

Contents

2	SAT	Solvers 1
	2.1	The SAT-Problem
	2.2	The DPLL Algorithm

2 SAT Solvers

2.1 The SAT-Problem

2.1.1 Define the Boolean Satisfiability Problem?

Solution

Given a propositional formula φ , the Boolean Satisfiability Problem asks whether there exists a model such that the formula evaluates to true.

2.1.2 What is the complexity of the SAT-Problem? What does its complexity imply?

Solution

The SAT-Problem is NP-complete.

Its complexity implies that it is very unlikely that there exists any polynomial algorithm.

2.2 The DPLL Algorithm

2.2.1 Given a formula φ in CNF. (a) What is a partial assignment of variables? (b) What is a total assignment of variables? (c) What does it mean that a clause in conflicting with an assignment? (d) What does it mean that a clause in satisfied by an assignment?

Solution

There is no solution available for this question yet.

- 2.2.2 Let φ be a formula in CNF and A an assignment of variables in φ . Mark the following statements that are true.
 - \square A clause is *satisfied* by A, if all variables are satisfied under A.
 - \Box If a clause is *conflicting* under an assignment A, if all its variables are not satisfied under A.
 - \square If a clause is *conflicting* with an assignment A, all variables in the clause are given the opposite value in A.
 - \square By the expression ' $\varphi[A]$ ' we denote that a variable within φ is satisfied under A.
- 2.2.3 Given the set of clauses $C_{\varphi} = \{\{a, \neg b\}, \{\neg a, c\}, \{b, \neg c\}, \{\neg a, \neg c\}\}$ and the assignment $A = \{\neg a\}$. Compute $\varphi[A]$.

Solution

$$\varphi[A] = \{ \{ \neg b \}, \{ b, \neg c \}, \}$$

2.2.4 Given the set of clauses $C_{\varphi} = \{\{\neg a, b, c\}, \{a, c\}, \{\neg a, \neg c\}, \{\neg a, b, \neg c\}\}$ and the assignment $A = \{a\}$. Compute $\varphi[A]$.

Solution

$$\overline{\varphi[A] = \{ \{b, c\}, \{\neg c\}, \{b, \neg c\} \}}$$

2.2.5 Given the set of clauses $C_{\varphi} = \{\{\neg a, b\}, \{a, c\}, \{a, b, \neg c\}, \{a, \neg c\}\}\}$ and the assignment $A = \{\neg c\}$. Compute $\varphi[A]$.

Solution
$$\varphi[A] = \{ \{ \neg a, b \}, \{a\} \}$$

2.2.6 Given the set of clauses $C_{\varphi} = \{\{a, \neg b\}, \{\neg a, b, c\}, \{a, b, \neg c\}, \{\neg a, \neg b, \neg c\}\}$ and the assignment $A = \{b\}$. Compute $\varphi[A]$.

Solution
$$\varphi[A] = \{\{a\}, \{\neg a, \neg c\}\}\$$

2.2.7 In the context of the DPLL algorithm, explain the term *decision heuristic*. Why is it important that a SAT solver implements a good decision heuristic?

Solution

There is no solution available for this question yet.

2.2.8 In the context of the DPLL algorithm, explain what a unit clause is. Give an example.

Solution

Definition - Unit Clause. A clause c is said to be a unit clause under some assignment A if the following two conditions hold:

- (a) The clause c is not satisfied by A.
- (b) All but one of the variables in c are given a value by A.

Therefore, there is a single literal left in the set representing the clause under the assignment.

An example would be:

- $c = \{a, b, \neg c\}$
- $A = \{ \neg a, c \}$
- $c[A] = \bot \lor b \lor \bot$, in set representation: $\{b\}$
- 2.2.9 In the context of the DPLL algorithm, explain what a pure literal is. Give an example.

Solution

Definition - Pure Literal. A literal is *pure* if its negation does not appear in the formula.

Consider the following clauses c_1 and c_2 :

- $c_1 = \{a, b, \neg c\}$
- $c_2 = \{\neg b, \neg c, d\}$

 $\neg c$ is a pure literal, since it does not appear in the positive phase.

2.2.10 In the context of the DPLL algorithm, explain why it is advantageous to apply *Boolean Constrain Propagation (BCP)* and *Pure Literals (PL)* before making a decision.

Solution

Boolean Constraint Propagation and Pure Literals are so-called heuristics. BCP and PL capture when the choices we can make are restricted in two different ways. It is advantageous to apply these heuristics before making a decision, since it reduces the amount of different assignments we have to check.

2.2.11 In the context of the DPLL algorithm, explain what *Conflict-Driven Clause Learning* is and why most modern SAT solvers use this technique.

Solution

The idea of conflict-driven clause learning is not to repeat steps that lead to a conflict.

When executing the DPLL algorithm we can maintain a so-called conflict graph. We can use this graph to deduce the variables that lead to the conflict. In Conflict-Driven Clause Learning different SAT solvers apply different techniques to extract new *learned* clauses from this graph.

The learned clauses help the SAT solver from repeating mistakes in different execution branches.

2.2.12 SAT solvers make choices based on heuristics on which variable and value to pick for the next decision. (a) Why is the order in which variables are chosen for decisions important for the performance of SAT solvers? (b) How does a SAT solver implementing the dynamic largest individual sum heuristic choose its next assignment?

Solution

There is no solution available for this question yet.

2.2.13 Within the context of DPLL, explain the terms decision and decision level.

Solution

There is no solution available for this question yet.

2.2.14 In the context of the DPLL algorithm, what does a conflict arising at decision level 0 imply about the satisfiability or unsatisfiability of a formula? Explain your answer.

Solution

There is no solution available for this question yet.

2.2.15 In the context of the DPLL algorithm, explain what Boolean Constraint Propagation is.

Solution

There is no solution available for this question yet.

2.2.16 Explain *conflict driven clause learning*. How do learned clauses prevent the DPLL algorithm of running into already observed conflicts multiple times?

Solution

There is no solution available for this question yet.

2.2.17 In the context of DPLL, give the definition of the *resolution rule* used to perform a resolution proof. How can we use a resolution proof to show that an input formula is unsatisfiable?

Solution

There is no solution available for this question yet.

2.2.18 Consider the following conflict graph with the following set of clauses:

Clause 1: $\{\neg a, \neg c, \neg d\}$

Clause 2: $\{a, \neg d\}$

Clause 3: $\{b, d\}$

Clause 4: $\{\neg b, d, e\}$

Clause 5: $\{\neg b, \neg e\}$

Clause 6: $\{c, \neg e\}$

Clause 7: $\{c, e\}$

Give the resolution proof for the given conflict graph and clauses and state the clause to be learned from the conflict.

Solution

The new learned clause is therefore Cl. 8: $\neg a \lor b$

2.2.19 Use the DPLL algorithm (*without* BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor b)$

Clause 2: $(\neg b \lor c)$

Clause 3: $(\neg c \lor d)$

Clause 4: $(\neg d \lor e)$

Clause 5: $(\neg e \lor \neg a)$

Step	1	2	3	4	5	6	7	8	9	1
Decision Level	0	1	2	3	4	5	5	4	3	
Assignment	-	a	a, b	a, b, c	a, b, c, d	a, b, c, d, e	$a, b, c, d, \neg e$	$a, b, c, \neg d$	$a, b, \neg c$	a
Cl. 1: $\neg a, b$	1	b	1	1	✓	✓	✓	✓	✓	{
Cl. 2: $\neg b, c$	2	2	c	1	✓	✓	✓	✓	{} X	,
Cl. 3: $\neg c, d$	3	3	3	d	✓	✓	✓	{} X	✓	
Cl. 4: $\neg d, e$	4	4	4	4	e	✓	{} X	✓	4	
Cl. 5: $\neg e, \neg a$	5	$\neg e$	$\neg e$	$\neg e$	$\neg e$	{} X	✓	$\neg e$	$\neg e$	-
Decision	a	b	c	d	e	$\neg e$	$\neg d$	$\neg c$	$\neg b$	-
Step	11	1	12	13	14	15				
Decision Level	1		2	3	4	5				
Assignment	$\neg a$, ¬,	a, b	$\neg a, b, c$	$\neg a, b, c,$	$d \mid \neg a, b, c, c$	d, e			
Cl. 1: $\neg a, b$	1	,	/	✓	✓	✓				
Cl. 2: $\neg b, c$	2		c	✓	✓	✓				
Cl. 3: $\neg c, d$	3		3	d	✓	✓				
Cl. 4: $\neg d, e$	4		4	4	e	✓				
Cl. 5: $\neg e, \neg a$	✓	,	/	✓	✓	✓				
Decision	b		c	\overline{d}	e	SAT				

2.2.20 Use the DPLL algorithm with Boolean Constrain Propagation (without PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor b)$

Clause 2: $(\neg b \lor c)$

Clause 3: $(\neg c \lor d)$

Clause 4: $(\neg d \lor e)$

Clause 5: $(\neg e \lor \neg a)$

OPLL algorithm	n:										
Step	1	2	3	4	5	6	7	8	9	10	11
Decision Level	0	1	1	1	1	1	1	2	2	2	2
Assignment	-	a	a, b	a, b, c	a, b, c, d	a, b, c, d, e	$\neg a$	$\neg a, b$	$\neg a, b, c$	$\neg a, b, c, d$	$\neg a, b, c, d, e$
Cl. 1: $\neg a, b$	1	b	1	1	/	✓	1	✓	1	✓	1
Cl. 2: $\neg b, c$	2	2	c	1	✓	/	2	c	1	✓	1
Cl. 3: $\neg c, d$	3	3	3	d	/	✓	3	3	d	✓	1
Cl. 4: $\neg d, e$	4	4	4	4	e	✓	4	4	4	e	1
Cl. 5: $\neg e, \neg a$	5	$\neg e$	$\neg e$	$\neg e$	$\neg e$	{} X	1	1	1	✓	✓
BCP	-	b	c	d	e	-	-	c	d	e	/
Decision	a	-	-	[- ¹	- '	$\neg a$	b	-	-	-	SAT

2.2.21 Use the DPLL algorithm with *Boolean Constrain Propagation* and *Pure Literals* (without clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor b)$ Clause 2: $(\neg b \lor c)$ Clause 3: $(\neg c \lor d)$ Clause 4: $(\neg d \lor e)$

