
A Detailed Walk Through of Reverse Engineering CVE-2019-3568

What’s Up with WhatsApp

Maddie Stone
@maddiestone
Jailbreak Security Summit 2019

● Security Researcher on Project Zero

○ Current Focus: In-the-wild use of

0-days

● Previously: Google’s Android Security

team

● Speaker at BlackHat USA, REcon,

OffensiveCon, & more!

● BS in Computer Science, Russian, &

Applied Math, MS in Computer Science

@maddiestone

Who am I? - Maddie Stone (she/her)

Goal

The goal of this presentation is not to just tell you
about the bug and exploit, but walk through the

reversing process of how to learn through the bug.

● Basics about the bug

● Patch diffing tooling

● Static analysis

● Dynamic analysis with Frida

● Conclusion

Agenda aka walking through the RE process

● Facebook’s Advisory for CVE-2019-3568

○ “A buffer overflow vulnerability in WhatsApp VOIP stack allowed remote

code execution via specially crafted series of RTCP packets sent to a

target phone number.”

What We Know about CVE-2019-3568

https://www.facebook.com/security/advisories/cve-2019-3568

● Facebook’s Advisory for CVE-2019-3568

○ “A buffer overflow vulnerability in WhatsApp VOIP stack allowed remote

code execution via specially crafted series of RTCP packets sent to a

target phone number.”

● Checkpoint Research published blog highlighting two changes from the vuln
version to the patched
○ “The NSO WhatsApp Vulnerability - This Is How It Happened”

What We Know about CVE-2019-3568

https://www.facebook.com/security/advisories/cve-2019-3568
https://research.checkpoint.com/the-nso-whatsapp-vulnerability-this-is-how-it-happened/

● Facebook’s Advisory for CVE-2019-3568

○ “A buffer overflow vulnerability in WhatsApp VOIP stack allowed remote

code execution via specially crafted series of RTCP packets sent to a

target phone number.”

● Checkpoint Research published blog highlighting two changes from the vuln
version to the patched
○ “The NSO WhatsApp Vulnerability - This Is How It Happened”

What We Know about CVE-2019-3568

https://research.checkpoint.com/the-nso-whatsapp-vulnerability-this-is-how-it-happened/

● Facebook’s Advisory for CVE-2019-3568

○ “A buffer overflow vulnerability in WhatsApp VOIP stack allowed remote

code execution via specially crafted series of RTCP packets sent to a

target phone number.”

● Checkpoint Research published blog highlighting two changes from the vuln
version to the patched
○ “The NSO WhatsApp Vulnerability - This Is How It Happened”

What We Know about CVE-2019-3568

https://research.checkpoint.com/the-nso-whatsapp-vulnerability-this-is-how-it-happened/

● Vulnerable WhatsApp application

○ Version 2.19.133
○ 763ab8444e085bd26336408e72ca4de3a36034d53c3e033f8eb39d8d90997707

● Patched WhatsApp application

○ Version 2.19.134
○ ee09262fa8b535b5592960ca5ab41e194f632419f8a80ef2e41d36efdbe13f88

Samples

https://www.virustotal.com/gui/file/763ab8444e085bd26336408e72ca4de3a36034d53c3e033f8eb39d8d90997707/detection
https://www.virustotal.com/gui/file/ee09262fa8b535b5592960ca5ab41e194f632419f8a80ef2e41d36efdbe13f88/detection

Patch Diffing Tooling

● DarunGrim
● BinDiff
● Diaphora
● Radare2 (radiff2)

Tools under Test

● “Size Check #1”
○ sub_51E34 in patched

● “Size Check #2”
○ sub_52D0C in patched

Do the Binary Diffing Tools Highlight This Change?

● http://www.darungrim.org/Home
● Only runs on Windows
● Supports IDA 5.6
● Open source, last updated Feb 2017

DarunGrim

http://www.darungrim.org/Home

● http://www.darungrim.org/Home
● Only runs on Windows
● Supports IDA 5.6
● Open source, last updated Feb 2017

DarunGrim

X

http://www.darungrim.org/Home

● https://www.zynamics.com/bindiff/manual/
● The OG
● Plugins for IDA 7.x
● Not open source

BinDiff

https://www.zynamics.com/bindiff/manual/

● BinDiff opens 4 tabs automatically in IDA showing Matched/Unmatched
Funcs, etc.

