use rustc_data_structures::fx::FxIndexSet; use rustc_data_structures::svh::Svh; use rustc_hir as hir; use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE}; use rustc_middle::hir::map as hir_map; use rustc_middle::ty::subst::Subst; use rustc_middle::ty::{ self, Binder, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt, WithConstness, }; use rustc_session::CrateDisambiguator; use rustc_span::symbol::Symbol; use rustc_span::Span; use rustc_trait_selection::traits; fn sized_constraint_for_ty<'tcx>( tcx: TyCtxt<'tcx>, adtdef: &ty::AdtDef, ty: Ty<'tcx>, ) -> Vec> { use ty::TyKind::*; let result = match ty.kind() { Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![], Str | Dynamic(..) | Slice(_) | Foreign(..) | Error(_) | GeneratorWitness(..) => { // these are never sized - return the target type vec![ty] } Tuple(ref tys) => match tys.last() { None => vec![], Some(ty) => sized_constraint_for_ty(tcx, adtdef, ty.expect_ty()), }, Adt(adt, substs) => { // recursive case let adt_tys = adt.sized_constraint(tcx); debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys); adt_tys .iter() .map(|ty| ty.subst(tcx, substs)) .flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty)) .collect() } Projection(..) | Opaque(..) => { // must calculate explicitly. // FIXME: consider special-casing always-Sized projections vec![ty] } Param(..) => { // perf hack: if there is a `T: Sized` bound, then // we know that `T` is Sized and do not need to check // it on the impl. let sized_trait = match tcx.lang_items().sized_trait() { Some(x) => x, _ => return vec![ty], }; let sized_predicate = ty::Binder::dummy(ty::TraitRef { def_id: sized_trait, substs: tcx.mk_substs_trait(ty, &[]), }) .without_const() .to_predicate(tcx); let predicates = tcx.predicates_of(adtdef.did).predicates; if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] } } Placeholder(..) | Bound(..) | Infer(..) => { bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty) } }; debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result); result } fn associated_item_from_trait_item_ref( tcx: TyCtxt<'_>, parent_def_id: LocalDefId, trait_item_ref: &hir::TraitItemRef, ) -> ty::AssocItem { let def_id = trait_item_ref.id.def_id; let (kind, has_self) = match trait_item_ref.kind { hir::AssocItemKind::Const => (ty::AssocKind::Const, false), hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self), hir::AssocItemKind::Type => (ty::AssocKind::Type, false), }; ty::AssocItem { ident: trait_item_ref.ident, kind, vis: tcx.visibility(def_id), defaultness: trait_item_ref.defaultness, def_id: def_id.to_def_id(), container: ty::TraitContainer(parent_def_id.to_def_id()), fn_has_self_parameter: has_self, } } fn associated_item_from_impl_item_ref( tcx: TyCtxt<'_>, parent_def_id: LocalDefId, impl_item_ref: &hir::ImplItemRef<'_>, ) -> ty::AssocItem { let def_id = impl_item_ref.id.def_id; let (kind, has_self) = match impl_item_ref.kind { hir::AssocItemKind::Const => (ty::AssocKind::Const, false), hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self), hir::AssocItemKind::Type => (ty::AssocKind::Type, false), }; ty::AssocItem { ident: impl_item_ref.ident, kind, vis: tcx.visibility(def_id), defaultness: impl_item_ref.defaultness, def_id: def_id.to_def_id(), container: ty::ImplContainer(parent_def_id.to_def_id()), fn_has_self_parameter: has_self, } } fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssocItem { let id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let parent_id = tcx.hir().get_parent_item(id); let parent_def_id = tcx.hir().local_def_id(parent_id); let parent_item = tcx.hir().expect_item(parent_id); match parent_item.kind { hir::ItemKind::Impl(ref impl_) => { if let Some(impl_item_ref) = impl_.items.iter().find(|i| i.id.def_id.to_def_id() == def_id) { let assoc_item = associated_item_from_impl_item_ref(tcx, parent_def_id, impl_item_ref); debug_assert_eq!(assoc_item.def_id, def_id); return assoc_item; } } hir::ItemKind::Trait(.., ref trait_item_refs) => { if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.def_id.to_def_id() == def_id) { let assoc_item = associated_item_from_trait_item_ref(tcx, parent_def_id, trait_item_ref); debug_assert_eq!