Clause 5: $(\neg e \lor \neg a)$

Solution DPLL algorithm:					
Step	1	2	3	4	5
Decision Level	0	0	0	0	0
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c, \neg d$
Cl. 1: $\neg a, b$	1	/	✓	✓	✓
Cl. 2: $\neg b, c$	2	2	✓	✓	✓
Cl. 3: $\neg c, d$	3	3	3	✓	✓
Cl. 4: $\neg d, e$	4	4	4	4	✓
Cl. 5: $\neg e, \neg a$	5	1	✓	✓	✓
BCP	-	-	-	-	-
PL	$\neg a$	$\neg b$	$\neg c$	$\neg d$	-
Decision	-	-	-	-	SAT
Model: $a = F, b = F, c =$	15.		П		

2.2.22 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$

Clause 2: $\{a, c\}$

Clause 3: $\{b, \neg c\}$

Clause 4: $\{\neg b, d\}$

Clause 5: $\{\neg c, \neg d\}$

Clause 6: $\{c, e\}$

Clause 7: $\{c, \neg e\}$

Solution										
DPLL algorithm:										
Step	1	2	3	4	5	6	7	8	9	10
Decision Level	0	1	1	1	1	0	0	0	0	0
Assignment	-	$\neg a$	$\neg a, c$	$\neg a, b, c$	$\neg a, b, c, \neg d$	-	a	$a, \neg b$	$a, \neg b, \neg c$	$a, \neg b, \neg c, \neg e$
Cl. 1: $\neg a, \neg b$	1	1	1	1	✓	1	$\neg b$	✓	✓	√
Cl. 2: a, c	2	c	✓	✓	✓	2	✓	√	✓	✓
Cl. 3: $b, \neg c$	3	3	b	✓	✓	3	3	$\neg c$	✓	✓
Cl. 4: $\neg b, d$	4	4	4	d	{} X	4	4	√	✓	✓
Cl. 5: $\neg c, \neg d$	5	5	$\neg d$	$\neg d$	✓	5	5	5	✓	✓
Cl. 6: c, e	6	6	✓	✓	✓	6	6	6	e	{} X
Cl. 7: $c, \neg e$	7	7	√	✓	✓	7	7	7	$\neg e$	✓
Cl. 8: a	-	-	-	-	learned a	8	✓	✓	✓	✓
BCP	-	c	b	$\neg d$	-	a	$\neg b$	$\neg c$	$\neg e$	-
PL	-	-	-	-	-	-	-	-	-	-
Decision Ad 5:	$\neg a$	-	-	-	-	-	-	-	-	UNSAT
	4.	$\neg b$	$\frac{\sqrt{d}}{\neg b}$	5. ¬c∨	$ \begin{array}{c} 5 \\ \hline -d \\ \hline -c \end{array} $ 3. b	· V	$\frac{\neg c}{a}$	2.	$a \lor c$	
Ad 10:	a\/	8			3	\	$ \begin{array}{c} $		-)	
<u>6.</u>	$c \vee$	<u>e</u>	1. C \	<u>b</u>	$3. \ b \lor \neg c$	ı	1. ¬	$a \lor \neg b$	8. a	-

2.2.23 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(\neg a \lor d)$ Clause 2: $(\neg d \lor c)$ Clause 3: $(\neg b \lor e)$ Clause 4: $(\neg b \lor \neg e)$ Clause 5: $(b \lor f)$ Clause 6: $(b \lor \neg f)$

Ad 8:

Solution DPLL algorithm: 2 1 3 8 Step 4 5 6 Decision Level 0 1 1 0 0 0 0 0 Assignment $\neg a, b, \overline{c}$ $\neg a, b, c, e$ $\neg b$ $\neg b, f$ $\neg a$ $\neg a, c$ Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c$ 2 2 2 2 $\overline{2}$ Cl. 3: $\neg b, e$ 3 3 3 3 1 Cl. 4: $\neg b, \neg e$ 4 4 4 {} X 4 **√** $\neg e$ Cl. 5: b, f5 5 5 5 Cl. 6: $b, \neg f$ 6 6 6 6 {} **X** Cl. 7: ¬b learned $\neg b$ 7 BCP $\neg b$ ePL $\neg a$ cUNSAT Decision \overline{b} Ad 5:

2.2.24 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the

learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(\neg a \lor \neg c)$

Clause 2: $(b \lor c)$

Clause 3: $(\neg b \lor \neg d)$

Clause 4: $(\neg d \lor e)$

Clause 5: $(d \lor e)$

Clause 6: $(a \lor \neg c \lor \neg e)$

Clause 7: $(\neg b \lor c \lor d)$

Solution

Step	1	2	3	4	5	6	7
Decision Level	0	1	2	2	2	2	1
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c, \neg e$	$\neg a, \neg b, c, \neg e, \neg d$	$\neg a$
Cl. 1: $\neg a, \neg c$	$\neg a, \neg c$	✓	1	✓	✓	✓	✓
Cl. 2: b, c	b, c	b, c	c	✓	✓	✓	b, c
Cl. 3: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	✓	✓	✓	✓	$\neg b, \neg d$
Cl. 4: $\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d$	✓	$\neg d, e$
Cl. 5: d, e	d.e	d.e	d.e	d.e	d	{} X	d, e
Cl. 6: $a, \neg c, \neg e$	$a, \neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg e$	✓	✓	$\neg c, \neg e$
Cl. 7: $\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	✓	✓	✓	✓	$\neg b, c, d$
Cl. 8: a.b	-	-	-	-	-	a, b	b
Cl. 9: a	-	-	-	-	-	-	-
BCP	-	-	c	$\neg e$	$\neg d$	-	b
PL	-	-	-	-	-	-	-
Decision	$\neg a$	$\neg b$	-	-	-	-	-

First Conflict in Step 6:

C	0	0	10	11	10	10	1.4
Step	8	9	10	11	12	13	14
Decision Level	1	1	1	1	0	0	0
Assignment	$\neg a, b$	$\neg a, b, \neg d$	$\neg a, b, \neg d, c$	$\neg a, b, \neg d, c, \neg e$	-	a	$a, \neg c$
Cl. 1: $\neg a, \neg c$	✓	✓	✓	✓	$\neg a, \neg c$	$\neg c$	✓
Cl. 2: b, c	✓	✓	✓	✓	b, c	b, c	b
Cl. 3: $\neg b, \neg d$	$\neg d$	✓	✓	✓	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$
Cl. 4: $\neg d, e$	$\neg d, e$	✓	✓	✓	$\neg d, e$	$\neg d, e$	$\neg d, e$
Cl. 5: d, e	d, e	e	e	{} X	d, e	d, e	d, e
Cl. 6: $a, \neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg e$	✓	$a, \neg c, \neg e$	✓	√
Cl. 7: $\neg b, c, d$	d, c	c	✓	✓	$\neg b, c, d$	$\neg b, c, d$	$\neg b, d$
Cl. 8: a.b	✓	✓	✓	✓	a, b	✓	✓
Cl. 9: a	-	-	-	a	a	✓	✓
BCP	$\neg d$	c	$\neg e$	-	a	$\neg c$	b
PL	-	-	-	-	-	-	-
Decision	-	-	-	-	-	-	-

Second Conflict in Step 11:

Step	15	16
Decision Level	0	0
Assignment	$a, \neg c, b$	$a, \neg c, b, \neg d$
Cl. 1: $\neg a, \neg c$	1	✓
Cl. 2: b, c	✓	✓
Cl. 3: $\neg b, \neg d$	$\neg d$	✓
Cl. 4: $\neg d, e$	$\neg d, e$	✓
Cl. 5: d, e	d, e	e
Cl. 6: $a, \neg c, \neg e$	1	✓
Cl. 7: $\neg b, c, d$	d	{} X
Cl. 8: a.b	✓	✓
Cl. 9: a	1	✓
BCP	$\neg d$	-
PL	-	-
Decision	-	UNSAT

Second Conflict in Step 16:

2.2.25 Use the DPLL algorithm (without BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor b \lor \neg c)$ Clause 2: $(a \lor \neg b \lor c)$ Clause 3: $(\neg a \lor \neg b \lor c)$ Clause 4: $(a \lor b \lor \neg c)$

Solution				
Step	1	2	3	4
Decision Level	0	1	2	3
Assignment	-	a	a, b	a, b, c
Cl. 1: $\neg a, b, \neg c$	$\neg a, b, \neg c$	$b, \neg c$	✓	✓
Cl. 2: $a, \neg b, c$	$a, \neg b, c$	1	✓	✓
Cl. 3: $\neg a, \neg b, c$	$\neg a, \neg b, c$	$\neg b, c$	c	1
Cl. 4: $a, b, \neg c$	$a, b, \neg c$	1	1	✓
BCP	-	-	-	-
PL	-	-	-	-
Decision	a	b	c	SAT
	'			

2.2.26 Use the DPLL algorithm with *Boolean Constrain Propagation* (without PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg d \lor \neg b \lor \neg a)$

Clause 2: $(\neg e \lor a \lor \neg f)$

Clause 3: $(\neg a \lor c \lor b)$

Clause 4: $(f \lor a \lor e)$

Clause 5: $(d \lor \neg a \lor \neg b)$

Clause 6: $(\neg a \lor \neg c \lor b)$

Solution								
Step	1	2	3	4				
Decision Level	0	1		2				
Assignment	=	a	a, b = a,	b, d				
Cl. 1: $\neg d, \neg b, \neg a$	$\neg d, \neg b, \neg a$	$\neg d, \neg b$	$\neg d$ {	} X				
Cl. 2: $\neg e, a, \neg f$	$\neg e, a, \neg f$	✓	✓	✓				
Cl. 3: $\neg a, c, b$	$\neg a, c, b$	c, b	-	✓				
Cl. 4: f, a, e	f, a, e	✓	-	✓				
Cl. 5: $d, \neg a, \neg b$	$d, \neg a, \neg b$	$d, \neg b$	d	✓				
Cl. 6: $\neg a, \neg c, b$	$\neg a, \neg c, b$	$\neg c, b$		√				
BCP	-	-	d	-				
PL	-	-	-	-				
Decision	a	b	-	-				
Step	5	6 7						
Decision Level	1	2 2						
Assignment		$a, \neg b \mid a, \neg$	b, c					
Cl. 1: $\neg d, \neg b, \neg a$	$\neg d, \neg b$	/ /	'					
Cl. 2: $\neg e, a, \neg f$	1	/ /	'					
Cl. 3: $\neg a, c, b$	c, b	c /						
Cl. 4: f, a, e	✓	/ /						
Cl. 5: $d, \neg a, \neg b$	$d, \neg b$	/ /						
Cl. 6: $\neg a, \neg c, b$	$\neg c, b$	$\neg c$ {}	Х					
BCP	-	c -						
PL	-							
Decision	$\neg b$							
Step	8	9	10	11	12	13	14	
Decision Level	0	1	2	3	4	5	5	
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, c$	$\begin{vmatrix} \neg a, b, c, \\ d \end{vmatrix}$	$\neg a, b, c, d, e$	$ \begin{vmatrix} \neg a, b, c, \\ d, e, \neg f \end{vmatrix} $	
Cl. 1: $\neg d, \neg b, \neg a$	$\neg d, \neg b, \neg a$	✓	1	1	1	1	1	
Cl. 2: $\neg e, a, \neg f$	$\neg e, a, \neg f$	$\neg e, \neg f$	$\neg e, \neg f$	$\neg e, \neg f$	$\neg e, \neg f$	$\neg f$	✓	
Cl. 3: $\neg a, c, b$	$\neg a, c, b$	✓	✓	✓	✓	✓	√	
Cl. 4: f, a, e	f, a, e	f, e	f, e	f, e	f, e	✓	✓	
Cl. 5: $d, \neg a, \neg b$	$d, \neg a, \neg b$	√	1	✓	✓	✓	✓	
Cl. 6: $\neg a, \neg c, b$	$\neg a, \neg c, b$	√	1	✓	✓	✓	✓	
BCP	ı	-	-	-	-	$\neg f$	-	
PL	1	-	-	-	-	-	-	
Decision	$\neg a$	b	c	d	e	-	SAT	