● Primary is the IDB you run BinDiff from and Secondary is the IDB you
select.
○ Primary = vuln, Secondary = patched

BinDiff

BinDiff

BinDiff

BinDiff: Size Check #1 - Matches Functions Correctly

BinDiff: Size Check #1 - Matches Functions Correctly

● The matching is good
● The UI for highlighting changes between the two functions is clear and

obvious
● It is not obvious though which changes in the matched functions list

may be important
● No support for decompiler
● UI is outside of IDA
● Seems to not get caught by name changes, offset changes, etc.

BinDiff

● diaphora.re
● Open-source and still supported (last update 2 weeks ago)
● Currently supports IDA 7.1-7.3
● Ghidra support in development and Binary Ninja support planned

Diaphora

http://diaphora.re

Diaphora

Diaphora

Diaphora: Size Check #2

Diaphora: Size Check #2

BinDiff: Size
Check #2

Diaphora: Size Check #1 - Matches Wrong Functions

Diaphora Size Check #1 - Matches Wrong Function

● Matching wasn’t great
● Tends to get thrown off by naming, different offsets, etc.
● Has support for decompilation diffing, but rather basic
● Open source and currently developed!
● Integrated fully into IDA with support coming for other tools

Diaphora

● https://github.com/radareorg/radare2
● https://radare.gitbooks.io/radare2book/content/
● Open source and currently developed (last commit was 2 hours ago!)
● Well documented

Radare2

Radare is a portable reversing framework that can...

● Disassemble (and assemble for) many different architectures
● Debug with local native and remote debuggers (gdb, rap, webui,

r2pipe, winedbg, windbg)
● Run on Linux, *BSD, Windows, OSX, Android, iOS, Solaris and

Haiku
● Perform forensics on filesystems and data carving
● Be scripted in Python, Javascript, Go and more
● Support collaborative analysis using the embedded webserver
● Visualize data structures of several file types
● Patch programs to uncover new features or fix vulnerabilities
● Use powerful analysis capabilities to speed up reversing
● Aid in software exploitation

https://github.com/radareorg/radare2
https://radare.gitbooks.io/radare2book/content/

● https://github.com/radareorg/radare2
● https://radare.gitbooks.io/radare2book/content/
● Open source and currently developed (last commit was 2 hours ago!)
● Well documented

radare2 (radiff2)

Radare is a portable reversing framework that can...

● Disassemble (and assemble for) many different architectures
● Debug with local native and remote debuggers (gdb, rap, webui,

r2pipe, winedbg, windbg)
● Run on Linux, *BSD, Windows, OSX, Android, iOS, Solaris and

Haiku
● Perform forensics on filesystems and data carving
● Be scripted in Python, Javascript, Go and more
● Support collaborative analysis using the embedded webserver
● Visualize data structures of several file types
● Patch programs to uncover new features or fix vulnerabilities
● Use powerful analysis capabilities to speed up reversing
● Aid in software exploitation

And….

supports binary diffing via radiff2.

https://github.com/radareorg/radare2
https://radare.gitbooks.io/radare2book/content/