(assoc_item.def_id, def_id); return assoc_item; } } _ => {} } span_bug!( parent_item.span, "unexpected parent of trait or impl item or item not found: {:?}", parent_item.kind ) } fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness { let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let item = tcx.hir().expect_item(hir_id); if let hir::ItemKind::Impl(impl_) = &item.kind { impl_.defaultness } else { bug!("`impl_defaultness` called on {:?}", item); } } /// Calculates the `Sized` constraint. /// /// In fact, there are only a few options for the types in the constraint: /// - an obviously-unsized type /// - a type parameter or projection whose Sizedness can't be known /// - a tuple of type parameters or projections, if there are multiple /// such. /// - a Error, if a type contained itself. The representability /// check should catch this case. fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> { let def = tcx.adt_def(def_id); let result = tcx.mk_type_list( def.variants .iter() .flat_map(|v| v.fields.last()) .flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did))), ); debug!("adt_sized_constraint: {:?} => {:?}", def, result); ty::AdtSizedConstraint(result) } fn associated_item_def_ids(tcx: TyCtxt<'_>, def_id: DefId) -> &[DefId] { let id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let item = tcx.hir().expect_item(id); match item.kind { hir::ItemKind::Trait(.., ref trait_item_refs) => tcx.arena.alloc_from_iter( trait_item_refs.iter().map(|trait_item_ref| trait_item_ref.id.def_id.to_def_id()), ), hir::ItemKind::Impl(ref impl_) => tcx.arena.alloc_from_iter( impl_.items.iter().map(|impl_item_ref| impl_item_ref.id.def_id.to_def_id()), ), hir::ItemKind::TraitAlias(..) => &[], _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait"), } } fn associated_items(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssociatedItems<'_> { let items = tcx.associated_item_def_ids(def_id).iter().map(|did| tcx.associated_item(*did)); ty::AssociatedItems::new(items) } fn def_ident_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option { tcx.hir().get_if_local(def_id).and_then(|node| node.ident()).map(|ident| ident.span) } /// If the given `DefId` describes an item belonging to a trait, /// returns the `DefId` of the trait that the trait item belongs to; /// otherwise, returns `None`. fn trait_of_item(tcx: TyCtxt<'_>, def_id: DefId) -> Option { tcx.opt_associated_item(def_id).and_then(|associated_item| match associated_item.container { ty::TraitContainer(def_id) => Some(def_id), ty::ImplContainer(_) => None, }) } /// See `ParamEnv` struct definition for details. fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { // The param_env of an impl Trait type is its defining function's param_env if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) { return param_env(tcx, parent); } // Compute the bounds on Self and the type parameters. let ty::InstantiatedPredicates { mut predicates, .. } = tcx.predicates_of(def_id).instantiate_identity(tcx); // Finally, we have to normalize the bounds in the environment, in // case they contain any associated type projections. This process // can yield errors if the put in illegal associated types, like // `::Bar` where `i32` does not implement `Foo`. We // report these errors right here; this doesn't actually feel // right to me, because constructing the environment feels like a // kind of a "idempotent" action, but I'm not sure where would be // a better place. In practice, we construct environments for // every fn once during type checking, and we'll abort if there // are any errors at that point, so after type checking you can be // sure that this will succeed without errors anyway. if tcx.sess.opts.debugging_opts.chalk { let environment = well_formed_types_in_env(tcx, def_id); predicates.extend(environment); } let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates), traits::Reveal::UserFacing); let body_id = def_id .as_local() .map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id)) .map_or(hir::CRATE_HIR_ID, |id| { tcx.hir().maybe_body_owned_by(id).map_or(id, |body| body.hir_id) }); let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id); traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause) } /// Elaborate the environment. /// /// Collect a list of `Predicate`'s used for building the `ParamEnv`. Adds `TypeWellFormedFromEnv`'s /// that are assumed to be well-formed (because they come from the environment). /// /// Used only in chalk mode. fn well_formed_types_in_env<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> &'tcx ty::List> { use rustc_hir::{ForeignItemKind, ImplItemKind, ItemKind, Node, TraitItemKind}; use rustc_middle::ty::subst::GenericArgKind; debug!("environment(def_id = {:?})", def_id); // The environment of an impl Trait type is its defining function's environment. if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) { return well_formed_types_in_env(tcx, parent); } // Compute the bounds on `Self` and the type parameters. let ty::InstantiatedPredicates { predicates, .. } = tcx.predicates_of(def_id).instantiate_identity(tcx); let clauses = predicates.into_iter(); if !def_id.is_local() { return ty::List::empty(); } let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let node = tcx.hir().get(hir_id); enum NodeKind { TraitImpl, InherentImpl, Fn, Other, } let node_kind = match node { Node::TraitItem(item) => match item.kind { TraitItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::ImplItem(item) => match item.kind { ImplItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::Item(item) => match item.kind { ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => NodeKind::TraitImpl, ItemKind::Impl(hir::Impl { of_trait: None, .. }) => NodeKind::InherentImpl, ItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::ForeignItem(item) => match item.kind { ForeignItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, // FIXME: closures? _ => NodeKind::Other, }; // FIXME(eddyb) isn't the unordered nature of this a hazard? let mut inputs = FxIndexSet::default(); match node_kind { // In a trait impl, we assume that the header trait ref and all its // constituents are well-formed. NodeKind::TraitImpl => { let trait_ref = tcx.impl_trait_ref(def_id).expect("not an impl"); // FIXME(chalk): this has problems because of late-bound regions //inputs.extend(trait_ref.substs.iter().flat_map(|arg| arg.walk())); inputs.extend(trait_ref.substs.iter()); } // In an inherent impl, we assume that the receiver type and all its // constituents are well-formed. NodeKind::InherentImpl => { let self_ty = tcx.type_of(def_id); inputs.extend(self_ty.walk()); } // In an fn, we assume that the arguments and all their constituents are // well-formed. NodeKind::Fn => { let fn_sig = tcx.fn_sig(def_id); let fn_sig = tcx.liberate_late_bound_regions(def_id, fn_sig); inputs.extend(fn_sig.inputs().iter().flat_map(|ty| ty.walk())); } NodeKind::Other => (), } let input_clauses = inputs.into_iter().filter_map(|arg| { match arg.unpack() { GenericArgKind::Type(ty) => { let binder = Binder::dummy(PredicateKind::TypeWellFormedFromEnv(ty)); Some(tcx.mk_predicate(binder)) } // FIXME(eddyb) no WF conditions from lifetimes? GenericArgKind::Lifetime(_) => None, // FIXME(eddyb) support const generics in Chalk GenericArgKind::Const(_) => None, } }); tcx.mk_predicates(clauses.chain(input_clauses)) } fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { tcx.param_env(def_id).with_reveal_all_normalized(tcx) } fn crate_disambiguator(tcx: TyCtxt<'_>, crate_num: CrateNum) -> CrateDisambiguator { assert_eq!(crate_num, LOCAL_CRATE); tcx.sess.local_crate_disambiguator() } fn original_crate_name(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Symbol { assert_eq!