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ABSTRACT 

Monitoring irrigation is essential for an efficient management of water resources in arid 

and semi-arid regions. We propose to estimate the timing and the amount of irrigation 

throughout the agricultural season using optical and thermal Landsat-7/8 data. The 

approach is implemented in four steps: i) partitioning the Landsat land surface 

temperature (LST) to derive the crop water stress coefficient (Ks), ii) estimating the 

daily root zone soil moisture (RZSM) from the integration of Landsat-derived Ks into a 

crop water balance model, iii) retrieving irrigation at the Landsat pixel scale and iv) 

aggregating pixel-scale irrigation estimates at the crop field scale. The new irrigation 

retrieval method is tested over three agricultural areas during four seasons and is 

evaluated over five winter wheat fields under different irrigation techniques (drip, 

flood and no-irrigation). The model is very accurate for the seasonal accumulated 

amounts (R ~ 0.95 and RMSE ~ 44 mm). However, lower agreements with observed 

irrigations are obtained at the daily scale. To assess the performance of the irrigation 

retrieval method over a range of time periods, the daily predicted and observed 
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irrigations are cumulated from 1 to 90 days. Generally, acceptable errors (R = 0.52 and 

RMSE = 27 mm) are obtained for irrigations cumulated over 15 days and the 

performance gradually improves by increasing the accumulation period, depicting a 

strong link to the frequency of Landsat overpasses (16 days or 8 days by combining 

Landsat-7 and -8). Despite the uncertainties in retrieved irrigations at daily to weekly 

scales, the daily RZSM and evapotranspiration simulated from the retrieved daily 

irrigations are estimated accurately and are very close to those estimated from actual 

irrigations. This research demonstrates the utility of high spatial resolution optical and 

thermal data for estimating irrigation and consequently for better closing the water 

budget over agricultural areas. We also show that significant improvements can be 

expected at daily to weekly time scales by reducing the revisit time of high-spatial 

resolution thermal data, as included in the TRISHNA future mission requirements. 

 

Keywords: Irrigation, Land surface temperature, FAO-56 model, Landsat, Root-zone 

soil moisture, Evapotranspiration. 

 3 

1 Introduction 4 

Irrigated agriculture consumes > 70% of freshwater at global scale (Foley et al., 2011) and 5 

> 80% in semi-arid and arid regions (Chehbouni et al., 2008; Garrido et al., 2010). The 6 

water scarcity issue is particularly acute in the Mediterranean, which is and will continue 7 

to be a hot spot of climate change with an observed trend towards warmer conditions and 8 

a greater irregularity in seasonal and annual precipitations (Giorgi, 2006; IPCC, 2013). 9 

Increasing the water use efficiency in agriculture is essential for the sustainability of 10 

water resources and hence has been identified as one key topic related to water scarcity 11 

and droughts (Werner et al., 2012). Despite the important pressure of agriculture on 12 
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water resources, information on the amount of irrigated water is often unavailable. 13 

Therefore, monitoring and quantifying irrigation over extended areas is critical for an 14 

efficient management of water resources. 15 

 16 

In an attempt to estimate the irrigation volumes from remote sensing data, some recent 17 

studies have explored the utility of surface soil moisture estimates from micro-wave 18 

sensors (Brocca et al., 2018, 2017; Escorihuela and Quintana-Seguí, 2016; Jalilvand et al., 19 

2019; Kumar et al., 2015; Lawston et al., 2017; Malbéteau et al., 2018; Zhang et al., 2018). 20 

In particular, Brocca et al. (2018) developed an approach to quantify the irrigation 21 

amounts by combining the currently available coarse resolution satellite soil moisture 22 

products (e.g. SMAP, SMOS, ASCAT, AMSR-2) and a soil water balance. This work was 23 

applied over various semi-arid and semi-humid regions worldwide but could not be 24 

quantitatively assessed due to the unavailability of reliable in situ observations of 25 

irrigation over corresponding irrigated perimeters. However, this approach was 26 

quantitatively assessed at ~50 km resolution over a semi-arid region (Jalilvand et al., 27 

2019). Some deficiencies were obtained over periods with sustained rainfalls and the 28 

method was not implemented in winter because the method fails in correctly separating 29 

irrigation from precipitation (Brocca et al., 2018). This makes the approach unsuitable for 30 

winter crops, which are especially important in the Mediterranean. Nevertheless, the 31 

ability to quantify monthly irrigations was demonstrated under specific conditions: 32 

during prolonged periods of low rainfall and using satellite soil moisture data with a low 33 

uncertainty and a frequency higher than 3 days.  34 

 35 

There are two main issues with the use of microwave-based soil moisture for retrieving 36 

irrigation. The first limitation is the very coarse resolution (~40 km) of readily available 37 
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satellite soil moisture data sets. The spatial resolution can be improved to 1 km resolution 38 

using disaggregation methods (e.g. Molero et al., 2016; Peng et al., 2017), but this 39 

enhanced resolution is still unsuitable for monitoring the water management at the crop 40 

field scale, i.e. about 100 m or 1 ha (Anderson et al., 2012). Furthermore, recent methods 41 

to obtain soil moisture data at suitable resolution (~100 m) have not reached an 42 

operational maturity yet (e.g. Amazirh et al., 2018; Merlin et al., 2013; Peng et al., 2017). 43 

The second limitation is related to the sensing depth (several cm or so) of microwave 44 

observations. The dynamics of the top soil moisture is likely to be used to detect irrigation 45 

events. However the volume sensed is much smaller than the root zone water storage, 46 

which weakens the capability of microwave-based approaches to solve the crop water 47 

budget.  48 

 49 

Alternatively to microwave-based approaches, optical/thermal data have demonstrated 50 

to be valuable for monitoring the crop water requirements by means of 51 

evapotranspiration (ET) estimates (Gowda et al., 2008; Kalma et al., 2008; Li et al., 2009). 52 

Thermal data have the advantage over microwave data of providing information on the 53 

vegetation water status, even within individual fields, in order to improve the water use 54 

efficiency (Anderson et al., 2012). In this vein, different methods have been developed in 55 

the last decades to estimate ET from LST data (Gowda et al., 2008; Kalma et al., 2008; Li 56 

et al., 2009). Despite the large variety of existing approaches to estimate crop water 57 

requirements by means of ET estimates, irrigation is generally simulated from the 58 

modeled water needs (e.g. Allen et al., 1998; Bastiaanssen et al., 2007; Battude et al., 2017; 59 

Corbari et al., 2019; Duchemin et al., 2008). Those models are based either on the water 60 

balance or on the coupled energy-water balance, but in both cases, the simulated 61 

irrigation may differ considerably from actual irrigation amounts. The reason is that the 62 
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modeling of soil moisture dynamics and its interaction with the crop consumption 63 

through ET is prone to significant uncertainties, especially when no information is 64 

available on the actual crop water status over time. Other approaches based on ET 65 

estimates from remote sensing surface energy balance (SEB) models (e.g. SEBS, SEBAL, 66 

METRIC) have the advantage of estimating the crop water requirement without the 67 

calculation of the water balance. This is feasible using daily optical/thermal data. The 68 

point is that the remotely sensed variables for operating SEB models at daily scale 69 

generally have a spatial resolution of 1 km or more (e.g. Romaguera et al., 2014; van 70 

Eekelen et al., 2015), which is unsuitable at crop field scale. When using high-spatial 71 

resolution optical/thermal data, the low temporal resolution has to be taken into account. 72 

In Droogers et al. (2010), a water balance model was calibrated to minimize the difference 73 

between simulated and remotely sensing Landsat-derived ET over an irrigated cotton 74 

crop field. The calibration involved adjusting the irrigation amount and a stress threshold 75 

below which irrigation is triggered. The stress threshold f1 was defined as the actual to 76 

potential transpiration and ranged from 0.95 to 0.98 in that study. However, due to 77 

compensation effects between irrigation amounts and dates, the authors had to further 78 

constrain the inverse problem by fixing the irrigation dates during the first half of the 79 

season (from March to end of June) and to assume that there is no stress during the second 80 

half of the season (from July). Therefore, during the first stage, irrigation events are 81 

supposed to be known, while during the second stage, the approach in Droogers et al. 82 

(2010) is very similar to the application of the classical FAO-56 model (Allen et al., 1998) 83 

that triggers irrigation as soon as the root zone soil moisture gets below 0.95–0.98 times 84 

the critical soil moisture below which the crop stress starts. The retrieved irrigation 85 

amounts were assessed at the seasonal time scale but, due to the lack of validation data, 86 

they were not compared to actual irrigations at shorter time scales. Recently, Corbari et 87 
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al. (2019) developed a system to predict the water needs (irrigation) from the coupling of 88 

remote sensing data, soil water-energy hydrological modeling and meteorological 89 

forecasts. Landsat-derived vegetation and albedo parameters, as well as land surface 90 

temperature (LST) data were used to initialize and calibrate the energy-water balance. 91 

However, this approach required observed data of the previous days (especially soil 92 

moisture) to simulate the soil moisture and irrigation water needs for up to 3 days, which 93 

is not currently possible over large scales because there is no method that allows 94 

obtaining operationally soil moisture data at suitable resolution (~100 m). Another 95 

approach was proposed by Chen et al. (2018) to detect the timing of irrigation from a 96 

vegetation index by using Landsat and MODIS reflectance data. The method was 97 

demonstrated to be promising in detecting irrigation events during the first half of the 98 

growing season only. Actually, vegetation index presents great fluctuation and is 99 

insensitive to water supplement during the second half of the growing season. In addition, 100 

the method does not allow retrieving irrigation amounts. 101 

 102 

Among the thermal-based ET models, the contextual approaches have had an especial 103 

interest in the scientific community for its simplicity and operationality over large areas, 104 

by estimating ET as a fraction of either potential ET (Moran et al., 1994), or available 105 

energy (Long and Singh, 2012; Roerink et al., 2000). The evaporative fraction (EF, defined 106 

as the ratio of ET to available energy, i.e, the difference between net radiation and soil 107 

heat flux) can be estimated from the contextual information of remotely sensed optical 108 

and thermal images, where dry and wet conditions are identified from the LST – fv (e.g. 109 