radiff2 patched_libwhatsapp.so vuln_libwhatsapp.so

→ Results in 150,533 diffs

radiff2

0x00052c18 41461d46e7f7bcfc064604f5f83000f569702946a7f18cfc2046fcf73dfa002e53d14ff21c61 =>
c0f20105002e00f09f80d6f88c004ff48051c0f778eed6f88c204ff40063d8f80010b9f1000f 0x00052c18
0x00052c3f f21862c0f20101c0f201026158 => f0010018bf0323cde900302046 0x00052c3f
0x00052c4d f27430a358d7f808a0c0f201000126a518265053ea010009d0b9f80000c0f30629a9f15f00c0b20b2815d31fe04ff214604ff21062b9f80010 =>
f48053fcf76cfbb0f1ff3f03901fddd7f808b044f6785103ab324604eb8b0041580020cde9000a2046fcf7bffa0546002d6fd13f484ff6a001 0x00052c4d
0x00052c89 00c0f201022058a258c1f30629a9f15f06104328d0f0b20a280ad804f5f83000f55e76304635f08ffd10b9 =>
01039d7844625a036819888a4206d11c210ce000200535c6f888005ce03749794409680b8800219a4208bf 0x00052c89
0x00052cb5 46aaf19fff04f5f830baf1000f08bf00f5c2654246d5e90001013041 => 214ff2e8624ff2ec66c0f20102c0f20106a3580d44a0595919a15040 0x00052cb5
0x00052cd3 01c5e900015ffa89f12046fef77ffd2046bde80007bde8f040fcf720ba4ff60c40c0f201002058d0f874120029cd =>
00a0512046294605f083fa4ff228704ff22c72c0f20100c0f201022158b9f1000fa3582944215003f10100a0502d 0x00052cd3
0x00052d02 f5f765fbf0b2b4e70000f0b503af2de9000784b0054674481c => 4ff4b0700bfb008505f11000adf155f905f11800acf1e5ff2e 0x00052d02
0x00052d1c
904678440e46002d00680068039000f0d180002e00f0ce804df63010c0f20100285875f0b3f84df62410c0f20100285875f0acf84df62c10c0f20100285875f0a5f84df62810c0f201002
85875f09ef8002041 =>
56f8200f06ebc0000830acf1ddff306844f24851615844f26c0200eb400011440c2206eb80008830c0f7a8ed316855f8240f013101f00f0131600f289cbf0130286000250948049978440
0680068401a01bf28 0x00052d1c
0x00052d70 02903046e7f710fc81464ff28430c0f20100002c29 => 05b0bde8000ff0bdc0f758edb657380018593800f8 0x00052d70
0x00052d86 2bd051bbb9f1000f03d03168c1f3001108e0717801f07f => 380054563800b0b502af0d4644f2485114464258d2f8c8 0x00052d86

radiff2 patched_libwhatsapp.so vuln_libwhatsapp.so

→ Results in 150,533 diffs

radiff2

0x00052c18 41461d46e7f7bcfc064604f5f83000f569702946a7f18cfc2046fcf73dfa002e53d14ff21c61 =>
c0f20105002e00f09f80d6f88c004ff48051c0f778eed6f88c204ff40063d8f80010b9f1000f 0x00052c18
0x00052c3f f21862c0f20101c0f201026158 => f0010018bf0323cde900302046 0x00052c3f
0x00052c4d f27430a358d7f808a0c0f201000126a518265053ea010009d0b9f80000c0f30629a9f15f00c0b20b2815d31fe04ff214604ff21062b9f80010 =>
f48053fcf76cfbb0f1ff3f03901fddd7f808b044f6785103ab324604eb8b0041580020cde9000a2046fcf7bffa0546002d6fd13f484ff6a001 0x00052c4d
0x00052c89 00c0f201022058a258c1f30629a9f15f06104328d0f0b20a280ad804f5f83000f55e76304635f08ffd10b9 =>
01039d7844625a036819888a4206d11c210ce000200535c6f888005ce03749794409680b8800219a4208bf 0x00052c89
0x00052cb5 46aaf19fff04f5f830baf1000f08bf00f5c2654246d5e90001013041 => 214ff2e8624ff2ec66c0f20102c0f20106a3580d44a0595919a15040 0x00052cb5
0x00052cd3 01c5e900015ffa89f12046fef77ffd2046bde80007bde8f040fcf720ba4ff60c40c0f201002058d0f874120029cd =>
00a0512046294605f083fa4ff228704ff22c72c0f20100c0f201022158b9f1000fa3582944215003f10100a0502d 0x00052cd3
0x00052d02 f5f765fbf0b2b4e70000f0b503af2de9000784b0054674481c => 4ff4b0700bfb008505f11000adf155f905f11800acf1e5ff2e 0x00052d02
0x00052d1c
904678440e46002d00680068039000f0d180002e00f0ce804df63010c0f20100285875f0b3f84df62410c0f20100285875f0acf84df62c10c0f20100285875f0a5f84df62810c0f201002
85875f09ef8002041 =>
56f8200f06ebc0000830acf1ddff306844f24851615844f26c0200eb400011440c2206eb80008830c0f7a8ed316855f8240f013101f00f0131600f289cbf0130286000250948049978440
0680068401a01bf28 0x00052d1c
0x00052d70 02903046e7f710fc81464ff28430c0f20100002c29 => 05b0bde8000ff0bdc0f758edb657380018593800f8 0x00052d70
0x00052d86 2bd051bbb9f1000f03d03168c1f3001108e0717801f07f => 380054563800b0b502af0d4644f2485114464258d2f8c8 0x00052d86