(crate_num, LOCAL_CRATE); tcx.crate_name } fn crate_hash(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Svh { tcx.index_hir(crate_num).crate_hash } fn instance_def_size_estimate<'tcx>( tcx: TyCtxt<'tcx>, instance_def: ty::InstanceDef<'tcx>, ) -> usize { use ty::InstanceDef; match instance_def { InstanceDef::Item(..) | InstanceDef::DropGlue(..) => { let mir = tcx.instance_mir(instance_def); mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum() } // Estimate the size of other compiler-generated shims to be 1. _ => 1, } } /// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`. /// /// See [`ty::ImplOverlapKind::Issue33140`] for more details. fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option> { debug!("issue33140_self_ty({:?})", def_id); let trait_ref = tcx .impl_trait_ref(def_id) .unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id)); debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref); let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive && tcx.associated_item_def_ids(trait_ref.def_id).is_empty(); // Check whether these impls would be ok for a marker trait. if !is_marker_like { debug!("issue33140_self_ty - not marker-like!"); return None; } // impl must be `impl Trait for dyn Marker1 + Marker2 + ...` if trait_ref.substs.len() != 1 { debug!("issue33140_self_ty - impl has substs!"); return None; } let predicates = tcx.predicates_of(def_id); if predicates.parent.is_some() || !predicates.predicates.is_empty() { debug!("issue33140_self_ty - impl has predicates {:?}!", predicates); return None; } let self_ty = trait_ref.self_ty(); let self_ty_matches = match self_ty.kind() { ty::Dynamic(ref data, ty::ReStatic) => data.principal().is_none(), _ => false, }; if self_ty_matches { debug!("issue33140_self_ty - MATCHES!"); Some(self_ty) } else { debug!("issue33140_self_ty - non-matching self type"); None } } /// Check if a function is async. fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync { let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let node = tcx.hir().get(hir_id); let fn_like = hir_map::blocks::FnLikeNode::from_node(node).unwrap_or_else(|| { bug!("asyncness: expected fn-like node but got `{:?}`", def_id); }); fn_like.asyncness() } /// Don't call this directly: use ``tcx.conservative_is_privately_uninhabited`` instead. #[instrument(level = "debug", skip(tcx))] pub fn conservative_is_privately_uninhabited_raw<'tcx>( tcx: TyCtxt<'tcx>, param_env_and: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, ) -> bool { let (param_env, ty) = param_env_and.into_parts(); match ty.kind() { ty::Never => { debug!("ty::Never =>"); true } ty::Adt(def, _) if def.is_union() => { debug!("ty::Adt(def, _) if def.is_union() =>"); // For now, `union`s are never considered uninhabited. false } ty::Adt(def, substs) => { debug!("ty::Adt(def, _) if def.is_not_union() =>"); // Any ADT is uninhabited if either: // (a) It has no variants (i.e. an empty `enum`); // (b) Each of its variants (a single one in the case of a `struct`) has at least // one uninhabited field. def.variants.iter().all(|var| { var.fields.iter().any(|field| { let ty = tcx.type_of(field.did).subst(tcx, substs); tcx.conservative_is_privately_uninhabited(param_env.and(ty)) }) }) } ty::Tuple(..) => { debug!("ty::Tuple(..) =>"); ty.tuple_fields().any(|ty| tcx.conservative_is_privately_uninhabited(param_env.and(ty))) } ty::Array(ty, len) => { debug!("ty::Array(ty, len) =>"); match len.try_eval_usize(tcx, param_env) { Some(0) | None => false, // If the array is definitely non-empty, it's uninhabited if // the type of its elements is uninhabited. Some(1..) => tcx.conservative_is_privately_uninhabited(param_env.and(ty)), } } ty::Ref(..) => { debug!("ty::Ref(..) =>"); // References to uninitialised memory is valid for any type, including // uninhabited types, in unsafe code, so we treat all references as // inhabited. false } _ => { debug!("_ =>"); false } } } pub fn provide(providers: &mut ty::query::Providers) { *providers = ty::query::Providers { asyncness, associated_item, associated_item_def_ids, associated_items, adt_sized_constraint, def_ident_span, param_env, param_env_reveal_all_normalized, trait_of_item, crate_disambiguator, original_crate_name, crate_hash, instance_def_size_estimate, issue33140_self_ty, impl_defaultness, conservative_is_privately_uninhabited: conservative_is_privately_uninhabited_raw, ..*providers }; }