Long and Singh, 2012; Moran et al., 1994) space, the LST – albedo (e.g. Roerink et al., 2000) 110 

space or even from their combination (Merlin, 2013; Merlin et al., 2014). According to a 111 

number of thermal-based methods, LST can be related to the root-zone soil moisture 112 
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(RZSM) by means of the canopy temperature and its associated transpiration (Boulet et 113 

al., 2007; Hain et al., 2009; Moran et al., 1994). Hence, one key step to estimate thermal-114 

derived RZSM is the partitioning of LST into soil and canopy temperatures (Merlin et al., 115 

2014, 2012; Moran et al., 1994). In dry and wet regimes where a thermal-based EF (or 116 

canopy temperature-based water stress index) is 0 and 1, respectively, LST is no more 117 

sensitive to RZSM. LST is hence useful only in a transitional regime where RZSM is 118 

strongly related to LST. In the transitional regime, the soil moisture ranges between a 119 

given critical soil moisture (SMcrit, below which vegetation is under stress condition) and 120 

the soil moisture at permanent wilting point (SMwp, below which water is not accessible 121 

to plants). SMcrit is thus defined between SMwp and the soil moisture at field capacity (SMfc, 122 

above which water cannot be held against gravitational drainage). Therefore, the 123 

nonlinear response of LST for different RZSM levels/regimes is a big issue when trying to 124 

develop a RZSM retrieval approach from LST data. Olivera-Guerra et al. (2018) developed 125 

an approach to derive a first guess RZSM from a LST-derived water stress coefficient, 126 

while under unstressed conditions (i.e. when LST is no more sensitive to RZSM) the RZSM 127 

was estimated from a crop water balance model. The temporal dynamics of RZSM were 128 

hence obtained along the season under stressed and unstressed condition, by making an 129 

optimal use of both the water budget model and sequential LST observations. However, 130 

the method in Olivera-Guerra et al. (2018) was not applied to remote sensing data and its 131 

application to readily available LST observations requires to account for three major 132 

issues that are addressed in the present work. First, a contextual approach should be 133 

implemented from Landsat data to partition the LST into canopy and soil temperatures 134 

by detecting the wet and dry conditions from the LST – fv space. This would allow for 135 

estimating a Landsat-derived crop stress coefficient (Ks) over large scales. Second, a 136 

serious complexity is introduced when trying to estimate the daily RZSM from sparsely 137 
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available Landsat data. Especially the Landsat-derived Ks should be integrated into a crop 138 

water balance model in both recursive and forward modes, in order to provide the 139 

temporal dynamics of RZSM along the season at pixel scale over large areas. Third, given 140 

that irrigation is usually applied within a single day over the entire crop field, the pixel-141 

scale irrigation estimates can be aggregated (following a strategy to be defined) to provide 142 

the irrigation dates and amounts at the crop field scale.  143 

 144 

Therefore, this study aims, for the first time, to develop an original approach to retrieve 145 

the crop field scale irrigation timing and amounts on a daily basis all along the agricultural 146 

season from readily available remote sensing data. For this purpose, a key and novel step 147 

in the approach is to estimate the daily RZSM by combining a forward and recursive crop 148 

water balance initialized by temporally-sparse Landsat data. To our knowledge it is the 149 

first remote sensing-based approach to estimate irrigation at such high spatio-temporal 150 

resolution from readily available optical/thermal data and without relying on ad hoc 151 

assumptions on irrigation regimes (e.g. no stress) and/or dates. The approach is 152 

implemented with Landsat-7 and -8 data over three 12 km by 12 km areas in central 153 

Morocco and is validated over five sites with different irrigation techniques (drip, flood 154 

and no-irrigation) during four agricultural seasons. The paper is presented as follows. 155 

Data sets are first described (Section 2). Next, the irrigation retrieval method is presented: 156 

i) partitioning the Landsat LST to derive the crop water stress coefficient Ks, ii) estimating 157 

the daily RZSM from the integration of Landsat-derived Ks into a crop water balance 158 

model, iii) retrieving irrigation at the Landsat pixel scale and iv) aggregating pixel-scale 159 

irrigation estimates at the crop field scale (Section 3). Then, the approach is tested over 160 

three agricultural areas and validated against in situ measurements in terms of irrigation 161 
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as well as daily RZSM and ET (Section 4). Finally, the conclusions and perspectives are 162 

presented (Section 5). 163 

 164 

2 Data collection and pre-processing 165 

The study focuses on three 12 km by 12 km agricultural areas located in the semi-arid 166 

Haouz plain in central Morocco (Fig. 1). Each agricultural area is mainly covered by winter 167 

wheat crops. Five experimental sites comprising two drip irrigation, two flood irrigation 168 

and one rainfed wheat fields were monitored during four agricultural seasons. Details 169 

about irrigation systems, crop field area and monitoring period per area, named 170 

Chichaoua, R3 and Sidi Rahal are showed in Table (1). The soil texture are predominantly 171 

clay loam, clay and silt loam for Chichaoua, R3 and Sidi Rahal areas, respectively. The site 172 

of Sidi Rahal (Bour) was maintained under bare soil conditions during the 2015-2016 173 

season due to the dry winter of 2015. However, the four seasons between 2015 and 2018 174 

are used as benchmark. More details about the field campaigns can be found in Ait Hssaine 175 

et al. (2018), Amazirh et al. (2018, 2017), Merlin et al. (2018) and Rafi et al. (2019). 176 

 177 

2.1 Ground-based data 178 

2.1.1 Irrigation data 179 

In the Chichaoua area, flowmeters were used to monitor the irrigation of the two drip-180 

irrigated fields. Irrigation was applied every 3–4 days during the 2016–2017 season until 181 

mid-April. Nevertheless, one field (EC1) was voluntarily stressed during specific periods 182 

along the season (controlled stress). Irrigations were stopped at mid-March and at the 183 

beginning of February of the 2017–2018 season over the reference (EC2) and controlled 184 

stress (EC1) field, respectively. The mean irrigation was 13 mm over 2 h.  185 
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In the R3 area, the flood-irrigated fields were irrigated every 1 to 3 weeks from January 186 

to April. Irrigation of the 2 ha field was precisely measured with a mean irrigation of 33 187 

mm distributed in 8 events, while the 4 ha field was irrigated 7 times with an estimated 188 

volume of 64 mm each. No irrigation was applied to the Sidi Rahal rainfed (Bour) wheat 189 

field. 190 

 191 

2.1.2 Meteorological and flux stations 192 

Automatic meteorological stations were installed in each experimental area: two over 193 

alfalfa fields close to the monitored wheat fields in the Chichaoua and R3 areas and one 194 

over the monitored rainfed wheat field in Sidi Rahal. Meteorological data including air 195 

temperature, solar radiation, relative humidity and wind speed were collected 196 

continuously every 30 min. Likewise, five micro-meteorological stations equipped with 197 

eddy-covariance systems were installed in each site. Here, net radiation was measured by 198 

NR01 (Hukseflux) or CNR (Kipp & Zonen) radiometers, depending on the station. Soil heat 199 

fluxes were estimated from two HFP-01 heat flux plates (Hukseflux) per site buried at 5 200 

cm. Finally, latent and sensible heat fluxes were acquired with krypton KH2O 201 

hygrometers (Campbell) and CSAT3 3D Sonic Anemometers at a frequency of 10 Hz and 202 

averaged over 30 min. The reliability and quality of the eddy covariance measurements 203 

over each field have been assessed through the energy balance closure (Ait Hssaine et al., 204 

2018; Amazirh et al., 2017; Rafi et al., 2019). 205 

 206 

2.1.3 Soil moisture data 207 

Time Domain Reflectometry (TDR) probes (CS615 and CS655) were installed near the flux 208 

stations in each site to measure the soil moisture at different depths. The TDR probes 209 

were installed at 5, 15, 25, 35, 50, 80 cm in the stress controlled drip-irrigated (Chichaoua) 210 
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and in the 4 ha flood-irrigated field (R3). Meanwhile, the TDR probes were installed at 5, 211 

15, 30, 50, 80 cm in the reference drip-irrigated field and in the 2 ha R3 flood-irrigated 212 

field. In the rainfed wheat field, the TDR probes were installed only at the soil surface 213 

layer (at 5 and 10 cm). The measurements at different depths were used to estimate the 214 

soil moisture integrated over the root zone by means of linear interpolations. In situ RZSM 215 

estimates were then normalized by using the soil moisture values at wilting point (SMwp) 216 

and at field capacity (SMfc) estimated from pedo-transfer functions (Wosten et al., 1999). 217 

 218 

2.2 Remote sensing data 219 

Landsat-7 and -8 data collected for the agricultural seasons from 2014 to 2018 are used. 220 

Images with <30% of cloud cover are considered for the analysis, giving an average of 20 221 

images per agricultural season. We combine Landsat-7 and 8 to increase the frequency of 222 

the thermal data since it is one main critical issue for monitoring crop water use together 223 

with its high spatial resolution. We estimate LST and fv using both optical and thermal 224 

data (see below). We maintain the 30 m spatial resolution for all data, even when the 225 

thermal bands are resampled from their original 60 m and 100 m resolution for Landsat-226 

7 and -8, respectively.  227 

 228 

2.2.1 Land surface temperature 229 

LST is estimated using the single-channel algorithm described in Jiménez-Munoz et al., 230 

(2009, 2014), which uses as input the thermal band of Landsat, the atmospheric water 231 

vapor content, and the spectral surface emissivity. The thermal data are acquired from 232 

bands 6 and 10 of Landsat-7 and -8 Level-1, respectively, while the atmospheric water 233 

vapor content is obtained from the daily MODIS MOD05 v6.0 product. The spectral surface 234 

emissivity is estimated using the simplified NDVI thresholds method proposed by Sobrino 235 
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et al., (2008), which weights the spectral soil and vegetation emissivity (here set to 0.985) 236 

through the fv. Similarly, the spectral soil emissivity is obtained from the ASTER GED 237 

product by using bands 13 and 14 with the above-mentioned simplified NDVI method. 238 

Then, the ASTER spectral soil emissivities are adjusted to the Landsat thermal bands using 239 

the broadband regression approach (Ogawa and Schmugge, 2004) as in Malakar et al., 240 

(2018) and Duan et al. (2018). The regression coefficients between the emissivities for 241 

Landsat and ASTER bands were derived by convoluting the soil emissivity spectra of all 242 

soil types available in the ASTER spectral library for every thermal band (Baldridge et al., 243 

