

Business risk conditions change over

time and need to be reassessed.

Consult with the business/application

owner to assess whether risks have

changed.

New users are added and new

vulnerabilities arise continually.

Existing users tend to let down their

guard.

External

Auditor (either

within the

organization or

3rd party)

Security Team

& Application

Development

Team,

Infrastructure

Team

Application

Development

Team,

Infrastructure

Team, Change

Management

Development

Team

Development

Team

Development

Team

Security Team

& Application

Development

Team,

Infrastructure

Team

Security &

Business Teams

Security Team

Security Team

Prioritized list of vulnerabilities

Prioritized list of pilot-related issues

to resolve

Change Management report/sign-

offs

Issues if any

Educated and trained end users

Change Management report/sign-

offs

Updated vulnerability punchdown

list.

Risk review report

Improved security awareness

program, and prioritized security

awareness initiatives

Vulnerability reports

METASeS™ Appendix A

39

Phases/Tasks Why Who Task Output (What)

Perform auditing, logging,

monitoring, archiving.

Hackers are discovering new

vulnerabilities and devising new

threats all the time. It is important to

perform vulnerability assessments

with new releases of the system, and

catch vulnerabilities in new releases

before the application is made public.

Need to ensure possible breaches

are recognized and addressed. Audit

processes and procedures and

review logs, especially for known

weaknesses.

Security Team

& Various

Operations

Teams

Status reports

40

Appendix B -

SDLC Overlay

“Typical” SDLC Phases Microsoft Solutions Framework (MSF)

Requirements Analysis

Architecture and Design

Develop (Build/Configure/Integrate)

Test

Deployment (Pilot, Full-Scale Deployment)

Operations/Maintenance

Envisioning Phase - Vision Approved Milestone with Following Output:

Vision Document, Master Risk Assessment Document, Project Structure

Document

Planning Phase - Project Plan Approved Milestone with Following Output:

Functional Specificity, Master Project Plan, Master Project Schedule, Updated

Master Risk Assessment Document

Developing Phase - Scope Complete Milestone with Following Output:

Complete Functional Specification, Updated Master Project Plan/Schedule,

Updated Master Risk Assessment Document, Initial Performance Support

Elements, Test Spec, and Test Cases.

Stabilizing Phase - Release Milestone with the Following Deliverables:

Golden Release, Release Notes, Performance Support Elements, Test

Results, and Testing Tools

Note: MSF is oriented toward building software the others will deploy

.

Note: MSF is oriented toward building software the others will deploy.

41

Appendix C -

Security Related Processes & Procedures

• Core Security Processes

• Information Security Procedures

• IT Processes

• Business Processes

Core Security Processes

Core security processes are typically owned (created and refined) and performed by the security
organization, or a matrix team with security responsibility.

Process Definition

Security Program Management

Risk Management

Policy Management

Threat Management

Vulnerability Management

Security Administration

The ongoing management, review and refinement of the elements of the

Information Security program, including policies, standards, procedures,

processes, technology, and organization. Addresses changing risk and

business conditions.

The ongoing, methodical assessment of Information Security risks across the

organization.

An ongoing (lifecycle) process for defining and refining the organization’ s

Information Security policy framework elements (policy, procedures, standards).

The ongoing monitoring (e.g., open source data collection) and

management (deterrence, mitigation, tracking, etc.) of Information Security

related threats. Treats are would-be perpetrators (people/organizations) of

Information Security breaches.

The ongoing monitoring and management of Information Security

vulnerabilities. Vulnerabilities are the holes threats could exploit to breach of

Information Security.

Adding, changing, user, group, or system privileges.

METASeS™ Appendix C

42

Information Security Procedures

Information Security procedures are typically created and refined by the security organization or a
matrix team with security responsibility. Procedures are differentiated from processes by their
scope and duration. Procedures are typically of short duration (a few minutes of days), while
processes are more often long-running (days, weeks, months) or continuous in nature.

Process Definition

Security Architecture

Information Security Training & Awareness

Development and ongoing maintenance of the security architecture --

typically a sub architecture or domain of the enterprise-wide technical

architecture. This process may also refer to the development and

maintenance of a portfolio of system-level architecture/design templates

enabling rapid deployment of new systems through the use of baseline best

practice templates.

Development an ongoing maintenance of the security education program.

This includes awareness activities oriented towards the end users

(employees, customers, partners, etc.), as well as training on Information

Security policy, processes, architectures, procedures, etc. for the IT

organization (e.g., applications development, operations).

Information Security Procedure Definition

Technical Configuration Procedures (a.k.a. System

Hardening Procedures).

Media Sanitation

Vulnerability Assessments (a.k.a. penetration testing, ethical

hacking)

Incident Response

Incident Investigation/Forensics

Threat Assessment

Asset Classification

Specific instructions on how to configure various systems (network & system

devices, applications, etc.) such that they comply with the organization’s

Security Standards. Organizations typically require a portfolio of Technical

Configuration Procedures to address the multiple systems in use.

The procedure for disposing of information that contains sensitive data.

The instructions on what and how to test an Information Technology

environment and uncover vulnerabilities (both system and non-system

level).

Instructions to handle potential or real security breaches. The procedure

typically includes an incident prioritization method, escalation instructions and

matrix of resources to involve based on the type and severity of the

incident.

The procedures for researching the source of a breach and gathering

evidentiary data in support of potential future civil or criminal litigation.

The procedures for analyzing specific threats to an organizational asset (or

set of assets).

Instructions/guidance that information/data owners can use to appropriately

value and label the information/data in question, such that it receives the

appropriately secure treatment (both via technical and non-technical

controls).