2.2.27 Use the DPLL algorithm with Boolean Constrain Propagation and Pure Literals (without clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg c \lor d)$

Clause 2: $(a \lor \neg d \lor \neg e)$

Clause 3: $(b \lor \neg c)$

Clause 4: $(c \lor e)$

Clause 5: $(\neg b \lor \neg c)$

Clause 6: $(a \lor b)$

Solution						
Step	1	2	3	4	5	
Decision Level	0	0	0	0	0	
Assignment	-	a	a, d	a, d, e	$a, d, e, \\ \neg c$	
Cl. 1: $\neg c, d$	$\neg c, d$	$\neg c, d$	✓	1	✓	
Cl. 2: $a, \neg d, \neg e$	$a, \neg d, \neg e$	✓	1	√	√	
Cl. 3: $b, \neg c$	$b, \neg c$	$b, \neg c$	$b, \neg c$	$b, \neg c$	✓	
Cl. 4: c, e	c, e	c, e	c, e	✓	✓	
Cl. 5: $\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	√	
Cl. 6: a, b	a, b	✓	1	✓	√	
BCP	-	-	-	-	-	
PL	a	d	e	$\neg c$	-	
Decision	-	-	-	-	SAT	

2.2.28 Consider the following conflict graph with the following set of clauses:

Clause 1: $\{b, c, d\}$

Clause 2: $\{c, \neg e\}$

Clause 3: $\{a, \neg b\}$

Clause 4: $\{a, \neg d, e\}$

Clause 5: $\{b, \neg c\}$

State the learned clause by making a resolution proof according to the given conflict graph and given clauses.

Solution

There is no solution available for this question yet.

2.2.29 Consider the formula φ that consists of the conjunction of the following clauses:

Clause 1: $(a \lor b)$

Clause 2: $(\neg b \lor c)$

Clause 3: $(\neg a \lor \neg c)$

Clause 4: $(b \lor c)$

Clause 5: $(a \lor \neg b)$

- (a) Use DPLL with learning to show that φ is unsatisfiable. Decide variables in *alphabetic* order and starting with the positive phase.
- (b) State and briefly explain the resolution rule.
- (c) Using your results from 2.2.29a, give a resolution proof of the unsatisfiability of φ .

2.2.30 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, \neg c\}$

Clause 2: $\{\neg b, c, d\}$

Clause 3: $\{c, d, \neg e\}$

Clause 4: $\{\neg a, d, \neg e\}$

Clause 5: $\{a, b, \neg d\}$ Clause 6: $\{c, \neg d, e\}$

Step	1	2	3	4	5	6
Decision Level	0	1	2	2	2	2
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c, \\ \neg d$	$\neg a, \neg b, \neg c, \\ \neg d, \neg e$
Cl. 1: $a, b, \neg c$	$a, b, \neg c$	$b, \neg c$	$\neg c$	✓	✓	✓
Cl. 2: $\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	✓	1	✓	✓
Cl. 3: $c, d, \neg e$	$c, d, \neg e$	$c, d, \neg e$	$c, d, \neg e$	$d, \neg e$	$\neg e$	✓
Cl. 4: $\neg a, d, \neg e$	$\neg a, d, \neg e$	✓	✓	1	✓	✓
Cl. 5: $a, b, \neg d$	$a, b, \neg d$	$b, \neg d$	$\neg d$	$\neg d$	✓	✓
Cl. 6: $c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$\neg d, e$	✓	✓
BCP	-	-	$\neg c$	$\neg d$	$\neg e$	-
PL	-	-	-	-	-	-
Decision	$\neg a$	$\neg b$	-	-	-	SAT

2.2.31 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$

Clause 2: $\{a, c, e\}$

Clause 3: $\{b, \neg d\}$

Clause 4: $\{\neg c, d, e\}$

Clause 5: $\{\neg d, e\}$

Clause 6: $\{\neg a, b\}$

Clause 7: $\{a, d, \neg e\}$

Step	1	2	3	4	5	6	
Decision Level	0	1	1	2	2	2	
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, \neg c$	$\neg a, b, \neg c, e$	$\neg a, b, \neg c, \\ e, d$	
Cl. 1: $\neg a, \neg b$	$\neg a, \neg b$	√	1	✓	✓	1	
Cl. 2: a, c, e	a, c, e	c, e	c, e	e	✓	1	
Cl. 3: b, ¬d	$b, \neg d$	$b, \neg d$	✓	✓	1	1	
Cl. 4: $\neg c, d, e$	$\neg c, d, e$	$\neg c, d, e$	$\neg c, d, e$	✓	✓	1	
Cl. 5: $\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	✓	1	
Cl. 6: ¬a, b	$\neg a, b$	✓	✓	✓	✓	1	
Cl. 7: $a, d, \neg e$	$a, d, \neg e$	$d, \neg e$	$d, \neg e$	$d, \neg e$	d	1	
BCP	-	-	-	e	d	-	
PL	-	b	-	-	-	-	
Decision	$\neg a$	-	$\neg c$	-	-	SAT	

2.2.32 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with

the negative phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg c\}$

Clause 2: $\{b, c, e\}$

Clause 3: $\{b, \neg e\}$

Clause 4: $\{\neg a, c\}$

Clause 5: $\{d, e\}$

Clause 6: $\{b, \neg d\}$

Clause 7: $\{\neg d, \neg e\}$

Clause 8: $\{a, c\}$

Solution

Step	1	2	3	4
Decision Level	0	0	1	1
Assignment	-	b	$b, \neg a$	$b, \neg a, \neg c$
Cl. 1: $a, \neg c$	$a, \neg c$	$a, \neg c$	$\neg c$	✓
Cl. 2: b, c, e	b, c, e	✓	✓	✓
Cl. 3: $b, \neg e$	$b, \neg e$	✓	✓	✓
Cl. 4: $\neg a, c$	$\neg a, c$	$\neg a, c$	✓	✓
Cl. 5: d, e	d, e	d, e	d, e	d, e
Cl. 6: $b, \neg d$	$b, \neg d$	✓	1	✓
Cl. 7: $\neg d$, $\neg e$	$\neg d, \neg e$			
Cl. 8: a, c	a, c	a, c	c	{} X
BCP	-	-	$\neg c$	-
PL	b	-	-	-
Decision	-	$\neg a$	-	-

Conflict in step 4

1. $a \vee \neg c$	8. $a \vee c$
\overline{a}	

Step	5	6	7	8	9
Decision Level	0	0	0	1	1
Assignment	b	b, a	b, a, c	$b, a, c,$ $\neg d$	$\begin{array}{c c} b, a, c, \\ \neg d, e \end{array}$
Cl. 1: $a, \neg c$	$a, \neg c$	✓	✓	✓	/
Cl. 2: b, c, e	✓	✓	✓	✓	✓
Cl. 3: $b, \neg e$	✓	✓	✓	✓	✓
Cl. 4: $\neg a, c$	$\neg a, c$	c	✓	1	1
Cl. 5: d, e	d, e	d, e	d, e	e	1
Cl. 6: $b, \neg d$	1	✓	1	1	1
Cl. 7: $\neg d$, $\neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	1	1
Cl. 8: a, c	a, c	✓	1	1	1
Cl. 9: a	a	✓	✓	✓	✓
BCP	a	c	-	e	-
PL	-	-	-	-	-
Decision	-	-	$\neg d$	-	SAT