2009). Accuracies resulted in root mean square error (RMSE) of 0.0007 and 0.0005, and 244 

R2 of 0.96 and 0.99 for Landsat-7 and -8 thermal band, respectively. The reliability of LST 245 

estimates was assessed in Amazirh et al. (2019, 2017), which found a relatively good 246 

agreement between satellite and ground-based LST over the sites of the study area with 247 

a RMSE lower than 2.4 K. 248 

 249 

2.2.2 Fractional green vegetation cover 250 

The fractional green vegetation cover fv is estimated linearly between a minimum and 251 

maximum of the Normalized Difference Vegetation Index (NDVI), which often represent 252 

bare soil (NDVIs) and fully vegetated surface (NDVIv) values, respectively (Gutman and 253 

Ignatov, 1998). NDVIs and NDVIv are set to 0.14 and 0.93 (Duchemin et al., 2006). NDVI 254 

values are estimated using the red and near-infrared bands of Level-2 Landsat products.  255 

 256 

3 Method  257 

The method to retrieve irrigation dates and volumes from Landsat LST/NDVI time series 258 

is described below. The basic idea behind the retrieval approach is first to determine the 259 

irrigation date and then to estimate the (daily) irrigation amount as the difference 260 
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between the RZSM estimated on the irrigation date and that estimated on the day before.  261 

As in Olivera-Guerra et al. (2018), thermal-derived crop stress coefficient (Ks) is 262 

translated into RZSM diagnostic by means of the dual crop coefficient FAO (FAO-2Kc) 263 

formalism. In this former work, irrigation was estimated from the variability in daily first 264 

guess RZSM by using optical/thermal in situ observations. Given that the method 265 

proposed herein uses temporally sparse Landsat data, the Landsat-derived RZSM 266 

diagnostic is propagated in a recursive and forward water balance mode to estimate the 267 

daily RZSM along the season. Therefore, this method significantly differs from the study 268 

in Olivera-Guerra et al. (2018) in several major aspects. For clarity, the main assumptions 269 

are listed (Section 3.1) and each original component is described separately: the irrigation 270 

retrieval at the pixel scale using Landsat-derived Ks (Section 3.2), the use of a contextual 271 

method to derive RZSM from Landsat data (Section 3.3), the implementation of a crop 272 

water balance model (WB) in recursive and forward modes to estimate the daily RZSM 273 

between two successive Landsat overpass dates (separated by 8 to 16 days in clear sky 274 

conditions) (Section 3.4), the aggregation of pixel-scale irrigation estimates at the crop 275 

field scale (Section 3.5), and the definition of a validation strategy of the field-scale 276 

retrieved irrigation dates/volumes (Section 3.6). 277 

 278 

3.1 Model assumptions 279 

The approach is based on several assumptions, some of which relate to the FAO-2Kc 280 

modeling approach, while others are specific to the proposed irrigation retrieval method. 281 

The assumptions deriving from the FAO-2Kc model are: 282 

- The daily RZSM varies within a range defined by a minimum value set to the soil 283 

moisture at wilting point (SMwp) and by a maximum value set to the soil moisture 284 

at field capacity (SMfc). Both extreme soil moisture values are estimated using 285 
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pedo-transfer functions (Wosten et al., 1999). SMwp and SMfc were equal to 0.17 286 

and 0.32 m3m-3, respectively. Uniform soil parameters were used to test the 287 

genericity of the irrigation retrieval approach.  288 

- When RZSM reaches SMfc, any additional water supply is considered as water 289 

excess and is therefore drained from the soil bucket by deep percolation 290 

(occurring simultaneously to the water excess supply). 291 

- The RZSM is linearly related to Ks between SMwp and the critical RZSM (SMcrit = 292 

0.24 m3m-3), which is estimated as a fraction of the total available water (i.d. 293 

difference between SMfc and SMwp) according to the water stress tolerance of crops 294 

(Allen et al., 1998). 295 

- The rooting depth is estimated from the vegetation cover and varies linearly 296 

between a minimum value (set to 0.1 m) and a maximum value depending on the 297 

crop type. 298 

 299 

The assumptions specific to the irrigation retrieval approach are: 300 

- The retrieved irrigation is the effective irrigation (irrigation minus drainage), 301 

meaning that the irrigation excess which triggers deep percolation is not taken into 302 

account.  303 

- An irrigation event is detected on the day when the RZSM estimated recursively 304 

from the FAO-2Kc water budget reaches SMfc and it is not due to rainfall. 305 

- The field-scale retrieved irrigation occurs on the same day over the entire field 306 

crop. 307 

- Due to the saturation of Landsat-derived Ks (equal to 1) for soil moisture values 308 

between SMcrit and SMfc, the Landsat-derived RZSM ranges between SMwp and 309 

SMcrit.  310 
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- If two successive Landsat overpass dates both indicate unstressed conditions 311 

(Ks=1), it is assumed that the crop does not undergo water stress during that 312 

period. It is also assumed that Ks=1 between a Landsat date indicating unstressed 313 

conditions and an irrigation event detected before the next Landsat overpass date. 314 

- In our study, the capillarity rise and runoff are neglected due to flat surfaces and a 315 

water table significant deep (>30 m) in the study area (Duchemin et al, 2006316 

317 

).  318 

 319 

3.2 Pixel-scale irrigation retrieval 320 

Irrigation is first estimated at the Landsat pixel scale as:  321 

 322 

𝐼𝑖 = 1000(𝑅𝑍𝑆𝑀𝑖 − 𝑅𝑍𝑆𝑀𝑖−1)𝑍𝑟𝑖 (1) 

 323 
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where Ii is the irrigation amount (mm) on the irrigation date i and RZSMi and RZSMi-1 324 

(m3/m3) the RZSM estimated on the irrigation day and on the day before, respectively. 325 

The RZSM unit (m3/m3) is converted to irrigation depth (mm) by the factor 1000Zri, with 326 

Zri being the effective root zone depth (m) at the irrigation date. Zri is estimated according 327 

to the Appendix A.1.  328 

 329 

To estimate RZSMi in Eq. (1), the WB is applied in the recursive mode (here-after referred 330 

to as RWB) at daily scale for every period between two consecutive clear sky Landsat 331 

overpass dates (j and j-Pj, with Pj being the number of days between both successive 332 

Landsat dates). The RWB is applied from the last Landsat overpass date of the season to 333 

its previous dates. Therefore, the RWB is initialized at date j (j > i) from a Landsat-derived 334 

RZSM (RZSMLandsat,j), and an irrigation event is detected at date i when the simulated 335 

RZSMRWB,t (for t = j-1, …,i) reaches SMfc. However, four different cases need to be 336 

considered depending on the value (equal or smaller than 1) of Landsat-derived Ks at 337 

dates j-Pj and j. For clarity, each case is illustrated in Fig. 2. 338 

 339 

Case 1. stressed-stressed (Fig. 2.a). The crop is under stress (Ks < 1) on both Landsat 340 

overpass dates j and j-Pj. Hence both RZSMLandsat,j and RZSMLandsat,j-Pj are smaller than 341 

SMcrit. In this case, if an irrigation event at date i > j-Pj (i.e. RZSMRWB,t = SMfc) is detected, 342 

the WB model is used in the forward mode (referred to as FWB) to estimate the RZSM at 343 

day i-1 from an initial value set to RZSMLandsat,j-Pj. The irrigation amount at date i is 344 

estimated as: 345 

 346 

𝐼𝑖 = 1000(𝑆𝑀𝐹𝐶 − 𝑅𝑍𝑆𝑀𝐹𝑊𝐵,𝑡=𝑖−1)𝑍𝑟𝑖 (2) 

 347 
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Case 2. stressed-unstressed (Fig. 2.b). The crop is under stress (Ks < 1) on Landsat 348 

overpass date j-Pj and is unstressed (Ks = 1) on Landsat overpass date j. In this case, the 349 

RWB is initialized to SMcrit at Landsat overpass date j and if RZSMRWB,t=i reaches SMfc for i 350 

> j-Pj, then RZSMt=i-1 is estimated from the FWB initialized by RZSMlandsat,j-Pj at Landsat 351 

overpass date j-Pj. The irrigation amount is then estimated as in Eq. (2). 352 

 353 

For cases 1 and 2, two other specific conditions need to be considered: 354 

i) RZSMFWB,t might reach its minimum value (SMwp) before the detected irrigation 355 

event from RZSMRWB,t=i. In that situation, another irrigation event is triggered in such a 356 

way that the simulated RZSMFWB is set to SMfc and the FWB is used to propagate RZSM 357 

until i-1 in the Eq. (2).  358 

ii) RZSMRWB,t does not reach SMfc for t > j-Pj. In that case, an irrigation is detected at 359 

date j-Pj + 1 provided that the difference between RZSMRWB,j-Pj+1 and RZSMLandsat,j-Pj is 360 

positive and significant (larger than a given threshold to be set). In this case, the irrigation 361 

amount is calculated as: 362 

 363 

𝐼𝑖=𝑗−𝑃𝑗+1 = 1000 (𝑅𝑍𝑆𝑀𝑅𝑊𝐵,𝑖 − 𝑅𝑍𝑆𝑀𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗−𝑃𝑗
) 𝑍𝑟𝑖  (3) 

 364 

Note that the threshold is determined as the uncertainty associated to RZSMLandsat,j-Pj 365 

estimate by using the propagation of uncertainty method from the partial derivatives of 366 

every independent variable (see Appendix A.2). 367 

 368 

Case 3. unstressed-stressed (Fig. 2.c). The crop is unstressed (Ks = 1) on Landsat overpass 369 

date j-Pj and is under stress (Ks < 1) on Landsat overpass date j. In this case, if an irrigation 370 
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event at date i > j-Pj (i.e. RZSMRWB,t=SMfc) is detected, then RZSMt=i-1 is set to SMcrit at date 371 

i-1. The irrigation amount at date i is thus determined as follows: 372 

 373 

𝐼𝑖 = 1000(𝑆𝑀𝑓𝑐 − 𝑆𝑀𝑐𝑟𝑖𝑡)𝑍𝑟𝑖 (4) 

 374 

Case 4. unstressed-unstressed (Fig. 2.d). The crop is unstressed (Ks = 1) on both Landsat 375 

overpass dates j-Pj and j. In this case, an irrigation is detected (date) and estimated 376 