radiff2 -AC -a arm Binaries/vuln_libwhatsapp.so Binaries/patched_libwhatsapp.so

→ Took 9.5 hours to run

fcn.002dfa50 102 0x2dfa50 | UNMATCH (0.095588) | 0x2dd8b0 102 fcn.002dd8b0

fcn.002df528 54 0x2df528 | MATCH (0.944444) | 0x2dd388 54 fcn.002dd388

fcn.002df35c 450 0x2df35c | UNMATCH (0.100000) | 0x2dd1bc 450 fcn.002dd1bc

fcn.002df2ac 166 0x2df2ac | UNMATCH (0.094828) | 0x2dd10c 166 fcn.002dd10c

fcn.002cfe80 16912 0x2cfe80 | NEW (0.000000)

fcn.002def20 836 0x2def20 | UNMATCH (0.089713) | 0x2dcd80 836 fcn.002dcd80

fcn.002df712 2 0x2df712 | NEW (0.000000)

fcn.002df788 2 0x2df788 | MATCH (1.000000) | 0x2dd5e8 2 fcn.002dd5e8

fcn.002df6da 2 0x2df6da | MATCH (1.000000) | 0x2dd572 2 fcn.002dd572

fcn.002dec70 636 0x2dec70 | UNMATCH (0.110054) | 0x2dcad0 636 fcn.002dcad0

fcn.002de678 186 0x2de678 | UNMATCH (0.060345) | 0x2dc4d8 186 fcn.002dc4d8

radiff2

radiff2 -AC -a arm Binaries/vuln_libwhatsapp.so Binaries/patched_libwhatsapp.so

→ Took 9.5 hours to run

fcn.00052f00 430 0x52f00 | NEW (0.000000)

fcn.00051d30 3420 0x51d30 | NEW (0.000000)

radiff2

radiff2 -AC -a arm Binaries/vuln_libwhatsapp.so Binaries/patched_libwhatsapp.so

→ Took 9.5 hours to run

fcn.00052f00 430 0x52f00 | NEW (0.000000)

fcn.00051d30 3420 0x51d30 | NEW (0.000000)

radiff2

Comparison

BinDiff Diaphora DarunGrim Radare2

Matches the vuln
vs patched funcs

2/2 1/2
Matched “Size
Check #1” to
wrong function

0/2

Clearly shows
important
changes in
disasm (func to
func)

Yes! Meh? No :(

Highlights
important
changes at file
level

Out of the box?
Nope. Maybe
with more
customizations?

Out of the box?
Nope. Maybe
with more
customizations?

No :(

: @maddiestone

Comparison

BinDiff Diaphora DarunGrim Radare2

Matches the vuln
vs patched funcs

2/2 1/2
Matched “Size
Check #1” to
wrong function

0/2

Clearly shows
important
changes in
disasm (func to
func)

X Meh? No :(

Highlights
important
changes at file
level

Out of the box?
Nope. Maybe
with more
customizations?

Out of the box?
Nope. Maybe
with more
customizations?

No :(

:

Overall, I found BinDiff to be the most user friendly out of the box. However,
doesn’t have the same support currently as Diaphora so mileage may vary if

there are bugs, etc.

Static Analysis

● We have two size checks added to the patched version.

Where we’re at

● We have two size checks added to the patched version.

● We know their corresponding functions in the vulnerable version of the

library.

Where we’re at

● We have two size checks added to the patched version.

● We know their corresponding functions in the vulnerable version of the

library.

● Bindiff highlighted that there are a few more changes in those two

functions

Where we’re at

● We have two size checks added to the patched version.

● We know their corresponding functions in the vulnerable version of the

library.

● Bindiff highlighted that there are a few more changes in those two

functions

Where we’re at

● We have two size checks added to the patched version.

● We know their corresponding functions in the vulnerable version of the

library.