2.2.33 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b\}$

Clause 2: $\{\neg a, c\}$

Clause 3: $\{a, \neg d\}$

Clause 4: $\{\neg b, c\}$

Clause 5: $\{\neg c, d\}$

Clause 6: $\{\neg c, e\}$

Clause 7: $\{d, \neg e\}$

Step	1	2	3	4	5	7				
Decision Level	0	1	1	1	1	-				
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, c$	$\neg a \ b \ c$					
Cl. 1: a, b	a, b	b	1	/	<i>√</i>	+				
Cl. 2: ¬a, c	$\neg a, c$	1	<i>'</i>	<i>-</i>	/	1				
Cl. 3: $a, \neg d$	$a, \neg d$	$\neg d$	$\neg d$	$\neg d$	√	1				
Cl. 4: ¬b, c	$\neg b, c$	$\neg b, c$	c	/	✓	1				
Cl. 5: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	d	{} X					
Cl. 6: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	e					
Cl. 7: $d, \neg e$	$d, \neg e$	$d, \neg e$	$d, \neg e$	$d, \neg e$	$\neg e$					
BCP	-	b	c	$\neg d$	-	_				
PL	-	-	-	-	-	_				
Decision	$\neg a$	-	-	-	-					
Conflict in step	p 5	4	_	5	_					
3		→ (¬d)								
3	_5	→ (¬d)	$\frac{d}{d \vee \neg t}$	4. ¬b∨	<u>c</u> 1.	$a \lor b$	-)			
3	_5	→ ¬c∨	$\frac{d}{d \lor \neg l}$	$4. \neg b \lor \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	<u>c</u> 1. √ a	$\frac{a \lor b}{a}$	3. 0	$a \lor \neg d$	-	
Step	_5	→ ¬d → ¬d ∨ . ¬c ∨	$\frac{d}{d \vee \neg b}$	9	$\frac{c}{\sqrt{a}}$ 1.	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	_	
3					10 0	$\frac{a \vee b}{a}$	3. 0	$a \lor \neg d$	-	
Step Decision Level Assignment	6	7	8	9	10	$\frac{a \vee b}{a}$	3. 6	$z \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a, b	6	7	8 0 a, c ✓	9 0 a, c, d ✓	10 0 a, c, d, e ✓	$\frac{a \lor b}{a}$	3. 6	$z \lor \neg d$	_	
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$	6 0 - a, b ¬a, c	7 0 a 	8 0 a, c	9 0 a, c, d	10 0 a, c, d, e ✓	$\frac{a \vee b}{a}$	3. a	$x \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: $a, \neg d$	$ \begin{array}{c c} 6 \\ 0 \\ - \\ a, b \\ \neg a, c \\ a, \neg d \end{array} $	7 0 a c	8 0 a, c	9 0 a, c, d	10 0 a, c, d, e ✓	$\frac{a \vee b}{a}$	3. a	$a \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b, c$	$ \begin{array}{c c} 6 \\ 0 \\ \hline -a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \end{array} $	7 0 a ✓ c ✓ ¬b, c	8 0 a, c	9 0 a, c, d	10 0 a, c, d, e V V	$\frac{a \vee b}{a}$	3. 6	$d \vee \neg d$	-	
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b,c$ Cl. 5: $\neg c,d$	$ \begin{array}{c c} 6 \\ 0 \\ - \\ a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \\ \neg c, d \end{array} $	$ \begin{array}{c c} 7 \\ 0 \\ a \\ \checkmark \\ \hline c \\ \hline -b, c \\ \hline \neg c, d \end{array} $	8 0 a, c ✓ ✓ ✓ d	9 0 a, c, d ✓ ✓ ✓	10 0 a, c, d, e ✓ ✓ ✓	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b,c$ Cl. 5: $\neg c,d$ Cl. 6: $\neg c,e$	$ \begin{array}{c} 6 \\ 0 \\ -a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \\ \neg c, d \\ \neg c, e \end{array} $	$ \begin{array}{c} 7 \\ 0 \\ a \\ \checkmark \\ c \\ \neg b, c \\ \neg c, d \\ \neg c, e \end{array} $	8 0 a, c ✓ ✓ ✓ d e	9 0 a, c, d ✓ ✓ ✓ ✓	10 0 a, c, d, e ✓ ✓ ✓ ✓	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b,c$ Cl. 5: $\neg c,d$ Cl. 6: $\neg c,e$ Cl. 7: $d, \neg e$	$\begin{array}{c} 6 \\ 0 \\ - \\ -a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \\ \neg c, d \\ \neg c, e \\ d, \neg e \\ \end{array}$	7 0 a ✓ c ✓ ¬b, c ¬c, d ¬c, e d, ¬e	8 0 a, c ✓ ✓ ✓ d e d, ¬e	9 0 a, c, d ✓ ✓ ✓ ✓	10 0 a, c, d, e ✓ ✓ ✓ ✓ ✓	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $d, \neg e$ Cl. 8: a	$ \begin{array}{c} 6 \\ 0 \\ - \\ a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \\ \neg c, d \\ \neg c, e \\ d, \neg e \\ a \end{array} $	7 0 a ✓ C ✓ ¬b, c ¬c, d ¬c, e d, ¬e	8 0 a, c ✓ ✓ ✓ d e d, ¬e	9 0 a, c, d ✓ ✓ ✓ ✓ ✓	10 0 a, c, d, e ✓ ✓ ✓ ✓ ✓ ✓ ✓	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	-	
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: $a, \neg d$ Cl. 4: $\neg b,c$ Cl. 5: $\neg c,d$ Cl. 6: $\neg c,e$ Cl. 7: $d, \neg e$	$\begin{array}{c} 6 \\ 0 \\ - \\ -a, b \\ \neg a, c \\ a, \neg d \\ \neg b, c \\ \neg c, d \\ \neg c, e \\ d, \neg e \\ \end{array}$	7 0 a ✓ c ✓ ¬b, c ¬c, d ¬c, e d, ¬e	8 0 a, c ✓ ✓ ✓ d e d, ¬e	9 0 a, c, d ✓ ✓ ✓ ✓	10 0 a, c, d, e ✓ ✓ ✓ ✓ ✓	$\frac{a \vee b}{a}$	3. 6	$a \lor \neg d$	_	

2.2.34 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$

Clause 2: $\{a,d,e\}$

Clause 3: $\{b, \neg c\}$

Clause 4: $\{c, \neg d, e\}$

Clause 5: $\{\neg c, e\}$

Clause 6: $\{\neg a, b\}$

Clause 7: $\{a, c, \neg e\}$

olution							
Step	1	2	3	4	5	6	
Decision Level	0	1	1	2	2	2	
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, \neg c$	$\neg a, b, \neg c, \\ \neg e$	$\neg a, b, \neg c, \\ \neg e, \neg d$	
Cl. 1: $\neg a, \neg b$	$\neg a, \neg b$	/	/	/	✓	1	
Cl. 2: a, d, e	a, d, e	d, e	d, e	d, e	d	{} X	
Cl. 3: b, ¬c	$b, \neg c$	$b, \neg c$	1	/	✓	V	
Cl. 4: $c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$\neg d, e$	$\neg d$	1	
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	√	✓	✓	
Cl. 6: ¬a, b	$\neg a, b$	√	1	1	✓	✓	
Cl. 7: $a, c, \neg e$	$a, c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$	✓	✓	
BCP	-	-	-	$\neg e$	$\neg d$	-	
PL	-	b	-	-	-		
Decision	$\neg a$	-	$\neg c$	-	-	-	
Conflict in ster	0 6		'				
7	$\neg e$	2					
Step Decision Level	2 2 7	8	$ \begin{array}{cccc} & & & \\ & $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level	2 2 7 1	8 1	$\frac{e}{a \lor e \lor c}$	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\sqrt{c}}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ \hline 1 \\ \neg a, b \end{array} $	$ \begin{array}{c c} & a \lor d \lor \\ \hline & 8 \\ \hline & 1 \\ \hline & \neg a, b, c \end{array} $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor c \end{array} $ $ \begin{array}{c c} 9 \\ \hline 1 \\ \neg a, b, c, \\ e \end{array} $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\sqrt{c}}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$	2 2 7 1	$ \begin{array}{c c} & a \lor d \lor \\ \hline & 8 \\ \hline & 1 \\ \hline & \neg a, b, c \end{array} $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor c \end{array} $ $ \begin{array}{c c} 9 \\ \hline 1 \\ \neg a, b, c, \\ e \\ \checkmark $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ \hline 1 \\ \hline \neg a, b \\ \checkmark \\ d, e \end{array} $	$ \begin{array}{c c} & 8 \\ \hline & 1 \\ & \neg a, b, c \end{array} $ $ \begin{array}{c c} & \checkmark \\ & d, e \end{array} $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor a \end{array} $ $ \begin{array}{c c} 9 \\ \hline 1 \\ \hline \neg a, b, c, \\ e \\ \checkmark $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\sqrt{c}}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ \hline 1 \\ \hline \neg a, b \\ \checkmark \\ \hline d, e \\ \checkmark \end{array} $	$ \begin{array}{c c} & & & \\ & & & &$	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor a \end{array} $ $ \begin{array}{c c} 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \end{array} $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$ Cl. 4: $c, \neg d, e$	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ \hline 1 \\ \hline \neg a, b \\ \checkmark \\ d, e \end{array} $	$ \begin{array}{c c} & 8 \\ \hline & 1 \\ & \neg a, b, c \end{array} $ $ \begin{array}{c c} & \checkmark \\ & d, e \end{array} $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor a \end{array} $ $ \begin{array}{c c} 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \end{array} $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a$, $\neg b$ Cl. 2: a , d , e Cl. 3: b , $\neg c$ Cl. 4: c , $\neg d$, e Cl. 5: $\neg c$, e	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ \hline 1 \\ \hline \neg a, b \\ \checkmark \\ \hline d, e \\ \checkmark \end{array} $	$ \begin{array}{c c} & & & \\ & & & &$	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor a \end{array} $ $ \begin{array}{c c} 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \end{array} $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\sqrt{c}}$ 7. a	$v \lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a$, $\neg b$ Cl. 2: a , d , e Cl. 3: b , $\neg c$ Cl. 4: c , $\neg d$, e Cl. 5: $\neg c$, e Cl. 6: $\neg a$, b	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ 1 \\ \hline \neg a, b \\ \checkmark \\ d, e \\ \checkmark \\ c, \neg d, e \end{array} $	$ \begin{array}{c c} 8 \\ 1 \\ \neg a, b, c \\ \checkmark \\ d, e \\ \checkmark \\ e \\ \checkmark $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor \\ \hline 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \\ \checkmark \\ \checkmark $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\sqrt{c}}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$ Cl. 4: $c, \neg d, e$ Cl. 5: $\neg c, e$ Cl. 6: $\neg a, b$ Cl. 7: $a, c, \neg e$	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ 1 \\ \hline \neg a, b \\ \checkmark \\ d, e \\ \checkmark \\ c, \neg d, e \\ \hline \neg c, e \\ \end{array} $	8 1 ¬a,b,c ✓ d,e ✓ ✓	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor \\ \hline 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \\ \checkmark$	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$ Cl. 4: $c, \neg d, e$ Cl. 5: $\neg c, e$ Cl. 6: $\neg a, b$ Cl. 7: $a, c, \neg e$ Cl. 8: a, c	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ 1 \\ \neg a, b \\ \checkmark \\ d, e \\ \checkmark \\ c, \neg d, e \\ \neg c, e \\ \checkmark \end{array} $	$ \begin{array}{c c} 8 \\ 1 \\ \neg a, b, c \\ \checkmark \\ d, e \\ \checkmark \\ e \\ \checkmark $	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor \\ \hline 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \\ \checkmark \\ \checkmark $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$\lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$ Cl. 4: $c, \neg d, e$ Cl. 5: $\neg c, e$ Cl. 6: $\neg a, b$ Cl. 7: $a, c, \neg e$ Cl. 8: a, c BCP	$ \begin{array}{c c} \hline 2 \\ \hline 7 \\ 1 \\ \neg a, b \\ \checkmark \\ d, e \\ \checkmark \\ c, \neg d, e \\ \neg c, e \\ \checkmark \\ c, \neg e \end{array} $	8 1 ¬a,b,c ✓ d,e ✓ ✓	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor \\ \hline 9 \\ 1 \\ \neg a, b, c, \\ e \\ \checkmark \\ \checkmark$	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$v \lor c \lor \neg e$	
Step Decision Level Assignment Cl. 1: $\neg a, \neg b$ Cl. 2: a, d, e Cl. 3: $b, \neg c$ Cl. 4: $c, \neg d, e$ Cl. 5: $\neg c, e$ Cl. 6: $\neg a, b$ Cl. 7: $a, c, \neg e$ Cl. 8: a, c	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 8 \\ 1 \\ \hline \neg a, b, c \\ \hline d, e \\ \hline \checkmark \\ \hline Y \\ Y \\$	$ \begin{array}{c c} e & 4 \\ \hline a \lor e \lor \\ \hline \\ $	$\frac{c \vee \neg d \vee}{c}$	$\frac{e}{\lor c}$ 7. a	$v \lor c \lor \neg e$	