(amount) as in the Case 3. 377 

 378 

For cases 3 and 4, RZSMLandsat,j-Pj is updated by RZSMRWB,j-Pj. The updated RZSM at j-Pj is 379 

then used to reinitialize the previous period (from date j-Pj to its previous Landsat 380 

overpass date). 381 

 382 

3.3 Landsat-derived RZSM 383 

The Landsat-derived RZSM (RZSMlandsat,j) is estimated as: 384 

  385 

𝑅𝑍𝑆𝑀𝑙𝑎𝑛𝑑𝑠𝑎𝑡,𝑗 = 𝑆𝑀𝑤𝑝 + 𝐾𝑠𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗(𝑆𝑀𝑐𝑟𝑖𝑡 − 𝑆𝑀𝑤𝑝) (5) 

 386 

where KsLandsat,j is the Landsat-derived Ks, estimated from a normalization of the Landsat-387 

derived vegetation temperature (Tv), using minimum (Tvmin) and maximum (Tvmax) Tv 388 

values. Hence, Ks values range between 0 and 1, where 1 corresponds to well-389 

watered/unstressed vegetation (Tv = Tvmin) and 0 to non-transpiring or senescent 390 

vegetation (Tv = Tvmax). Landsat-derived Tv is obtained from a partitioning method of 391 

LST:  392 

 393 
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𝑇𝑣 =
𝐿𝑆𝑇 − (1 − 𝑓𝑣)𝑇𝑠

𝑓𝑣
 

(6) 

 394 

with Ts being the soil temperature and fv the fractional vegetation cover. This partitioning 395 

method is based on the LST-fv feature space (e.g. Jiang and Islam, 2003; Long and Singh, 396 

2012; Merlin et al., 2014; Sandholt et al., 2002), by incorporating the assumptions of the 397 

two-source surface energy balance (TSEB) formalisms (Norman et al., 1995). First, the 398 

LST-fv feature space is used to estimate the temperature endmembers (Tvmin, Tvmax, Tsmin 399 

and Tvmax) from a polygon constrained by a “dry edge” (defined as the line between Tsmin 400 

and Tvmin) and a “wet edge” (defined as the line between Tsmax and Tvmax). The “wet edge” 401 

and “dry edge” are determined from the linear regressions of the minimal and maximal 402 

LST, respectively, which are selected by fv classes with an interval of 0.01 (see Fig. 3.a). 403 

Second, the TSEB assumption for solving the vegetation and soil fluxes components and 404 

their corresponding Tv and Ts is only used for the partitioning of LST by applying Eq. (6). 405 

The procedure is initialized with Tv being equal to Tvmin and the corresponding initial Ts 406 

by decomposing linearly the LST from Eq. (6). This is consistent with the TSEB approach 407 

when the transpiration rate is initialized to its potential rate (corresponding to Tv = 408 

Tvmin). If Ts is above the Tsmax, Ts is then set to Tsmax and a new Tv is calculated from Eq. 409 

(6). In that case, the vegetation undergoes water stress (Tv > Tvmin). Therefore, the TSEB 410 

assumption in the LST-fv feature space (see Fig. 3.b) makes Tv equal to Tvmin for every Ts 411 

below Tsmax, while Ts remains equal to Tsmax when Tv is larger than Tvmin.  412 

 413 
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3.4 Water balance-derived RZSM 414 

The daily RZSM between Landsat overpass dates is estimated by solving the crop WB in 415 

forward and recursive modes, named FWB and RWB respectively. According to the FAO-416 

2Kc formalism, the general expression of the crop WB model is: 417 

 418 

𝐷𝑟𝑡 = 𝐷𝑟𝑡−1 + 𝐸𝑇𝑡 − 𝑃𝑡 − 𝐼𝑡 + 𝐷𝑃𝑡 − 𝐶𝑅𝑡

+ 𝑅𝑂𝑡 

(7) 

 419 

where Dr is the root zone depletion, ET the evapotranspiration, P the precipitation, DP 420 

the deep percolation, CR the capillarity rise, RO the surface runoff and I the irrigation. 421 

Every term is expressed in mm for the day t (and t-1 for Dr). According to the assumptions 422 

used in this study, CR and RO are neglected while I is the variable to be estimated. 423 

Therefore, the FWB and RWB models can be expressed in Eqs. (8) and (9), respectively 424 

as:  425 

 426 

𝐷𝑟𝑡 = 𝐷𝑟𝑡−1 + 𝐸𝑇𝑡 − 𝑃𝑡 (8) 

 427 

𝐷𝑟𝑡−1 = 𝐷𝑟𝑡 − 𝐸𝑇𝑡 + 𝑃𝑡 (9) 

 428 

Note that in the above equations, the DP resulting from heavy rainfall is not computed 429 

since Drt or Drt-1 are set to 0 when Pt > Drt-1 + ETt or Pt > Drt–ETt for FWB and RWB, 430 

respectively. For both RWB and FWB models, the Landsat-derived RZSM (either 431 

RZSMLandsat,j-Pj or RZSMLandsat,j) is used to initialize the root zone depletion.  432 

 433 
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𝐷𝑟𝑡 = 1000(𝑆𝑀𝑓𝑐 − 𝑅𝑍𝑆𝑀𝑡)𝑍𝑟𝑡 (10) 

 434 

In Eqs. (8) and (9), ETt is estimated from the FAO-2Kc formalism, where its basal crop 435 

coefficient (Kcb) and evaporation coefficient (Ke) are estimated from a generic expression 436 

from the daily fv interpolated from Landsat data. More details about the generic 437 

expressions to estimate Kcb and Ke are described in Appendix A.3. Kcb and Ke are first 438 

adjusted using Ks and an evaporation reduction coefficient (Kr), which are initialized from 439 

their Landsat-derived estimates (at date j-Pj or j for forward or recursive mode, 440 

respectively). Then Ks and Kr are computed from the crop WB according to FAO-2Kc. 441 

Similarly to Ks, Kr is estimated as the normalization of Ts between Tsmin and Tsmax. Finally, 442 

RZSM in forward (RZSMFWB,t) and recursive (RZSMRWB,t) modes are obtained from the root 443 

zone depletion by inverting Eq. (10).  444 

 445 

3.5 Crop field scale irrigation retrieval 446 

The irrigation was previously retrieved from the RZSM derived at the pixel level 447 

regardless of its neighboring context. Hence the within-field variability in terms of 448 

predicted irrigation dates and amounts can be further constrained. Given that irrigations 449 

usually occur on the same day over the entire crop field, we propose a procedure of 450 

aggregation to provide the irrigation dates and amounts at the crop field scale. The three-451 

step procedure is described below.  452 

 453 

First, for each period Pj between two successive satellite overpasses, the number of 454 

irrigations within a given crop field (NIfield,Pj) is estimated as the total number of irrigations 455 

at pixel-scale divided by the number of pixels contained in the crop field (Npixel). Then, the 456 

daily amounts of irrigation at pixel-scale are averaged within the crop field (Ii). The daily 457 
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fraction of irrigated pixels (fi) is also estimated as the number of pixels where irrigation 458 

is detected divided by Npixel (Fig. 4). Finally, the irrigation volume applied over the crop 459 

field (Ifield) is estimated by integrating the amounts of irrigation in the NIfield,Pj sub-periods 460 

of period Pj (Eq. 11). The most probable date (DateIfield) of the irrigation event within each 461 

sub-period is estimated similarly according to Eq. (12). 462 

 463 

𝐼𝑓𝑖𝑒𝑙𝑑 =
∫ 𝐼𝑖𝑓𝑖𝑑𝑖

𝑒𝑛𝑑

𝑖𝑛𝑖

∫ 𝑓𝑖𝑑𝑖
𝑒𝑛𝑑

𝑖𝑛𝑖

 
(11) 

 464 

𝐷𝑎𝑡𝑒𝐼𝑓𝑖𝑒𝑙𝑑 =
∫ 𝑖𝐼𝑖𝑓𝑖𝑑𝑖

𝑒𝑛𝑑

𝑖𝑛𝑖

∫ 𝐼𝑖𝑓𝑖𝑑𝑖
𝑒𝑛𝑑

𝑖𝑛𝑖

 
(12) 

 465 

with Ii and fi being the areal averaged irrigation and the fraction of irrigated pixels within 466 

the field crop on day i, respectively. di is the time differential in the integral equations. The 467 

limits of integration ini and end are set according to fi and NIfield,Pj in period Pj. NIfield,Pj is 468 

equal to the number of local maxima (peaks) of fi detected for each sub-period. The limits 469 

ini and end are set to the first day before and the last day after the peak with fi is equal to 470 

zero (i.e. the days when irrigation is not detected in any pixel of the field), respectively. 471 

For clarity, different integration periods are illustrated in Fig. 4. 472 

 473 

3.6 Validation strategy 474 

3.6.1 Irrigation 475 

The performance of the irrigation retrieval method is evaluated at various time scales. In 476 

order to do that, the irrigation amounts are accumulated in overlapping windows 477 

throughout the seasons by increasing sequentially the windows from 1 day to 3 months 478 
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(90 days). This strategy is implemented for every site. It allows the performance of the 479 

approach to be assessed for different accumulation periods, to be compared with the 480 

temporal resolution of Landsat data. The total irrigation applied during the entire season 481 

is also evaluated for all the sites. 482 

 483 

The retrieved irrigation is also compared against the classical approach, which assumes 484 

no stress, meaning that irrigation is triggered when the RZSM reaches SMcrit in order to 485 

maintain Ks at 1. For this purpose, FAO-2Kc is run to simulate irrigation events along the 486 

season in order to maintain the crop under unstressed conditions (here-after referred to 487 

as FAO-2KcKs=1). Note that the coefficients used in the FAO-2Kc (Kcb and Ke) are also 488 

averaged within the crop field, consistent with the irrigation retrieval method. The deep 489 

percolation resulting from the actual irrigation (Iobs) is removed from the comparison 490 

because our approach and FAO-2KcKs=1 both estimate the effective irrigation only (i.e. 491 

without deep percolation resulting from irrigation). For this purpose, the deep 492 

percolation is estimated according to the FAO-2Kc forced by actual irrigation (here-after 493 

referred to as FAO-2KcIobs). 494 

 495 

3.6.2 RZSM and ET 496 

The irrigation retrieval method is also assessed in terms of RZSM and ET estimates. 497 