Part of asset classification is system zoning, formal zones that identify

infrastructure grouping by priority. Corresponds to the level of monitoring

implemented for certain systems.

METASeS™ Appendix C

43

IT (Information Technology) Processes

IT (Information Technology) processes are typically managed by various IT departments, but
require some level of integration with security processes and procedures.

Process Relationship to

Information Security

Process

Definition

Configuration Management

Information Security Relationship --

Vulnerability management process and vulnerability

assessment procedures to ensure known problems are fixed

(e.g.,. via patches or service packs) and new problems are

not introduced to the environment.

Change Management

Information Security Relationship -- Vulnerability

management process to ensure that appropriate security

sign-offs are completed so that new vulnerabilities are not

introduced to the environment.

Contingency Planning/Disaster Recovery

Information Security Relationship -- Ongoing threat management

process and security incident response procedures to ensure the

cross communication and orderly restoration of systems in the

event of a security breach. Also the risk assessment process so

that the proposed contingency/disaster recover plan does not

introduce security vulnerabilities (e.g., offsite storage of sensitive

backup media may require additional controls).

Enterprise-Wide IT Architecture

Information Security Relationship -- Security architecture is

a subarchitecture (or component architecture) to the

enterprise-wide IT architecture.

Systems Development Lifecycle

Information Security Relationship -- Security architecture,

risk assessment, vulnerability assessments, security

administration. The SDLC needs to incorporate various

security tasks so that appropriate security is built into the

systems rather than bolted on afterwards.

IT operations (a.k.a. data center operations or network

operations (NOC))

Information Security Relationship -- Threat management,

incident response. The NOC or data center operations

staff often provides off-hours threat event monitoring and

initial incident response triage steps.

Help Desk/Problem Management

Information Security Relationship – Threat management, incident

response, security administration (e.g., for password resets).

The process for making modifications to systems including: hardware,

operating systems, network operating systems, application systems, etc. The

configuration management process typically also endeavors to document the

physical and logical relationships and specific configuration of system

elements.

The communication, tracking, and approval of modifications to the

production environment for new systems or various configuration

modifications, such that they are performed in an orderly, controlled manner

to minimize adverse impacts and enable rapid recovery in the event of a

problem.

Broad categories of change may affect certain systems, e.g., programmatic

changes, system updates (patches), configuration changes (OS or

middleware). Each change may activate high-level responses. System

updates may require that a system be recertified within certain days of the

change. Significant changes to middleware (WWW server) applications

require manual examination by Information Security.

Process designed to minimize the impact of adverse events and ensure an

orderly restoration of the IT capability supporting the business. The adverse

events can derive from either man- made and natural disasters, and may

stem from accidental or purposeful acts. They include natural disasters, or

intentional acts like sabotage or security breaches (e.g., Denial of Service

attacks).

An enterprise-wide technical architecture (EWTA) is a logically consistent set

of principles that guides the "engineering" -- that is, detailed design, selection,

construction, implementation, deployment, support, and management of an

organization's information systems and technology infrastructure.

Consequently, a set of product standards, by itself, does not constitute

architecture. What is most important is guidance on how the products are

to be used to achieve the enterprise's goals.

The process that governs how systems are built, or modified to meet the

organization’s needs. This includes COTS (commercial off the shelf) systems

that can be purchased and deployed or purchased and modified/integrated

to fulfill requirements.

The ongoing monitoring of systems to ensure that potential problems are

recognized and fixed prior to when problems or outages would be identified

and addressed within defined service level targets.

The process for tracking customer calls and service outages such that issues

are resolved within service level parameters.

METASeS™ Appendix C

44

Business Processes

Business processes are maintained outside of the IT department, and require integration with
various Information Security processes or procedures.

Employee Lifecycle

Information Security Relationship -- Security administration

(add, change, or remove system privileges).

Merger & Acquisition (M&A) and Divestiture

Information Security Relationship -- Risk management, risk

assessment (as part of due diligence), security administration,

security architecture.

Regulatory Compliance Management

Information Security Relationship -- Risk assessment

Customer Processes

Information Security Relationship -- Security administration

Partner Processes

Information Security Relationship -- Security administration,

security architecture (for system level integration),

vulnerability assessment

Audit

Information Security Relationship -- Risk management, risk

assessment, security administration

Public Relations

Information Security Relationship -- Incident response (for

"spin control" of breaches).

Product Development

Information Security Relationship -- Risk assessment,

security architecture (where new products contain an IT

component)

Certification

Information Security Relationship -- Risk management, risk

assessment, security administration, vulnerability assessment

Physical Security

Information Security Relationship -- Physical access controls

to IT infrastructure and systems

The HR processes/procedures dealing with the hiring, training,

promotion/demotion, or removal of employees.

The business process for assessing (due diligence) and then executing

mergers/acquisitions, or divestitures.

The process for maintaining compliance with regulations and laws

administered by such agencies as HIPPA and the SEC. While the legal

department of an organization has responsibility for this matter, Information

Security must be aware of areas that impact it. In banking, for example,

regulatory boards can impose fines or sanctions for technical non-

compliance.

Processes designed to add, delete, or change customers.

Processes designed for adding, deleting, or changing partners (suppliers,

distributors, resellers, etc.)

Process for review of financial and other official business operations.

Process for orderly dissemination of information relating to the organization

The process for creating new hard goods or service products for sale.

A formal process of signing off on the functionality and security of new

systems.

The process (or organization) responsible for securing the physical assets of

the organization.

Process Relationship to

Information Security

Process

Definition