2.2.35 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg c, d\}$

Clause 2: $\{\neg\neg d\}$

Clause 3: $\{a, \ln c\}$

Clause 4: $\{\neg e\}$ Clause 5: $\{b, c\}$ Clause 6: $\{\neg a, \neg e\}$

lause 6: $\{\neg a, \neg e\}$	}						
C-1+:							
Solution							
Step	1	2	3	4	5		
Decision Level	0	1	1	1	1		
Assignment	-	$\neg a$	$\neg a, \neg c$	$\neg a, \neg c, b$	$\neg a, \neg c, b, \\ \neg d$		
Cl. 1: $\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, d$	d	{} X		
Cl. 2: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg d$	✓		
Cl. 3: a, ¬c	$a, \neg c$	$\neg c$	1	/	✓		
Cl. 4: $\neg c, e$	$\neg c, e$	$\neg c, e$	√	√	√		
Cl. 5: b, c Cl. 6: $\neg a, \neg e$	b, c	<i>b, c</i> ✓	<i>b</i>	✓ ✓	<i>\</i>		
BCP	$\neg a, \neg e$	$\neg c$	<i>b</i>	$\neg d$	-		
PL	_	-	-	-	_		
Decision	$\neg a$	-	-	-	_		
Conflict in step							
			1				
$(\neg a)$ 3	$(\neg c)$	5		1			
\bigcirc	\cup	*					
		. ($\stackrel{2}{\sim}$.)	
					d		
	$1. \neg b$	$\lor c \lor d$	2. –	$\neg b \lor \neg d$			
		$\neg t$	$o \lor c$	$\frac{\neg b \vee \neg d}{c}$	5. $b \lor c$		
				c		3. a V	$\neg c$
					a		
Step	6	7	8	9	10	11	
Decision Level	0	0	0	0	0	0	
Assignment	-	a	$a, \neg e$	$a, \neg e, \neg c$	$a, \neg e, \neg c, b$	$a, \neg e, \neg c, \\ b, \neg d$	
Cl. 1: $\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, d$	$\frac{d}{d}$	{} X	
Cl. 2: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg d$	√	
Cl. 3: $a, \neg c$	$a, \neg c$	1	1	1	/	✓	
Cl. 4: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c$	1	1	✓	
Cl. 5: b, c	b, c	b, c	b, c	b	1	✓	
Cl. 6: $\neg a, \neg e$	$\neg a, \neg e$	$\neg e$	/	/	/	✓	
Cl. 7: a	a	1	1	✓	✓	✓	
BCP PL	- -	$\neg e$	¬c	b		-	
Decision	-	-	_	-	-	UNSAT	
Conflict in step	11					0110111	
Common in Stop	, 11				1	L	
7	6	$\neg e$	4	$\rightarrow (\neg c)$			\searrow
	$\overline{}$				$\frac{5}{2}$	1	d
						2	
							$\neg d$
							\(\alpha\)
1 7	\	0 1 1	.1				
$1. \neg b \lor c$	$\frac{\vee a}{-h \vee r}$	∠. ¬0 ∨	$\neg a$	5 h\/ a			
	$\neg o \lor c$		c.	$5. \ b \lor c$	$4. \neg c \lor c$	2	
				e	1	6. ¬	$a \vee \neg e$
					_	$\neg a$	7. a
							\perp

2.2.36 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{b, d\}$

Clause 2: $\{b, c\}$

Clause 3: $\{\neg b, \neg e\}$

Clause 4: $\{\neg a, \neg c\}$

Clause 5: $\{\neg c, \neg d\}$

Clause 6: $\{\neg b, c\}$

Clause 7: $\{a, b\}$

Clause 8: $\{\neg b, d, e\}$

2.2.37 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the

learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg b, d, e\}$

Clause 2: $\{b, e\}$

Clause 3: $\{c, d\}$

Clause 4: $\{\neg a, \neg e\}$

Clause 5: $\{a, \neg c, \neg e\}$

Clause 6: $\{c, \neg d\}$

Clause 7: $\{\neg b, \neg d\}$

Solution						
Step	1	2	3	4	5	6
Decision Level	0	1	2	2	2	2
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, e$	$\neg a, \neg b, e, \\ \neg c$	
Cl. 1: $\neg b, d, e$	$\neg b, d, e$	$\neg b, d, e$	✓	✓	✓	✓
Cl. 2: b, e	b, e	b, e	e	✓	✓	1
Cl. 3: c, d	c, d	c, d	c, d	c, d	d	{} X
Cl. 4: $\neg a, \neg e$	$\neg a, \neg e$	✓	✓	✓	✓	✓
Cl. 5: $a, \neg c, \neg e$	$a, \neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg c$	✓	✓
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$\neg d$	✓
Cl. 7: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	✓	✓	✓	✓
BCP	-	-	e	$\neg c$	$\neg d$	-
PL	-	-	-	-	-	-
Decision	$\neg a$	$\neg b$	-	-	-	-
onflict in step	6					
(-b) (2)	e	5	3	d		
		<u> </u>	\		$\overline{}$	
		$\sqrt{-c}$	人 6	_	(±)	
	$(\neg a)$		_	\rightarrow $(\neg d)$		
	\bigcirc			\bigcirc		
	3 61/	d 6	$c \lor / \neg d$		$\frac{\neg c \vee \neg e}{a \vee b}$	
	_ 5. € ∨	<u>u 0.</u>	c v ia	5 a V	$\neg c \lor \neg e$	
				$\frac{\neg e}{a \lor \neg e}$	-0 + -0	$2.\ b \lor e$
			_`		$a \lor b$	
Step	7	8	9	10	11	
Decision Level	1	1	1	1	1	
Assignment	$\neg a$	$\neg a, b$ -	$\neg a, b, \neg d$	$\neg a, b, \neg d,$	$\neg a, b, \neg d,$	
			.a, o, ·u	c	$c, \neg e$	
Cl. 1: $\neg b, d, e$	$\neg b, d, e$	d, e	e	e	{} X	
OI - :		/	/	✓	/	
Cl. 2: b, e	b, e				-	-
Cl. 3: c, d	c,d	c,d	c	/	1	
Cl. 3: c, d Cl. 4: $\neg a, \neg e$	c, d	<i>c</i> , <i>d</i> ✓		√ √	✓	
C1. 3: c, d C1. 4: $\neg a, \neg e$ C1. 5: $a, \neg c, \neg e$	c,d \checkmark $\neg c, \neg e$	c, d c, d $c, -c, -e$	c \checkmark $\neg c, \neg e$	√ ¬e	✓ ✓	- - -
C1. 3: c, d C1. 4: $\neg a, \neg e$ C1. 5: $a, \neg c, \neg e$ C1. 6: $c, \neg d$	$ \begin{array}{c c} c,d \\ \hline \checkmark \\ \hline \neg c,\neg e \\ c,\neg d \\ \end{array} $	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \end{array} $	<i>c</i> ✓ ¬ <i>c</i> ,¬ <i>e</i> ✓	✓ ¬e ✓	\frac{1}{\sqrt{1}}	- - - -
Cl. 3: c, d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$	$ \begin{array}{c c} c,d \\ \hline \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \hline \neg b,\neg d \\ \end{array} $	$ \begin{array}{c c} c, d \\ \checkmark \\ \neg c, \neg e \\ c, \neg d \\ \neg d \end{array} $	<i>c</i> ✓ ¬ <i>c</i> , ¬ <i>e</i> ✓	√ ¬e ✓	\frac{1}{\sqrt{1}}	-
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b	$ \begin{array}{c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg b,\neg d \\ b \end{array} $	$ \begin{array}{c c} c, d \\ \checkmark \\ \neg c, \neg e \\ c, \neg d \\ \neg d \end{array} $	<i>c</i> ✓ ¬ <i>c</i> ,¬ <i>e</i> ✓ ✓	√ ¬e ✓ ✓	\frac{1}{\sqrt{1}}	- - - - -
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b	$ \begin{array}{c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg b,\neg d \\ b \\ \end{array} $	<i>c</i> , <i>d</i> ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i>	c ✓ ¬c,¬e ✓ ✓ c	✓ ¬e ✓ ✓ ✓	\frac{1}{\sqrt{1}}	-
Cl. 3: c, d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a, b BCP	$ \begin{array}{c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg b,\neg d \\ b \end{array} $	<i>c</i> , <i>d</i> ✓ ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i> — ✓	c	√ ¬e ✓ ✓	\frac{1}{\sqrt{1}}	-
Cl. 3: c, d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a, b BCP PL Decision	c, d √ ¬c, ¬e c, ¬d ¬b, ¬d b	<i>c</i> , <i>d</i> ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i>	c ✓ ¬c,¬e ✓ ✓ c	✓ ¬e ✓ ✓ ✓	\frac{1}{\sqrt{1}}	
Cl. 3: c, d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a, b BCP PL Decision	c, d √ ¬c, ¬e c, ¬d ¬b, ¬d b	<i>c</i> , <i>d</i> ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i> ¬ <i>d</i> -	c √ ¬c,¬e ✓ c	✓ ¬e ✓ ✓ ✓	\frac{1}{\sqrt{1}}	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b	c, d √ ¬c, ¬e c, ¬d ¬b, ¬d b	<i>c</i> , <i>d</i> ✓ ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i> — ✓	c √ ¬c,¬e ✓ c	✓ ¬e ✓ ✓ ✓	\frac{1}{\sqrt{1}}	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d √ ¬c, ¬e c, ¬d ¬b, ¬d b	<i>c</i> , <i>d</i> ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i> ¬ <i>d</i> -	c √ ¬c,¬e ✓ c	✓ ¬e ✓ ✓ ✓	\frac{1}{\sqrt{1}}	
Cl. 3: c, d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a, b BCP PL Decision	c, d √ ¬c, ¬e c, ¬d ¬b, ¬d b	<i>c</i> , <i>d</i> ✓ ¬ <i>c</i> , ¬ <i>e c</i> , ¬ <i>d</i> ¬ <i>d</i> ✓ ¬ <i>d</i> ¬ <i>d</i> -	c ✓ ¬c,¬e ✓ ✓ ✓ ✓ ✓ c - -	√ ¬e ✓ ¬e -	/ / / / / - -	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, ¬c, ¬e c, ¬d ¬b, ¬d b b 11	c, d J ¬c, ¬e c, ¬d ¬d - - 5	c √ ¬c,¬e ✓ c	√ ¬e ✓ ¬e -	\frac{1}{\sqrt{1}}	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, ¬c, ¬e c, ¬d ¬b, ¬d b b 11	c, d J ¬c, ¬e c, ¬d ¬d J ¬d - - 5	c	√ ¬e	/ / / / / - -	-e
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, q -c, ¬e c, ¬d ¬b, ¬d b - 111	c, d J ¬c, ¬e c, ¬d ¬d J ¬d - - 5	c	√ ¬e √ √ √ ¬e - - - - -	/ / / / / - -	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, q -c, ¬e c, ¬d ¬b, ¬d b - 111	c, d J ¬c, ¬e c, ¬d ¬d J ¬d - - 5	c	√ ¬e	/ / / / / - -	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, q -c, ¬e c, ¬d ¬b, ¬d b - 111	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg d \\ \checkmark \\ \neg d \\ - \\ - \\ 5 \end{array} $	c	√ ¬e √ √ √ ¬e - - - - -	/ / / / / - -	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	c, d c, ¬c, ¬e c, ¬d ¬b, ¬d b 11	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg d \\ \checkmark \\ \neg d \\ \hline - \\ 5 \end{array} $	c √ √ ¬c,¬e ✓ ✓ ✓ c 3	√ ¬e √ √ ¬e - - - ← ← ← ← ← ← ←	/ / / / / - -	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \hline \neg b,\neg d \\ \hline b \\ \hline b \\ \hline c \\ \hline 11 $	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg d \\ \checkmark \\ \neg d \\ \hline - \\ \hline 1. \neg b $	c √ √ ¬c,¬e ✓ ✓ ✓ c 3	√ ¬e - - - - - - - - -	\frac{\sqrt{\chi}}{\sqrt{\chi}} \rightarrow \frac{\chi}{\chi} \rig	
Cl. 3: c,d Cl. 4: $\neg a, \neg e$ Cl. 5: $a, \neg c, \neg e$ Cl. 6: $c, \neg d$ Cl. 7: $\neg b, \neg d$ Cl. 8: a,b BCP PL Decision onflict in step	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \hline \neg b,\neg d \\ \hline b \\ \hline b \\ \hline c \\ \hline 11 $	$ \begin{array}{c c} c,d \\ \checkmark \\ \neg c,\neg e \\ c,\neg d \\ \neg d \\ \checkmark \\ \hline $	c √ √ ¬c,¬e ✓ ✓ ✓ c 3	√ ¬e √ √ ¬e - - - ← ← ← ← ← ← ←	\frac{\sqrt{\sqrt{\sqrt{\d}}}{\sqrt{\d}} \frac{\sqrt{\d}}{\sqrt{\d}} \frac{\sqrt{\d}}{\sqrt{\d}}	$\neg b \lor \neg d$