Indeed, RZSM is an intermediate variable from which irrigation is retrieved, and ET is 498 

indirectly related to the irrigation through the RWB and the FWB. For this purpose, the 499 

retrieved irrigation is used to force FAO-2Kc to simulate RZSM and ET on a daily basis, 500 

and the RZSM and ET estimates are compared with in situ observations. The results are 501 

notably compared with those obtained for the FAO-2KcIobs (in situ irrigation) and FAO-502 

2KcKs=1 (no stress) approaches. In summary, the validation strategy implies running the 503 
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FAO-2Kc by using the water balance driven by i) the actual irrigation, ii) the irrigation 504 

simulated without stress (Ks = 1) and iii) the retrieved irrigation from our approach.  505 

 506 

4 Results and discussions 507 

The irrigation retrieval is applied to the four irrigated sites and to the rainfed site. Results 508 

are assessed in terms of the retrieved irrigation amount and timing, and in terms of the 509 

intermediate variables (RZSM and ET) needed in the irrigation retrieval algorithm. 510 

 511 

4.1 Irrigation 512 

Fig. 5 shows the comparison between the irrigation retrieved by the proposed 513 

methodology (IFAO-2Kc_Landsat), the irrigation simulated by FAO-2Kc by avoiding stress (IFAO-514 

2Kc_Ks=1) and the actual irrigation (Iobs). The comparison is carried out for each site and 515 

season separately. Over flood-irrigated wheat fields in R3 area, six and five irrigation 516 

events are correctly estimated in the R3-4ha and R3-2ha field, respectively, against the 517 

seven and eight irrigations that were actually applied by the farmer. Note that the 518 

irrigation applied at the end of the development stage (equal to 64 and 36 mm in R3-4ha 519 

and -2ha, respectively) is missing over both sites. It could not be detected by the retrieval 520 

approach due to a virtual increase in the WB model of the root zone storage associated 521 

with the root growth. Thus, according to the WB model, no irrigation is needed in this 522 

period to supply the crop water needs. In R3-2ha field, three irrigation events are 523 

retrieved during the mid-season stage instead of the five irrigations applied by the farmer 524 

in the same period. That is because of i) the cloud-free Landsat data are widely separated 525 

(by 16 and 24 days) during this period and ii) the approach assumes a maximum 526 

irrigation amount by fully filling up the water storage capacity while the actual irrigations 527 

possibly do not reach this threshold and hence the number of retrieved irrigation events 528 
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is generally reduced. The latter also explains the overestimation of irrigation amounts by 529 

event during the mid-season stage over both R3-4ha and R3-2ha fields. Indeed, in both 530 

sites, the irrigation amount estimated in the initial stage (i.e. beginning of the growing 531 

season) was much underestimated compared to the irrigation really applied by farmers. 532 

Regarding the irrigation dates in R3-4ha field, three first irrigation events are accurately 533 

detected with a time difference about the actual events shorter than 3 days, while the last 534 

three irrigation events are poorly estimated with a time difference of about one week. The 535 

precision in the timing of retrieved irrigations is also closely linked to the frequency of 536 

cloud-free Landsat data over the crop field since the first irrigations are detected with an 537 

availability of Landsat data every 8 days, while the last irrigations are detected by using 538 

cloud-free images separated by 40 and 24 days. The difference between observed and 539 

retrieved irrigation (date and amount) may be also related to the inadequate amount and 540 

planning of irrigation by the farmer. In fact, irrigation amounts and timing are planned 541 

only by the understanding and perception of the farmer without using any guideline for 542 

scheduling the amount and timing of irrigation water applications. Consequently, some 543 

irrigations are missing and some are unnecessary. 544 

 545 

Similarly, in Chichaoua area over both sites (EC-1 and EC-2) and seasons (2016-2018), 546 

the irrigations in the initial stage are underestimated while in the mid-season stage the 547 

amount by irrigation event is much overestimated. As it was mentioned for R3 fields, the 548 

fact that the FAO-based approach simulates water supplies by filling up the water storage 549 

capacity makes the amounts be modulated by the water storage capacity, which depends 550 

on the rooting depth Zr and the parameterization for soil properties and vegetation type 551 

(i.d. SMwp, SMfc and SMcrit). Consequently, during the initial stage when Zr is equal or close 552 

to its minimum value (set to 0.1 m) the water supplies to fill up the root zone are smaller 553 
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while they are larger during the mid-season stage when Zr is close to 1 m. Moreover, as it 554 

is observed in all irrigated fields, applying large amounts of water supplies during initial 555 

stages is a common irrigation practice applied by the farmers, on the one hand, in order 556 

to store water in layers deeper than the actual root zone at the initial stage and, on the 557 

other hand, to avoid the appearance of soil crusting thus facilitating the plant emergence 558 

(Le Page et al., 2014). This is not taken into account in the proposed approach. Specifically 559 

over the drip-irrigated fields, the overestimation in irrigation amounts is partially 560 

explained by i) the irrigation frequency operated by the farmer (1-3 days), which is much 561 

higher than the Landsat temporal resolution (> 8 days) and ii) the small amounts applied 562 

without completely fill up the reservoir storage capacity (i.e. the RZSM does not 563 

necessarily reach the SMfc after each irrigation). Regarding the stressed periods in EC1 564 

site during the growing season 2016-2017, no irrigation was applied during the periods 565 

from DAS 68 to 97 and from DAS 101 to 114. In coherence, no irrigation is detected by our 566 

approach during the period DAS 68 to 97. However, an irrigation event of 49 mm is 567 

detected on DAS 106, which might represent two irrigations of 43 mm applied by the 568 

farmer one week before. Conversely in the EC2 field during the growing season 2016-569 

2017, the farmer applied 8 irrigation events with amounts smaller than 10 mm every 2 570 

days during two periods from DAS 77 to 81 and from DAS 87 to 95. During these two 571 

periods, our approach was able to detect one irrigation per period with amounts of 33 and 572 

38 mm, respectively. These amounts are much larger than those applied by the farmer but 573 

they are together very close to the irrigation accumulated during both periods (68 mm). 574 

 575 

In Sidi Rahal area, the rainfed wheat field is used as benchmark to evaluate where no 576 

irrigation should be retrieved. Only three significant irrigation events are detected in the 577 

2014-2015 and 2017-2018 seasons while in the other seasons some irrigation events are 578 
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estimated but with very small amounts lower than 15 mm. In the mid-season stage of the 579 

2014-2015 season, two important irrigation events (31 and 38 mm) are retrieved from a 580 

significant difference between RZSMRWB,j-Pj+1 and RZSMLandsat,j-Pj at date j-Pj+1 (situation 581 

(ii) of case 1 or 2). In this period between Landsat overpass dates, the water depleted from 582 

the crop consumption through ET minus the precipitation (according to the WB) is much 583 

larger than the difference of RZSMLandsat between dates j and j-Pj, which is thus translated 584 

in the retrieved irrigation amounts. That is partially explained by uncertainties in the 585 

estimation of ET, the water storage capacity (from SMwp, SMfc and Zr) or capillarity rises 586 

from deeper layers that are neglected in the approach. 587 

  588 

Despite the differences between daily retrieved and actual irrigation, the proposed 589 

approach is able to accurately estimate the total irrigation amount applied at the seasonal 590 

time scale (see Fig. 6) with a correlation coefficient (R) equal to 0.95, a RMSE of 44 mm 591 

and a bias lower than 15 mm. Fig. 6 shows also the comparison with the classical approach 592 

FAO-2KcKs=1, which provides poor estimates of irrigations due to a large overestimation 593 

(bias=252 mm). Such an overestimation is explained by that fact that the FAO-2KcKs=1 594 

approach avoids the water stress, regardless of the crop water status. Following FAO-595 

2KcKs=1, the winter wheat fields would need between 300 and 400 mm by season, while 596 

both the irrigation applied by farmers and the retrieved irrigation were very different by 597 

field and by season. It should be noted that in bare soil conditions (Bour 2015-2016), FAO-598 

2KcKs=1 estimates several irrigation events of small amounts. This is due to the top surface 599 

soil layer (set to 10 cm) that is quickly depleted by evaporation and needs to be re-filled 600 

frequently to maintain the Ks equal to 1. Note that the FAO-based approach assumes a 601 

minimum rooting depth (Zrmin set to 10 cm) even if there is no vegetation along the 602 

season. The root zone depletion and Ks are thus estimated in such conditions. As result, 603 
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the total irrigation depth for Bour 2015-2016 season simulated by FAO-2KcKs=1 is almost 604 

twice the wheat water requirements. The large simulated irrigation is also partly due to 605 

the low rainfall during this season and, consequently, the water balance requires larger 606 

water supply to maintain the Ks equal to 1. Over EC1 and EC2 fields in the 2016-2017 607 

season, FAO-2KcKs=1 obtained a total irrigation very close to that applied by the farmer 608 

because these sites were maintained unstressed during almost all the season. 609 

 610 

A more comprehensive comparison at different time scales between the irrigation 611 

estimates from the classical approach FAO-2KcKs=1 and the proposed approach FAO-612 

2KcLandsat is shown in Fig. 7 . The irrigation amounts throughout the seasons are cumulated 613 

in overlapping windows of 1 day to 3 months (90 days). Overall, the proposed approach 614 

obtains a better performance than that of FAO-2KcKs=1 with higher accuracies in term of 615 

R, bias and relative RMSE (RRMSE). With exception of two fields in Chichaoua area for 616 

2017-2018 season, good agreements are reached over 15 days (R = 0.52 and RMSE = 27 617 

mm) and then the agreements are further improved by increasing the accumulation 618 

period. Results for the fields in Chichaoua area for 2017-2018 season are relatively poor. 619 

This is mainly due to the stopping of irrigations early in the season (beginning of February 620 

for EC1 and mid-March for EC2) so that the water requirements were fulfilled mainly from 621 

the water stored in the soil or capillarity rise while the approach estimates significant 622 

irrigation amounts during that period. This problem can be partially explained by 623 

uncertainties and biases in the parameter values used to estimate the water storage 624 

capacity (SMwp, SMfc and Zr) and the capillarity rises from deeper layers that are neglected 625 

in the approach. Nevertheless, in spite of difficulties with monitoring drip irrigation, our 626 

approach has a better performance than the classical approach at every time scale, 627 

especially in terms of bias and RRMSE. 628 
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 629 