● Bindiff highlighted that there are a few more changes in those two

functions

Where we’re at

● What can we overwrite?

Now what?

● What can we overwrite?

● How do we exploit it?

Now what?

● What can we overwrite?

● How do we exploit it?

● How do we trigger it?

Now what?

● What can we overwrite?

● How do we exploit it?

● How do we trigger it?

Now what?

Let’s do some static reversing!

Function with vulnerable memcopy (size check #2):

● Vulnerable: 0x52F00

● Patched: 0x52D0C

Function that calls func above (size check #1):

● Vulnerable: 0x51D30

● Patched: 0x51E34

Subroutines of Interest (arm32)

● In the vulnerable version (0x5306A):

○ memcpy(buffer_arg0 + 0x1F7A4 , packet_arg1, length_arg2)

What can we overwrite?

● In the vulnerable version (0x5306A):

○ memcpy(buffer_arg0 + 0x1F7A4 , packet_arg1, length_arg2)

What can we overwrite?

Writes copy length to 0x100 bytes from
the beginning of the copy.

Patched version

What can we overwrite?

Patched version

What can we overwrite?

Writes copy length to 0x5C8 bytes from
the beginning of the copy.

● Need to understand the structure where we’re copying the data too.

● What’s its size?

● Are we just likely to overwrite other members of the struct or do we

need to look into what may be allocated after this struct?

What can we overwrite?

● WhatsApp uses PJSIP, an open source product, for its video

conferencing implementation

○ Thanks, Natalie!

https://googleprojectzero.blogspot.com/2018/12/adventures-in-vid

eo-conferencing-part-3.html

● WhatsApp adds some customization on top of PJSIP, but includes lots

of the same framework...including logging strings.

● Use this source code to help deduce the structs

Backing Up

https://www.pjsip.org/
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html

● Likely related to the burst packets processing that was removed in the

patched version.

● Values for the burst packet processing are after where the packet can

be copied

○ That means they can be overwritten

How do we exploit it?

How do we trigger it?

What path calls the vulnerable memcpy?

How do we trigger it?

Begin by tracing call references

How do we trigger it?

How do we trigger it?

None of these are exported functions

How do we trigger it?

How do we trigger it?

How do we trigger it?

Use frida to show us the execution path

Dynamic Analysis with frida

● frida.re is a dynamic instrumentation framework

● Runs on just about all platforms

● Actively developed, open source

● Run the frida-server on a rooted Android device to instrument/hook

code running on the phone

○ Options to run on a non-rooted device, but a little more complex

● Write a combo Python & Javascript script to instrument the target, run

from laptop

What is frida?

https://frida.re

● Pixel 2 running PQ3A.190801.002 (P)

● Verizon test SIM

● Injecting from MacOS/Linux

My setup

Frida didn’t originally work on
Android 10 due to the linker

being moved, but addressed
on Tuesday

Running the vulnerable version of Whatsapp

● Install the current version of Whatsapp

● Register and get the app fully started up

● Quit the app

● Save off the contents of /data/data/com.whatsapp/ to your laptop

● Uninstall WhatsApp

● Disconnect the phone from WiFi and cellular

● Set the date of the device to a day when the version of interest was OK

● Using ADB, install the WhatsApp version of interest

● Using ADB, copy the saved files back into /data/data/com.whatsapp/

● Start the app, if it starts up correctly, turn on Wifi ensuring that

“Automated app updates” and “Automated date and time” are both off

● Do not turn on cellular, this will override the date settings.

Running the vulnerable version of Whatsapp

● To use frida to hook the functions of interest, we need a way to tell

frida what functions to hook.

● For Android native libraries, can often use Module.findExportByName

○ But only if the function of interest is exported (like a JNI function)

● Our functions are not exported so we need to calculated the addresses

of where they’re loaded into memory

○ Know their offsets from the base from IDA

○ Use Module.getBaseAddress and then add the offset to the

returned NativePointer to get the correct address

Hook the functions of interest

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");

var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");

var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);

var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

Find where the functions of interest are loaded

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");
var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");

var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);

var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

Find where the functions of interest are loaded

Get the address of where
the library is loaded into

memory.