Step	12	13	14	15	16	
Decision Level	0	0	0	0	0	
Assignment	-	a	$a, \neg e$	$a, \neg e, b$	$\begin{array}{c c} a, \neg e, b, \\ \neg d \end{array}$	
Cl. 1: $\neg b, d, e$	$\neg b, d, e$	$\neg b, d, e$	$\neg b, d$	d	{} X	
Cl. 2: b, e	b, e	b, e	b	✓	✓	
Cl. 3: c, d	c, d	c, d	c, d	c, d	c	
Cl. 4: $\neg a, \neg e$	$\neg a, \neg e$	$\neg e$	✓	✓	✓	
Cl. 5: $a, \neg c, \neg e$	$a, \neg c, \neg e$	√	✓	✓	✓	
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	✓	
Cl. 7: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg d$	✓	
Cl. 8: a, b	a, b	✓	✓	✓	✓	
Cl. 9: a	a	✓	✓	✓	✓	
BCP	a	$\neg e$	b	$\neg d$	-	
PL	-	-	-	-	-	
Decision	-	-	-	-	UNSAT	
Conflict in step	16			1		
9 (a)	4	→ (¬e)	2	1 b	7	
1.	$\neg b \lor d \lor \epsilon$	$\frac{e}{bb \lor e}$	$\frac{\neg b \vee \neg d}{e}$		<u>¬a</u>	$\frac{4. \neg a \lor \neg e}{\bot} \qquad 9. \ a$

2.2.38 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b \lor c)$

Clause 2: $(\neg a \lor b)$

Clause 3: $(\neg b \lor c)$

Clause 4: $(\neg c \lor d)$

Clause 5: $(\neg c \lor e)$

Clause 6: $(\neg d \lor \neg e)$

Solution							
Step	1	2	3	4	5	6	
Decision Level	0	1	2	2	2	2	
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c, d$	$ \begin{vmatrix} \neg a, \neg b, c, \\ d, \neg e \end{vmatrix} $	
Cl. 1: a, b, c	a, b, c	b, c	c	1	✓	✓	
Cl. 2: ¬a, b	$\neg a, b$	√	✓	1	1	1	
Cl. 3: ¬b, c	$\neg b, c$	$\neg b, c$	√	√	√	√	
Cl. 4: $\neg c, d$ Cl. 5: $\neg c, e$	$\neg c, d$ $\neg c, e$	$\neg c, d$ $\neg c, e$	$\neg c, d$ $\neg c, e$	$\frac{d}{e}$	√ e	√ {} X	
Cl. 6: $\neg d$, $\neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg e$	√	
BCP	-	-	c	d	$\neg e$	-	
PL	-	-	-	-	-	-	
Decision	$\neg a$	$\neg b$	-	-	-	-	
Conflict in ste	р б			6	_		
$(\neg b)$ 1	_	4	(d)	6			
_	*(c)	5	$\overline{}$				
\bigcap_{a} 1		<u> </u>		e		-)	
			`	\bigcirc			
	6 ¬	1 \/ ¬e	4 70	· \/ d	$ \begin{array}{c} 5. \ \neg c \lor e \\ \hline a \lor b \end{array} $		
	0	$\neg e \lor$	$\frac{1}{\neg c}$	<u> </u>	5. $\neg c \lor e$		
				$\neg c$		$1. a \lor b$	$b \lor c$
					$a \lor b$)	
Step	7	8	9	10	11		
Decision Level	1	1	1	1	1		
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, c$	a, b, c, d	$\neg a, b, c, d, \neg e$		
Cl. 1: a, b, c	b, c	✓	✓	<i>d</i> ✓	<i>u</i> , ≀e		
Cl. 2: $\neg a, b$	1	√	1	1	✓		
Cl. 3: $\neg b, c$	$\neg b, c$	c	✓	√	✓		
Cl. 4: ¬c, d	$\neg c, d$	$\neg c, d$	d	√	√		
Cl. 5: $\neg c, e$ Cl. 6: $\neg d, \neg e$	$\neg c, e$	$\neg c, e$	e $\neg d, \neg e$	e	{} X ✓		
Cl. 7: a, b	$d, \neg e$	$\neg d, \neg e$	¬ <i>a</i> , ¬ <i>e</i>	¬e ✓	✓		
BCP	<u>b</u>	c	d	$\neg e$	-		
PL	-	-	-	-	-		
Decision	-	-	-	-	-		
Conflict in ste	p 11			_	_		
				$4 \rightarrow d$) 6	$\rightarrow \bigcirc$	
$\overbrace{\neg a}$ 7	▶ (b)—	3	$\overline{\binom{c}{c}}$			\bigcirc	\sim
				5			→ (⊥)
					e		
e e	$\neg d \lor / \neg \cdot$	2 1	$\neg c \lor d$		$\frac{\vee e}{\neg b}$ 3.		
	. 'u v ¬($e \vee \neg c$	ις v u	$5. \neg c$	$\vee e$		
			$\neg c$	J. 0	3.	$\neg b \vee c$	
					$\neg b$		7. $a \vee b$
						a	

α.	10	10			10		1
Step	12	13	14	15	16	17	
Decision Level	0	0	0	0	0	0	
Assignment	-	a	a, b	a, b, c	a, b, c, d	$a, b, c, d, \neg e$	
Cl. 1: a, b, c	a, b, c	✓	/	1	1	1	
Cl. 2: ¬a, b	$\neg a, b$	b	√	1	1	✓	
Cl. 3: ¬b, c	$\neg b, c$	$\neg b, c$	c	✓	1	✓	
Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	d	✓	✓	
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	e	{} X	
Cl. 6: $\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg e$	✓	
Cl. 7: a, b	a, b	✓	✓	✓	✓	✓	
Cl. 8: a	a	✓	✓	✓	1	✓	
BCP	a	b	c	d	$\neg e$	-	
PL	-	-	-	-	-	-	
Decision onflict in step	-	-	-	-	-	UNSAT	
8) 2	→ (b)	3	→ (c)	5		6 -e
_6. ¬d∨	$\frac{e}{\neg e \lor \neg}$	$\frac{4. \neg c \lor}{c}$	$\frac{d}{c}$ 5	$\frac{\neg c \lor e}{\neg b}$	- 3.	$\frac{\neg b \lor c}{\neg a}$	

2.2.39 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg b, c\}$

Clause 2: $\{b, \neg c, d\}$

Clause 3: $\{a, \neg b\}$

Clause 4: $\{a, c\}$

Clause 5: $\{\neg c, \neg d\}$

Solution					
Step	1	2	3	4	
Decision Level	0	0	0	0	
Assignment	-	a	a, b	$a, b, \neg c$	
Cl. 1: $a, \neg b, c$	$a, \neg b, c$	✓	✓	✓	
Cl. 2: $b, \neg c, d$	$b, \neg c, d$	$b, \neg c, d$	✓	✓	
Cl. 3: $a, \neg b$	$a, \neg b$	✓	✓	✓	
Cl. 4: a, c	a, c	✓	✓	✓	
Cl. 5: $\neg c, \neg d$	✓				
BCP	-	-	-	-	
PL	a	b	$\neg c$	-	
Decision	-	-	-	SAT	