The results at different time scales indicate that the Landsat-based retrieval approach is 630 

robust for time intervals equal of longer than 2 weeks, which is the time period of Landsat 631 

acquisitions (~16 days). On the contrary, the approach generally fails in retrieving 632 

reliable cumulated irrigation for time periods shorter than 10 days by using the Landsat 633 

frequency. Therefore, we can expect significant improvements in the irrigation estimates 634 

at daily to weekly time scale by increasing the revisit frequency of LST data. Such high 635 

spatio-temporal resolution will be achieved by future thermal missions like TRISHNA 636 

(Lagouarde and Bhattacharya, 2018) .  637 

 638 

4.2 Daily RZSM and ET 639 

Fig. 8 and Table 2 report the results of the irrigation retrieval approach in terms of daily 640 

RZSM in comparison with the classical approach FAO-2KcKs=1 and the FAO-2Kc forced by 641 

actual irrigations (FAO-2KcIobs). The daily RZSM simulated from FAO-2KcIobs obtains an 642 

overall R equal to 0.75 and a RMSE equal to 0.04 m3/m3, while the proposed approach 643 

obtains an R slightly lower (0.66) and the same RMSE value. FAO-2KcKs=1 obtains a low R 644 

equal to 0.25 and a RMSE of 0.07 m3/m3, meaning a deterioration of about 65% with 645 

regard FAO-2KcIobs. The similar performance between the proposed approach and FAO-646 

2KcIobs demonstrates that the retrieved irrigation is correctly estimated in order to 647 

simulate the RZSM temporal dynamics similar to that retrieved from the FAO-2Kc forced 648 

by actual irrigations.  649 

 650 

Similarly, Fig. 9 and Table 3 show the comparison between the proposed approach, FAO-651 

2KcIobs and FAO-2KcKs=1 in terms of daily ET. Overall, the proposed approach provides 652 

better performance than FAO-2KcKs=1 and is very close to the FAO-2KcIobs. However, 653 
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particular results were obtained in the Chichaoua fields (EC1 and EC2). For 2016-2017 654 

season, the FAO-2KcKs=1 obtains better results than the proposed approach due to the Ks 655 

simulated from actual irrigations is equal to 1 during almost all the season while the 656 

Landsat-derived Ks detects stressed conditions (KsLandsat < 1) during a large period in mid-657 

season. In the 2017-2018 season, the proposed approach provides the best performance 658 

while results from FAO-2KcIobs are worse than the others. Since the three FAO-based 659 

models differ only in the irrigation to force the WB by using the same parameterization, 660 

the fact that FAO-2KcIobs obtains worse results confirms that over both sites the 661 

estimation of the water storage capacity and the capillarity rise is wrongly considered. 662 

This is also revealed during the mid-season stage when actual irrigation was stopped. 663 

Hence the irrigation retrieved by the proposed approach and by FAO-2KcKs=1 during the 664 

mid-season stage compensates a too large water storage capacity or the (neglected) input 665 

of water from capillarity rise.  666 

 667 

Note that FAO-2KcKs=1 tends to overestimate the low ET rates typical of initial stages when 668 

the low vegetation cover makes the surface layer be quickly depleted by evaporation. In 669 

this stage, the top surface soil layer (set to 10 cm) is equal or very close to the root zone. 670 

The water storage after being depleted by evaporation, needs to be frequently re-filled to 671 

maintain the RZSM above the SMcrit (Ks = 1) by triggering irrigations and the evaporation 672 

is thus maintained at maximum rate. This can be clearly observed in Bour site, with longer 673 

initial stages and particularly throughout the 2015-2016 season, when soil remained bare 674 

all the season. 675 

 676 

Finally, the high accuracy in ET estimates from the proposed approach and from FAO-677 

2KcIobs demonstrate the reliability of generic coefficients Kcb and Ke to be implemented 678 
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with satellite data to estimate accurately ET at field scale over extended areas. The 679 

formulation of generic coefficients derived analytically (see Appendix A.3) from the link 680 

between the FAO-2Kc and a one source image-based model (SSEBop) allows avoiding 681 

calibration from in situ data that are rarely available over extended areas. Those generic 682 

coefficients would allow this implementation over different crop types although an 683 

extensive evaluation would be recommended. 684 

 685 

4.3 Sensitivity analysis for soil parameters 686 

The three main soil parameters (SMfc, SMwp, Zr) directly affect the water storage capacity 687 

and hence the estimation of the irrigation amount and timing. Note that SMcrit also affects 688 

the detection of irrigations and their amount particularly during unstressed periods (see 689 

Fig. 2). However, SMcrit is estimated from SMfc and SMwp and thus its impact is indirectly 690 

taken into account with SMfc and SMwp. SMcrit also depends on the crop tolerance to stress 691 

(fraction p) but as in Olivera-Guerra et al. (2018), the fraction p was considered constant 692 

for simplicity and because there is no significant difference for when using a constant or 693 

variable p (the variation in the overall RMSE and R2 of simulated versus observed ET was 694 

found to be lower than 1%). Consequently, the sensitivity analysis is conducted for SMfc, 695 

SMwp and Zr only to assess the impact of uncertainties in soil parameters.  696 

 697 

Fig. 10. Sensitivity analysis results for the soil parameters SMfc and SMwp by setting Zrmax 698 

set to 1.0 m. The irrigations are estimated by using SMfc ranging between 0.28 and 0.40 699 

m3m-3 and SMwp ranging between 0.10 and 0.24 m3m-3. The statistical parameter R (top) 700 

and RMSE (bottom) for actual irrigation accumulated over 15 days are estimated by using 701 

FAO-2KcKs=1 (left) and FAO-2KcLandsat (right) models. The red square indicates the SMfc 702 

and SMwp used in the approach.  703 
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 depicts the sensitivity analysis for SMfc and SMwp in terms of retrieved irrigation by using 704 

the FAO-2KcKs=1 and FAO-2KcLandsat models over the site R3-4ha. The irrigation at daily 705 

scale are cumulated over 15 days and compared against cumulated actual irrigations. 706 

When looking at the variability of R and RMSE for irrigations from FAO-2KcKs=1 and FAO-707 

2KcLandsat, the later model is less sensitive to the soil parameters. The plots indicate that 708 

several optimal values can be found. This is due to the difference between SMfc and SMwp 709 

rather than the absolute value of each. Thus, the approach is sensitive to the water storage 710 

capacity defined by the difference between SMfc and SMwp, weighted by the root zone 711 

depth or in other words to the total available water (TAW = Zr(SMfc – SMwp)). The higher 712 

R values of irrigation retrieved from FAO-2KcLandsat suggest that the optimal difference 713 

(SMfc – SMwp) is between 0.17 and 0.19 m3m-3, consistent with the values proposed by 714 

Allen et al. (1998) for clayey soils. However in this study, SMfc and SMwp are set to 0.32 715 

and 0.17 m3m-3 respectively. Therefore, the approach can obtain a better performance by 716 

using optimal SMfc and SMwp values.  717 

 718 

The root zone depth, which is estimated following the Appendix A.1, is also an important 719 

parameter in the water storage capacity. In the Eq. (A.1), the main parameter to be 720 

calibrated is Zrmax. Therefore, the same sensitivity analysis as for SMfc and SMwp was 721 

performed by using a Zrmax ranging from 0.5 to 1.5 m. These Zrmax values are typical for 722 

wheat fields, keeping in mind that 0.52 m was measured over a winter wheat field in the 723 

study area during the growing season 2002-2003 (Er-Raki et al., 2007), while Allen et al. 724 

(1998) propose values between 1 and 1.8 m for wheat fields. For Zrmax set to 0.5 m, 725 

optimal results in terms of irrigation accuracy are obtained for a difference (SMfc – SMwp) 726 

ranging from 0.25 to 0.27 m3m-3, while by setting Zrmax to 1.5 m, optimal results are 727 

obtained for a difference (SMfc – SMwp) ranging from 0.12 to 0.13 m3m-3. It is found that 728 
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the optimal SMfc and SMwp values for Zrmax equal to 0.5 m and 1.5 m are not realistic for 729 

soils present in the study area. Indeed the difference 0.25 - 0.27 m3m-3 (Zrmax = 0.5 m) is 730 

much larger than that for clayey soils, and the difference of 0.12 - 0.13 m3m-3 (Zrmax = 1.5 731 

m) is typical for sandy soils. Therefore, the sensitivity analysis shows that 1 m is a deemed 732 

acceptable value for Zrmax that allows obtaining both optimal and realistic SMfc and SMwp 733 

values for the main soils present in the study area.  734 

 735 

Although good accuracies were found using uniform parameters, Fig. 10. Sensitivity 736 

analysis results for the soil parameters SMfc and SMwp by setting Zrmax set to 1.0 m. The 737 

irrigations are estimated by using SMfc ranging between 0.28 and 0.40 m3m-3 and SMwp 738 

ranging between 0.10 and 0.24 m3m-3. The statistical parameter R (top) and RMSE 739 

(bottom) for actual irrigation accumulated over 15 days are estimated by using FAO-740 

2KcKs=1 (left) and FAO-2KcLandsat (right) models. The red square indicates the SMfc and 741 

SMwp used in the approach.  742 

 indicates that the performance can still be improved if optimal values are used by 743 

properly adjusting them to the actual soil texture of the crop field. 744 

 745 

 746 

5 Conclusion  747 

A new approach to estimate the field-scale irrigation amounts and timing along the 748 

agricultural season is developed by integrating the Landsat optical and thermal data into 749 

a crop water balance (FAO-based) model. The main idea behind the approach is first to 750 

determine the irrigation date and then to estimate the irrigation amount as the difference 751 

between the RZSM estimated on the irrigation date and that estimated on the day before. 752 

In order to integrate the Landsat data into a crop water balance model and then to retrieve 753 
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the irrigation at field scale, four general procedures are implemented: i) partitioning the 754 