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");

var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");
var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);

var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

Find where the functions of interest are loaded

If the function you want to hook is in the
ELF’s exports, you can simply use the

getExportByName method.

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");

var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");

var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);
var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

Find where the functions of interest are loaded

Add the offset of the function from the base
address.

Must use add() instead of + because otherwise
JS thinks you want to do string operations rather

than arithmetic ops.

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");

var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");

var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);
var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

Find where the functions of interest are loaded

Side note:
Yes, the offsets are different from the func

addresses we talked about in the static analysis
section. I did static analysis on the ARM32 lib

without thinking that I’d be running the ARM64
one.

var libBaseAddr = Module.getBaseAddress("libwhatsapp.so");

var JNIOnload_addr = Module.getExportByName("libwhatsapp.so", "JNI_OnLoad");

var callsCallsVulnAddr_8A360 = libBaseAddr.add(0x8A360);

var callsVulnAddr_88DB0 = libBaseAddr.add(0x88DB0);

var vulnAddr_8A8B0 = libBaseAddr.add(0x8A8B0);

--

libwhatsapp.so base address: "0x70e9bcb000" JNI_OnLoad: "0x70e9bfa5a4"

vuln (0x8A8B0): "0x70e9c558b0" callsVuln (0x88DB0): "0x70e9c53db0"

callsCallsVuln (0x8A360): "0x70e9c55360"

Find where the functions of interest are loaded

Interceptor.attach(callsCallsVulnAddr_8A360, {

 onEnter: function (args) {

 console.log("In callsCallsVuln. Return addr: " +

JSON.stringify(this.returnAddress.sub(libBaseAddr)));

 return 0;

 }

});

Let’s hook the functions

Hook the function that is added to a
callbacks table to print out its return

address.

Interceptor.attach(vulnAddr_8A8B0, {

 onEnter: function (args) {

 console.log("** IN VULN SUB 0x8A8B0 **");

 console.log("Return addr: " +

JSON.stringify(this.returnAddress.sub(libBaseAddr)));

 console.log("Arg1 (Buffer): " + JSON.stringify(args[0]));

 console.log("Arg2 (Packet): " + JSON.stringify(args[1]));

 console.log("Arg3 (Len): " + JSON.stringify(args[2]));

 console.log(hexdump(args[1], {

 offset: 0,

 length: args[2].toInt32(),

 ansi:true

 }));

 return 0;

 }

});

Let’s hook the functions

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

While the call is ringing...

In callsCallsVuln. Return addr: "0x8f75c"

In callsVuln. Return addr: "0x8a468"

** IN VULN SUB 0x8A8B0 **

Return addr: "0x897ac"

Arg1 (Buffer): "0x70e120dc28"

Arg2 (Packet): "0x70fabb8038"

Arg3 (Len): "0x4a"

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

70fabb8038 81 ca 00 07 85 7e 02 d5 ed 2a b5 9d 88 62 1a 8a ~...*...b..

70fabb8048 83 7d 29 e7 5e ed 9f f2 f9 43 94 03 cc eb ad 3e .}).^....C.....>

70fabb8058 c6 15 3e b3 7b 3a c1 a6 d1 59 ca 10 2f 03 c3 53 ..>.{:...Y../..S

70fabb8068 57 0f a8 e9 9a 58 bb 46 40 f4 41 2c 80 00 00 0a W....X.F@.A,....

70fabb8078 c9 9e ed 5c 5b 26 e2 60 4f c6 ...\[&.`O.

After we answer the call...

● Understanding the vulnerability

○ Instrument the vuln function such that you change it’s arguments

to ones you control

● Hypothesize on what the exploit looked like

○ After understanding the vulnerability, moving up the change to see

what you as the attacker can control on the other side of the

WhatsApp server

● Variant analysis

○ Look for similar patterns (possibly using diffing like radiff2) through

static analysis

Now what? What’s your goal of analyzing the bug?

Conclusion

● No binary diffing tool out of the box will highlight *which* changes you’re

likely to care about. That will still take learning the tools to optimize their

findings and doing some RE of your own.

● Using a variety of different RE techniques can help you get to the answer

faster.

● When reversing code that use lots of callbacks, dynamic analysis can save

lots of time.

Last thoughts

THANK YOU!
@maddiestone