2.2.40 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, c\}$

Clause 2: $\{\neg b, \neg c, e\}$

Clause 3: $\{b, e\}$

Clause 4: $\{b, \neg d\}$

Clause 5: $\{\neg c, d\}$

Clause 6: $\{\neg c, e\}$

Clause 7: $\{\neg a, \neg b, \neg c\}$

Clause 8: $\{a, c, \neg e\}$

Solution					
Step	1	2	3	4	5
Decision Level	0	1	2	2	2
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c, \neg d$
Cl. 1: a, b, c	a, b, c	b, c	c	✓	1
Cl. 2: $\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c$	✓	✓	✓	1
Cl. 3: $a, c, \neg e$	$a, c, \neg e$	$c, \neg e$	$c, \neg e$	✓	✓
Cl. 4: $\neg b, \neg c, e$	$\neg b, \neg c, e$	$\neg b, \neg c, e$	✓	✓	✓
Cl. 5: b, e	b, e	b, e	e	e	e
Cl. 6: $b, \neg d$	$b, \neg d$	$b, \neg d$	$\neg d$	$\neg d$	✓
Cl. 7: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	d	{} X
Cl. 8: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	e
BCP	-	-	c	$\neg d$	-
PL	-	-	-	-	-
Decision	$\neg a$	$\neg b$	-	-	-
<u> </u>	_				

$$\begin{array}{c|cccc} 7. \ \neg c \lor d & 6. \ b \lor \neg d \\ \hline b \lor \neg c & 1. \ a \lor b \lor c \\ \hline a \lor b & \end{array}$$

Step	(1)	6	7	8	9
Decision Level	1	1	1	2	2
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, d$	$\neg a, b, d, \neg c$	$\neg a, b, d, \neg c, \neg e$
Cl. 1: a, b, c	b, c	✓	✓	/	✓
Cl. 2: $\neg c, d$	$\neg c, d$	$\neg c, d$	✓	/	✓
Cl. 3: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
Cl. 4: $\neg a, \neg b, \neg c$	✓	✓	✓	✓	✓
Cl. 5: $a, c, \neg e$	$c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$	✓
Cl. 6: $\neg b, \neg c, e$	$\neg b, \neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
Cl. 7: b, e	b, e	✓	✓	✓	✓
Cl. 8: $b, \neg d$	$b, \neg d$	✓	✓	✓	✓
Cl. 9: a, b	b	✓	✓	✓	✓
BCP	b	-	-	$\neg e$	-
PL	-	d	-	-	-
Decision	-	-	$\neg c$	-	SAT

2.2.41 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, c\}$ Clause 2: $\{\neg a, b, \neg c\}$ Clause 3: $\{\neg b, e\}$

Clause 4: $\{a,d\}$

Clause 5: $\{a, \neg c\}$

Clause 6: $\{\neg a, \neg e\}$

Clause 7: $\{a, \neg b\}$

Clause 8: $\{b, \neg d\}$

Solution					
Step	1	2	3	4	5
Decision Level	0	1	1	1	1
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c, \neg d$
Cl. 1: $\neg a, c$	$\neg a, c$	1	✓	✓	✓
Cl. 2: $\neg a, b, \neg c$	$\neg a, b, \neg c$	1	✓	✓	✓
Cl. 3: $\neg b, e$	$\neg b, e$	$\neg b, e$	✓	✓	✓
Cl. 4: a, d	a, d	d	d	d	{} X
Cl. 5: $a, \neg c$	$a, \neg c$	$\neg c$	$\neg c$	✓	✓
Cl. 6: $\neg a, \neg e$	$\neg a, \neg e$	✓	✓	1	✓
Cl. 7: $a, \neg b$	$a, \neg b$	$\neg b$	✓	✓	✓
Cl. 8: $b, \neg d$	$b, \neg d$	$b, \neg d$	$\neg d$	$\neg d$	✓
BCP	-	$\neg b$	$\neg c$	$\neg d$	-
PL	-	-	-	-	-
Decision	$\neg a$	-	-	-	-

Step	(1)	6	7	8	9
Decision Level	0	0	0	0	0
Assignment	-	a	a, c	a, c, b	$a, c, b, \neg e$
Cl. 1: $\neg a, c$	$\neg a, c$	c	✓	1	✓
Cl. 2: $\neg a, b, \neg c$	$\neg a, b, \neg c$	$b, \neg c$	b	1	✓
Cl. 3: $\neg b, e$	$\neg b, e$	$\neg b, e$	$\neg b, e$	e	{} X
Cl. 4: a, d	a, d	✓	1	1	✓
Cl. 5: $a, \neg c$	$a, \neg c$	1	1	1	✓
Cl. 6: $\neg a, \neg e$	$\neg a, \neg e$	$\neg e$	$\neg e$	$\neg e$	✓
Cl. 7: $a, \neg b$	$a, \neg b$	1	1	1	✓
Cl. 8: $b, \neg d$	$b, \neg d$	$b, \neg d$	$b, \neg d$	1	✓
Cl. 9: a	a	1	1	1	1
BCP	a	c	b	$\neg e$	-
PL	-	-	-	-	-
Decision	-	-	-	-	UNSAT

2.2.42 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, c\}$

Clause 2: $\{\neg a, b\}$

Clause 3: $\{\neg b, c\}$

Clause 4: $\{\neg c, d\}$

Clause 5: $\{\neg c, e\}$

Clause 6: $\{\neg d, \neg e\}$

F	Solution						
	Step	1	2	3	4	5	6
	Decision Level	0	1	2	2	2	2
	Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c, d$	$\neg a, \neg b, c, d, e$
	Cl. 1: a, b, c	a, b, c	b, c	c	✓	✓	✓
	Cl. 2: $\neg a, b$	$\neg a, b$	✓	1	✓	✓	✓
	Cl. 3: $\neg b, c$	$\neg b, c$	$\neg b, c$	1	✓	✓	✓
	Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	d	✓	✓
	Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	e	{} X
	Cl. 6: $\neg d, \neg e$	$\neg d, \neg e$	$\neg e$	✓			
	BCP	-	-	c	d	$\neg e$	-
	PL	-	-	-	-	-	-
	Decision	$\neg a$	$\neg b$	-	-	-	-

Step	(2)	7	8	9	10
Decision Level	1	1	1	1	1
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, c$	$\neg a, b, c, d$	$\neg a, b, c, d, \neg e$
Cl. 1: a, b, c	b, c	✓	✓	1	1
Cl. 2: $\neg a, b$	✓	✓	✓	1	1
Cl. 3: $\neg b, c$	$\neg b, c$	c	✓	1	1
Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	d	1	1
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	e	e	{} X
Cl. 6: $\neg d, \neg e$	$\neg e$	1			
Cl. 7: a, b	b	✓	✓	1	1
BCP	b	c	d	$\neg e$	-
PL	-	-	-	-	-
Decision	-	-	-	-	-

2.2.43 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg c, \neg e\}$

Clause 2: $\{\neg a, \neg e\}$

Clause 3: $\{b, e\}$

Clause 4: $\{\neg b, d, e\}$

Clause 5: $\{\neg b, \neg d\}$

Clause 6: $\{c, \neg d\}$

Clause 7: $\{c,d\}$

Step	1	2	3	4	5	6
Decision Level	0	1	2	2	2	2
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, e$	$\neg a, \neg b, e, \\ \neg c$	$\neg a, \neg b$ $\neg c, \neg$
Cl. 1: $a, \neg c, \neg e$	$a, \neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg c$	✓	/
Cl. 2: $\neg a, \neg e$	$\neg a, \neg e$	✓	✓	✓	✓	✓
Cl. 3: b, e	b, e	b, e	e	✓	✓	✓
Cl. 4: $\neg b, d, e$	$\neg b, d, e$	$\neg b, d, e$	✓	✓	✓	✓
Cl. 5: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	✓	✓	✓	✓
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$\neg d$	✓
Cl. 7: c, d	c, d	c, d	c, d	c, d	d	{} X
BCP	-	-	e	$\neg c$	$\neg d$	-
PL	-	-	-	-	-	-
Decision	$\neg a$	$\neg b$	_	-	-	_

Step	(2)	7	8	9	10
Decision Level	1	1	1	1	1
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, \neg d$	$\neg a, b, \neg d, c$	$ \begin{array}{c c} \neg a, b, \neg d, \\ c, \neg e \end{array} $
Cl. 1: $a, \neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg c, \neg e$	$\neg e$	✓
Cl. 2: $\neg a, \neg e$	✓	✓	✓	✓	✓
Cl. 3: b, e	b, e	✓	✓	✓	✓
Cl. 4: $\neg b, d, e$	$\neg b, d, e$	d, e	e	e	{} X
Cl. 5: $\neg b, \neg d$	$\neg b, \neg d$	$\neg d$	✓	✓	✓
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	✓	1	✓
Cl. 7: c, d	c, d	c, d	c	1	✓
Cl. 8: a, b	b	✓	✓	1	✓
BCP	b	$\neg d$	c	$\neg e$	-
PL	-	-	-	-	-
Decision	-	-	-	-	-

1. $a \lor \neg c$	$\vee \neg e$ 4	$a. \neg b \lor d \lor$	$\vee e$			
-	$\frac{1}{a} \vee \neg e \qquad 4$	$\times \vee d$	7	$c \lor d$	F 1 1 1	
		$a \lor \neg b \lor$	$\frac{a}{a}$	$a \vee \neg b$	$5. \neg b \lor \neg d$ a	8. $a \lor b$
				<i>t</i> ∨ '0	\overline{a}	<u> </u>
Step	(1)	11	12	13	14	
Decision Level	0	0	0	0	0	
Assignment	-	a	$a, \neg e$	$a, \neg e, b$	$a, \neg e, \\ b, \neg d$	
Cl. 1: $a, \neg c, \neg e$	$a, \neg c, \neg e$	/	/	/	<i>b</i> , ¬ <i>d</i> ✓	
Cl. 2: $\neg a, \neg e$	$\neg a, \neg e$	$\neg e$	1	√	1	
Cl. 3: b, e	b, e	b, e	b	✓	1	
Cl. 4: $\neg b, d, e$	$\neg b, d, e$	$\neg b, d, e$	$\neg b, d$	d	{} X	
Cl. 5: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg d$	1	
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	$c, \neg d$	✓	
Cl. 7: c, d	c, d	c, d	c, d	c, d	c	
Cl. 8: a, b	a, b	✓	✓	✓	✓	
Cl. 9: a	a	✓	✓	✓	✓	
BCP	a	$\neg e$	b	$\neg d$	-	
PL	-	-	-	-	-	
Decision	-	-	-	-	UNSAT	
$\xrightarrow{9}$ \xrightarrow{a} $\xrightarrow{2}$	4 ¬e) 3	5				
5 _b	\/ -d	$-b \vee d \vee $)			
_5. <i>¬b</i>	$\sqrt{-a}$ 4 $\sqrt{-b}$	e	<u>ve</u> <u>3</u>	$ \begin{array}{c} 3. \ b \lor e \\ \hline $	$2. \neg a \lor \neg e$	8. a