Landsat LST to derive the crop water stress coefficient Ks, ii) estimating the daily RZSM 755 

from the integration of Landsat-derived Ks into a crop water balance model, iii) retrieving 756 

irrigation at the Landsat pixel scale and iv) aggregating pixel-scale irrigation estimates at 757 

the crop field scale. The approach is assessed over three agricultural areas during four 758 

seasons and validated specifically on five winter wheat fields under different irrigation 759 

techniques (drip, flood and no-irrigation). The approach is validated in terms of irrigation 760 

estimates as well as daily RZSM and ET as intermediate variables linked to the crop water 761 

balance model. The approach is compared against the classical approach FAO-2Kc that 762 

simulates irrigations to avoid stressed conditions (FAO-2KcKs=1) and the FAO-2Kc forced 763 

by actual irrigations (FAO-2KcIobs). 764 

 765 

The results depict that the proposed approach estimates accurately the total irrigation 766 

amounts over all the fields and seasons with a RMSE equal to 44 mm and an R of 0.95. To 767 

assess the performance of the irrigation retrieval method at different time scales along 768 

the seasons, the daily irrigations are cumulated over overlapping periods of 1 to 90 days 769 

(3 months). This analysis shows that acceptable errors are obtained for irrigations 770 

cumulated over 15 days and the performance is gradually improved by increasing the 771 

accumulation period. This period is closely linked to the revisit time of Landsat data that 772 

is 16 days or 8 day when combining Landsat-7 and Landsat-8 data, and often longer in 773 

cloudy conditions.  774 

 775 

Although the approach does not allow obtaining good performances at daily to weekly 776 

scale in terms of irrigation amounts and timing, the daily RZSM and ET simulated from 777 
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the retrieved irrigations are estimated accurately and are very close to those estimated 778 

from actual irrigations (FAO-2KcIobs). Based on these results, we can conclude that:  779 

i) The approach obtains acceptable errors in irrigation amount and timing in 780 

order to simulate the dynamic of water budget components along the season 781 

at daily and crop field scale.  782 

ii) The formulation of generic coefficients Kcb and Ke, which are derived 783 

analytically from the link between the FAO-2Kc and the image-based model 784 

(SSEBop) formalisms allows its implementation to estimate ET accurately at 785 

field scale over extended areas by using satellite data. Hence, the Kcb and Ke 786 

allow generic implementations avoiding calibration, which usually needs in 787 

situ data that are rarely available over extended areas. 788 

 789 

This new approach demonstrates the utility of optical and thermal data for estimating the 790 

irrigation and then for retrieving the water budget components of crops. However, 791 

significant improvements can be expected if the revisit time is reduced with a similar or 792 

even improved spatial resolution. In this vein, the advent of the TRISHNA mission at high 793 

spatio-temporal resolution in the thermal infrared (Lagouarde and Bhattacharya, 2018), 794 

will lead to substantial improvements in the estimation of irrigation at daily to weekly 795 

scale. Such an improvement will come not only from a shorter revisit cycles (~3 days), 796 

but also from a higher spatial resolution (~50 m), being more suitable for monitoring 797 

water consumption at crop field scale. Additionally, some improvements are foreseen to 798 

better estimate irrigation timing and the soil coefficients. Better constraining the topsoil 799 

layer (soil moisture) would improve the estimation of Kr and Ke coefficients. This issue 800 

will be addressed in future studies by integrating the surface soil moisture through a soil 801 
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evaporative efficiency model (Merlin et al., 2016), which can be derived from active C-802 

band Sentinel-1 data (Amazirh et al., 2018). 803 
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 812 

Appendix A 813 

A.1 Rooting depth Zr 814 

Zr varies according to the vegetation cover between a minimum value (Zrmin set to 0.1 m) 815 

and a maximum value (Zrmax set to 1 m at fv = 1) and is expressed as: 816 

 817 

𝑍𝑟𝑡 = 𝑍𝑟𝑚𝑖𝑛 + 𝑓𝑣𝑡(𝑍𝑟𝑚𝑎𝑥 − 𝑍𝑟𝑚𝑖𝑛) (A.1) 

 818 

where fvt is the daily fv interpolated from the Landsat fv estimates. Note that once Zrt 819 

reaches its maximum value at the maximum fvt it is maintained constant until the end of 820 

the season. 821 

 822 

A.2 Uncertainty in Landsat-derived RZSM 823 

The Landsat-derived RZSMLandsat,j at date j in the Eq. (5) can be expressed as: 824 

 825 
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𝑅𝑍𝑆𝑀𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗 = 𝑆𝑀𝑤𝑝 + 𝐾𝑠𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗(1 − 𝑝)(𝑆𝑀𝑓𝑐 − 𝑆𝑀𝑤𝑝) (A.2) 

 826 

With p being the tolerance of crop to water stress as a fraction of the total available water. 827 

The uncertainty in RZSMLandsat,j is estimated from the propagation of uncertainty method, 828 

which takes into account a relative error of every independent variable in the Eq. (A.2) 829 

through its partial derivatives. We consider an error of 10% (ε = 0.1) for every variable 830 

and therefore the uncertainty in RZSMLandsat,j can be analytically written as: 831 

 832 

𝑒𝑅𝑍𝑆𝑀𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗 = {𝑆𝑀𝑤𝑝 + 𝐾𝑠𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑗(2 − 3𝑝)(𝑆𝑀𝑓𝑐 − 𝑆𝑀𝑤𝑝)}𝜀 (A.3) 

 833 

 834 

A.3 Landsat-derived Kcb and Ke 835 

In order to take advantage of satellite data for generic implementations, we link the FAO-836 

2Kc formalism with a contextual model to estimate the main parameters Kcb and Ke. As 837 

it is expressed in Eq. (A.4), the dual crop coefficient FAO-2Kc ET is made equal to the single 838 

source Operational Simplified Surface Energy Balance (SSEBop, Senay et al., 2013) 839 

formalism in order to derive the coefficients required in FAO-2Kc. 840 

 841 

(𝐾𝑠 ∙ 𝐾𝑐𝑏 + 𝐾𝑒)𝐸𝑇0 = 𝐸𝑇 =  𝐸𝐹 ∙ 𝐾𝑐𝑚𝑎𝑥 ∙ 𝐸𝑇0 (A.4) 

 842 

where ET0 is the reference evapotranspiration, EF the evaporative fraction (defined as 843 

the ratio of ET to available energy) and Kcmax the coefficient to scale the ET0 down to the 844 

maximum ET reached by a crop. On the left-hand side of the equation, FAO-2Kc model 845 

estimates the ET from a crop basal coefficient (Kcb) and an evaporation coefficient (Ke), 846 

respectively, weighted by ET0. The transpiration component (Kcb ET0) is controlled by 847 
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the crop stress coefficient (Ks) and the evaporation (Ke ET0) is controlled by the 848 

evaporation reduction coefficient (Kr). On the right-hand side of the equation, SSEBop 849 

uses Kcmax modulated by EF as a single crop coefficient containing the transpiration and 850 

evaporation coefficients. EF can be estimated as: 851 

 852 

𝐸𝐹 =
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
 (A.5) 

 853 

where LSTmin and LSTmax are the minimum and maximum LST representing the 854 

wet/unstressed and dry/stressed conditions (see Fig. 3), respectively, as has been used 855 

in several contextual methods (e.g. Roerink et al., 2000; Merlin et al., 2013; Merlin et al., 856 

2014). Given that Kr, Ks and EF are estimated from thermal and fv data in our study, every 857 

term used in (A.5) is partitioned into its vegetation and soil components in such a way 858 

that Ke and Kcb formulations can be analytically derived from the equality in Eq. (A.4), as 859 

it is described below.  860 

 861 

By partitioning every term in A.5, EF can be expressed as: 862 

 863 

𝐸𝐹 =
[𝑓𝑣𝑇𝑣𝑚𝑎𝑥 + (1 − 𝑓𝑣)𝑇𝑠𝑚𝑎𝑥] − [𝑓𝑣𝑇𝑣 + (1 − 𝑓𝑣)𝑇𝑠]

[𝑓𝑣𝑇𝑣𝑚𝑎𝑥 + (1 − 𝑓𝑣)𝑇𝑠𝑚𝑎𝑥] − [𝑓𝑣𝑇𝑣𝑚𝑖𝑛 + (1 − 𝑓𝑣)𝑇𝑠𝑚𝑖𝑛]
 (A.6) 

 864 

By introducing the Landsat-derived Ks and Kr into A.6, SSEBop ET in Eq. (A.4) can be 865 

rewritten as: 866 

 867 

𝐸𝑇 = [
𝑓𝑣(𝑇𝑣𝑚𝑎𝑥 − 𝑇𝑣𝑚𝑖𝑛)𝐾𝑠 + (1 − 𝑓𝑣)(𝑇𝑠𝑚𝑎𝑥 − 𝑇𝑠𝑚𝑖𝑛)𝐾𝑟

𝑓𝑣(𝑇𝑣𝑚𝑎𝑥 − 𝑇𝑣𝑚𝑖𝑛) + (1 − 𝑓𝑣)(𝑇𝑠𝑚𝑎𝑥 − 𝑇𝑠𝑚𝑖𝑛)
∙ 𝐾𝑐𝑚𝑎𝑥] ∙ 𝐸𝑇0 

(A.7) 
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 868 

For clarity we set ΔTv = Tvmax – Tvmin and ΔTs = Tsmax – Tsmin in A.7. By re-arranging, two 869 

terms related to the vegetation and soil components are highlighted: 870 

 871 

𝐸𝑇 = [
𝑓𝑣(∆𝑇𝑣)𝐾𝑠

𝑓𝑣(∆𝑇𝑣) + (1 − 𝑓𝑣)(∆𝑇𝑠)
𝐾𝑐𝑚𝑎𝑥 +

(1 − 𝑓𝑣)(∆𝑇𝑠)𝐾𝑟

𝑓𝑣(∆𝑇𝑣) + (1 − 𝑓𝑣)(∆𝑇𝑠)
𝐾𝑐𝑚𝑎𝑥]

∙ 𝐸𝑇0 

(A.8) 

 872 

where the first term in parentheses can be considered as the transpiration coefficient (Ks 873 

Kcb) and the second as Ke, as they are depicted in the FAO-2Kc formalism (Eq. (A.4)). To 874 

simplify Kcb and Ke formulations, ΔTv is assumed close to ΔTs in A.8 as in previous works 875 

(Olivera-Guerra et al., 2018; Stefan et al., 2015). Hence the following simple expressions 876 

are derived: 877 

 878 

𝐾𝑐𝑏 = 𝑓𝑣𝐾𝑐𝑚𝑎𝑥 (A.9) 

 879 

𝐾𝑒 = (1 − 𝑓𝑣)𝐾𝑟𝐾𝑐𝑚𝑎𝑥 (A.10) 

 880 

where Kcb depends on fv while Ke depends on the soil fraction (1 – fv) weighted by Kr and 881 

Kcmax. These expressions are consistent with the FAO-2kc calibrated with vegetation index 882 

proposed in the literature (e.g. Er-Raki et al., 2010; Kullberg et al., 2016; Simonneaux et 883 

al., 2008). In this study, Kcmax is set to 1.2 as a typical recommended value (Allen et al., 884 

2011; Senay et al., 2013; Senay et al., 2016). 885 

 886 
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Tables 1148 

Table 1. Main characteristics of experimental winter wheat fields by agricultural area. 1149 

Area  Site name 
Crop field 

area 

Soil 
texture  
(%clay, 
%sand 

Irrigation 
system 

Monitoring 
period 

(mm/yyyy) 

Total 
Irrigation 

applied 
# events 

Mean 
irrigation 

(mm) 

Chichaoua 

EC1 ~1.5 ha Clay loam 
(32.5%, 
37.5%) 

Drip-irrigated 

11/2016-5/2017 374 25 15.0 (±5.6) 

11/2017-5/2018 327 26 12.6 (±11.2) 

EC2 ~1.5 ha 
11/2016-5/2017 504 37 13.6 (±5.7) 

11/2017-5/2018 528 38 13.9 (±11.4) 

R3 
4ha 4 ha Clay (47%, 

18%) 

Flood-
irrigated 

12/2015-5/2016 
448 

7 64.0 (-) 

2ha1 2 ha Drip-irrigated 12/2015-5/2016 268 8 29.3 (±7.6) 

Sidi Rahal Bour ~1 ha 
Loam 
(18%, 
41%) 

Rainfed 

10/2014-5/2015 0 0 0 

10/2015-5/2016 0 0 0 

10/2016-5/2017 0 0 0 

10/2017-5/2018 0 0 0 
1. R3-2ha field is actually irrigated by drip system with amounts and quantities according to a flood irrigation system. Thus, R3-2ha is considered as flood-irrigated 

site. 
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Table 2. Correlation coefficient (R) and root mean square error (RMSE) between observed 1150 

and simulated RZSM from FAO-2Kc forced by observed irrigation (FAO-2KcIobs), irrigation 1151 

triggered avoiding stress (FAO-2KcKs=1) and irrigation retrieved from the proposed 1152 

methodology (FAO-2KcLandsat). 1153 

Area 
Site-

season 

R (-) RMSE (m3/m3) 

FAO-

2KcIobs 

FAO-

2KcKs=1 

FAO-

2KcLandsat 

FAO-

2KcIobs 

FAO-

2KcKs=1 

FAO-

2KcLandsat 

R3 R3-4ha 0.95 0.26 0.73 0.02 0.06 0.04 

 R3-2ha 0.90 0.54 0.68 0.03 0.06 0.05 

Chichaou

a 

EC1-2017 0.91 0.19 0.59 0.06 0.08 0.06 

EC2-2017 0.39 0.09 0.25 0.08 0.06 0.06 

EC1-2018 0.87 0.29 0.84 0.03 0.06 0.03 

EC2-2018 0.58 0.25 0.52 0.04 0.03 0.03 

Sidi Rahal Bour-2015 0.64 0.16 0.70 0.05 0.08 0.06 

Bour-2016 0.77 0.22 0.72 0.03 0.09 0.03 

Bour-2017 0.72 0.18 0.72 0.03 0.07 0.03 

Bour-2018 0.76 0.28 0.81 0.03 0.07 0.03 

  All 0.75 0.25 0.66 0.04 0.07 0.04 

 

Table 3. Correlation coefficient (R) and root mean square error (RMSE) between observed 1154 

and simulated ET from FAO-2Kc forced by observed irrigation (FAO-2KcIobs), irrigation 1155 

triggered avoiding stress (FAO-2KcKs=1) and irrigation retrieved from the proposed 1156 

methodology (FAO-2KcLandsat). 1157 

Area R (-) RMSE (mm/d) 
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Site-

season 

FAO-

2KcIobs 

FAO-

2KcKs=1 

FAO-

2KcLandsat 

FAO-

2KcIobs 

FAO-

2KcKs=1 

FAO-

2KcLandsat 

R3 Grav-2016 0.95 0.90 0.94 0.87 0.98 0.88 

 Gag-2016 0.92 0.77 0.85 0.68 0.97 0.78 

Chichaou

a 

EC1-2017 0.87 0.79 0.75 0.89 0.88 0.94 

EC2-2017 0.91 0.90 0.89 0.85 1.00 1.06 

EC1-2018 0.64 0.83 0.74 1.37 0.76 1.22 

EC2-2018 0.73 0.87 0.91 1.12 0.77 0.65 

Sidi Rahal Bour-2015 0.81 0.41 0.84 0.63 1.50 0.75 

Bour-2016 0.69 0.25 0.60 0.66 3.03 0.71 

Bour-2017 0.74 0.12 0.74 0.53 1.50 0.53 

Bour-2017 0.86 0.05 0.80 0.61 2.10 0.80 

  All 0.81 0.59 0.81 0.82 1.35 0.83 
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Figures 1158 

 

 

Fig. 1. Study areas and field crops where the developed approach is evaluated. 1159 
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Fig. 2. Schematic representation of pixel-scale irrigation retrieval between two successive 1160 

Landsat overpass dates in four different cases: stressed-stressed (a), stressed-unstressed 1161 

(b), unstressed-stressed (e) and unstressed-unstressed (f). The specific conditions c) and 1162 

d) can be found in the stressed-(un)stressed cases (a,b). The RZSM is estimated from the 1163 

FWB (right dotted arrow) or the RBW (left dotted arrow) initialized by the RZSMLandsat at 1164 

date j and j-Pj, respectively. An irrigation event is detected when RZSMRWB reaches SMfc 1165 

and its amount is estimated by the difference between the RZSM retrieved at date i and i-1166 

1. 1167 
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Fig. 3. In a), example of LST-fv feature space constrained by the polygon Tsmin-Tvmin-Tvmax-1168 

Tsmax from the linear regression of the minimum and maximum LST by fv classes. In b), a 1169 

conceptual diagram of the LST-fv polygon for partitioning LST for two pixels (fv,LST) 1170 

(yellow points) showing its Ts (red points) and Tv (green points) values corresponding 1171 

to the TSEB assumptions.  1172 
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 1173 

 1174 

 1175 

Fig. 4. Schematic diagram presenting the crop field scale irrigation retrieval from pixel-1176 

scale irrigation estimates for an example of a 30-pixel crop field. The daily pixel-scale 1177 

irrigation is represented for every pixel (middle plots), from which are estimated the daily 1178 

averaged irrigation (blue bar in top right plot) and the fraction of irrigated pixels (red line). 1179 

Between two successive Landsat overpass dates in top right plot, the daily mean irrigation 1180 

is integrated in the periods (shaded areas) according to its fractional irrigated pixels. The 1181 

crop field scale irrigation (red bar in bottom right plot) is obtained by deriving the most 1182 

probable irrigation date and is provided with its standard deviation for amount (black 1183 

error bar) and date (red error bar).  1184 

 1185 
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 1186 

Fig. 5. Comparison between volumes and timing of the observed irrigation (black), 1187 

irrigation triggered by avoiding stress (blue) and irrigation retrieved from the proposed 1188 

approach (red) along the season for each site. The horizontal and vertical error bars 1189 

represent the standard deviation of the retrieved irrigation dates and amounts, 1190 

respectively. The green bar indicates the precipitation and the vertical dotted lines 1191 

indicate the Landsat overpass dates.  1192 

 1193 
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 1194 

Fig. 6. Total irrigation depth applied by the farmer in the season is plotted versus the 1195 

irrigation simulated by the FAO-2kc in order to avoid the water stress (blue, IFAO-2Kc_Ks=1) 1196 

and the irrigation retrieved by the proposed approach (red, IFAO-2Kc_Landsat). The correlation 1197 

coefficient (R), bias and root mean square error (RMSE) are shown for IFAO-2Kc_Ks=1 and IFAO-1198 

2Kc_Landsat. 1199 

 1200 
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 1201 

Fig. 7. Bias (a), correlation coefficient (R, b) and relative root mean square error (RRMSE, 1202 

c) between observed and retrieved irrigation cumulated from 1 to 90 days through a 1203 

moving window for site and season. The irrigation is retrieved by the proposed approach 1204 

(FAO-2KcLandsat) and is also simulated by the FAO-2Kc in order to avoid water stress (FAO-1205 

2KcKs=1). 1206 

 1207 
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 1208 

Fig. 8. Ground-based RZSM is plotted versus the RZSM simulated by the FAO-2Kc forced 1209 

by observed irrigation (black), irrigation triggered by avoiding stress (blue) and irrigation 1210 

retrieved from the proposed methodology (red). The correlation coefficient (R), bias and 1211 

root mean square error (RMSE) are shown for RZSM from FAO-based models forced by 1212 

the three different irrigation data sets. 1213 
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 1215 

Fig. 9. Ground-based ET is plotted versus the ET simulated by from FAO-2Kc forced by 1216 

observed irrigation (black, ETFAO-2Kc_Iobs), irrigation triggered by avoiding stress (blue, 1217 

ETFAO-2Kc_Ks=1) and irrigation retrieved from the proposed methodology (red, ETFAO-1218 

2Kc_Landsat). The correlation coefficient (R), bias and root mean square error (RMSE) are 1219 

shown for ETFAO-2Kc_Iobs, ET ETFAO-2Kc_Ks=1 and ETFAO-2Kc_Landsat. 1220 
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 1222 

Fig. 10. Sensitivity analysis results for the soil parameters SMfc and SMwp by setting Zrmax 1223 

set to 1.0 m. The irrigations are estimated by using SMfc ranging between 0.28 and 0.40 1224 

m3m-3 and SMwp ranging between 0.10 and 0.24 m3m-3. The statistical parameter R (top) 1225 

and RMSE (bottom) for actual irrigation accumulated over 15 days are estimated by using 1226 

FAO-2KcKs=1 (left) and FAO-2KcLandsat (right) models. The red square indicates the SMfc 1227 

and SMwp used in the approach.  1228 
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