2.2.44 Use the DPLL algorithm with BCP to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(\neg x \lor y)$

Clause 2: $(\neg y \lor \neg z)$

Clause 3: $(x \lor \neg w)$

Clause 4: $(w \lor z)$

Clause 5: $(\neg z \lor u)$

Clause 6: $(\neg u \lor \neg x)$

Step	1	2	3	4	5	6
Decision Level	0	1	1	1	1	1
Assignment	-	$\neg u$	$\neg u, \neg z$	$\neg u, \neg z, w$	$\neg u, \neg z, w, x$	$\neg u, \neg z, w, \\ x, y$
Cl. 1: $\neg x, y$	$\neg x, y$	$\neg x, y$	$\neg x, y$	$\neg x, y$	y	✓
Cl. 2: $\neg y, \neg z$	$\neg y, \neg z$	$\neg y, \neg z$	✓	✓	1	✓
Cl. 3: $x, \neg w$	$x, \neg w$	$x, \neg w$	$x, \neg w$	x	✓	✓
Cl. 4: w, z	w, z	w, z	\overline{w}	1	1	✓
Cl. 5: $\neg z, u$	$\neg z, u$	$\neg z$	✓	1	1	✓
Cl. 6: $\neg u, \neg x$	$\neg u, \neg x$	✓	✓	1	1	✓
BCP	-	$\neg z$	\overline{w}	x	y	-
PL	-	-	-	-	-	-
Decision	$\neg u$	-	-	-	-	SAT

2.2.45 Use the DPLL algorithm with BCP to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(\neg a \lor b)$

Clause 2: $(\neg b \lor c \lor d)$

Clause 3: $(a \lor \neg c)$

Clause 4: $(\neg d \lor e)$

Clause 5: $(\neg e \lor f)$

Clause 6: $(\neg f \lor g)$

Clause 7: $(\neg g)$

Step	1	2	3	4	5	6	7	8
Decision Level	0	0	0	0	0	1	1	1
Assignment	-	$\neg g$	$\neg g, \neg f$	$\neg g, \neg f, \neg e$	$\neg g, \neg f, \neg e, \\ \neg d$	$\neg g, \neg f, \neg e, \\ \neg d, \neg a$	$\neg g, \neg f, \neg e, \\ \neg d, \neg a, \neg c$	$\neg g, \neg f, \neg d, \neg a, \neg b$
Cl. 1: ¬a, b	$\neg a, b$	$\neg a, b$	$\neg a, b$	$\neg a, b$	$\neg a, b$	1	1	1
Cl. 2: $\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, c, d$	$\neg b, c$	$\neg b, c$	$\neg b$	1
Cl. 3: a, ¬c	$a, \neg c$	$a, \neg c$	$a, \neg c$	$a, \neg c$	$a, \neg c$	$\neg c$	1	1
Cl. 4: ¬d, e	$\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d$	✓	✓	1	1
Cl. 5: $\neg e, f$	$\neg e, f$	$\neg e, f$	$\neg e$	1	1	1	1	1
Cl. 6: $\neg f, g$	$\neg f, g$	$\neg f$	✓	1	✓	1	1	1
Cl. 7: ¬g	$\neg g$	√	✓	✓	✓	✓	1	1
BCP	$\neg g$	$\neg f$	$\neg e$	$\neg d$	-	$\neg c$	$\neg b$	-
PL	-	-	-	-	-	-	-	-
Decision	-	-	-	-	$\neg a$	-	-	SAT

2.2.46 Use the DPLL algorithm with no explicit heuristics to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b \lor c)$

Clause 2: $(\neg a \lor \neg b)$ Clause 3: $(\neg a \lor \neg c)$ Clause 4: $(b \lor \neg c)$ Clause 5: $(\neg b \lor c)$

Step	1	2	3	4
Decision Level	0	1	2	3
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$
Cl. 1: a, b, c	a, b, c	b, c	c	{} X
Cl. 2: $\neg a, \neg b$	$\neg a, \neg b$		1	V
Cl. 3: $\neg a, \neg c$	$\neg a, \neg c$. 1	1	1
Cl. 4: $b, \neg c$	$b, \neg c$	$b, \neg c$	$\neg c$	1
Cl. 5: $\neg b, c$	$\neg b, c$	$\neg b, c$	1	1
BCP	-	-	-	-
PL	-	-	-	-
Decision	$\neg a$	$\neg b$	$\neg c$	-
Step	5	6		
Decision Level	2	3		
Assignment	$\neg a, \neg b$	$\neg a, \neg$	b, c	
Cl. 1: a, b, c	c	/		
Cl. 2: $\neg a, \neg b$	✓	/		
Cl. 3: $\neg a, \neg c$	√	✓		
Cl. 4: $b, \neg c$	$\neg c$	{}	X	
Cl. 5: $\neg b, c$	1	√		
BCP	-	-		
PL	-	-		
Decision	c	-		
Step	7	8	9]
Decision Level	1	2	3	
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, \neg c$	
Cl. 1: a, b, c	b, c	1	✓	
Cl. 2: $\neg a, \neg b$	1	1	✓	
Cl. 3: $\neg a, \neg c$	1	1	✓	
Cl. 4: $b, \neg c$	$b, \neg c$	1	✓	
Cl. 5: $\neg b, c$	$\neg b, c$	c	{} X	
BCP	-	-	-	
PL	-	-	-	
Decision	b	$\neg c$	-	
Step	10	11		
Decision Level	2	3		
Assignment	$\neg a, b$	$\neg a, b, c$		
Cl. 1: a, b, c	1	1		
Cl. 2: $\neg a, \neg b$	1	1		
Cl. 3: $\neg a, \neg c$	1	1		
Cl. 4: $b, \neg c$	1	1		
Cl. 5: $\neg b, c$	c	1		
BCP	-	-		
PL	-	-		

2.2.47 Use the DPLL algorithm with no explicit heuristics to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b)$ Clause 2: $(\neg a \lor c)$ Clause 3: $(\neg b \lor \neg c)$ Clause 4: $(c \lor d)$ Clause 5: $(\neg d \lor \neg a)$ Clause 6: $(b \lor \neg d)$ Clause 7: $(\neg c \lor \neg d)$

Solution					
Step	1	2	3		
Decision Le	evel 0	1	2		
Assignmen	; -	$\neg a$	$\neg a, \neg b$		
Cl. 1: a, b	a, b	b	{} X		
Cl. 2: ¬a, a		✓	✓		
Cl. 3: ¬b, ¬	$\neg c$ $\neg b, \neg c$	$\neg b, \neg c$	✓		
Cl. 4: c, d	c, d	c, d	c, d		
Cl. 5: $\neg d$,		✓	✓		
Cl. 6: $b, \neg c$		$b, \neg d$	$\neg d$		
Cl. 7: $\neg c$,	$\neg d \qquad \neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$		
BCP	-	-	-		
PL	-	-	-		
Decision	$\neg a$	$\neg b$	-		
Step	4	5	6	7	
Decision Le	evel 1	2	3	4	١
Assignmen	$\neg a$	$\neg a, b$	$\neg a, b, \neg c$	$\neg a, b, \neg c, \\ \neg d$	
Cl. 1: a, b	b	1	/	1	ĺ
Cl. 2: ¬a, a	. /	1	✓	1	ĺ
Cl. 3: ¬b, -		$\neg c$	√	1	ĺ
Cl. 4: c, d	c, d	c, d	d	{} X	ĺ
Cl. 5: ¬d,		1	✓	V	ĺ
Cl. 6: b, ¬c		/	✓	/	ĺ
Cl. 7: ¬c, -		$\neg c, \neg d$	1	/	l
BCP	-	-	-	-	ĺ
PL	-	-	-	-	ĺ
Decision	b	$\neg c$	$\neg d$	-	l
Step	8	9			J
Decision Le		4			
Assignmen		-a h	$\neg c$,		
Cl. 1: a, b		<u> </u>			
Cl. 2: $\neg a, c$					
Cl. 3: ¬b, -		-			
Cl. 4: c, d		-			
Cl. 5: $\neg d$,		/			
Cl. 6: $b, \neg c$					
Cl. 7: ¬c, -		-			
BCP		-			
PL					
Decision		SA	г		
Decision		J DA	L		

2.2.48 Use the DPLL algorithm with BCP and PL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b)$

Clause 2: $(\neg a \lor c)$

Clause 3: $(d \lor e)$

Clause 4: $(\neg b \lor \neg c)$

Clause 5: (e $\vee \neg f$)

Clause 6: $(\neg d \lor \neg f)$

Clause 7: $(d \lor \neg f)$

Clause 8: (b $\lor \neg e$)

Clause 9: (a $\vee \neg f$)

Step	1	2	3	4	5	6	7
Decision Level	0	0	0	0	1	1	1
Assignment	-	$\neg f$	$\neg f, d$	$\neg f, d, \neg e$		$\neg f, d, \neg e, \\ \neg a, b$	$\neg f, d, \neg e, \\ \neg a, b, \neg c$
Cl. 1: a, b	a, b	a, b	a, b	a, b	a b	¬a, v	¬a, v, ¬c
Cl. 2: ¬a, c	$\neg a, c$	$\neg a, c$	$\neg a, c$	$\neg a, c$	1	1	✓
Cl. 3: d, e	d, e	d, e	✓	1	1	1	1
Cl. 4: $\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg c$	1			
Cl. 5: $e, \neg f$	$e, \neg f$	✓	✓	1	1	1	1
Cl. 6: $\neg d, \neg f$	$\neg d, \neg f$	✓	1	1	1	1	1
Cl. 7: $d, \neg f$	$d, \neg f$	✓	✓	1	1	1	1
Cl. 8: $b, \neg e$	$b, \neg e$	$b, \neg e$	$b, \neg e$	1	1	1	1
Cl. 9: $a, \neg f$	$a, \neg f$	✓	✓	1	1	1	1
BCP	-	-	-	-	b	$\neg c$	-
PL	$\neg f$	d	$\neg e$	-	-	-	-
Decision	-	-	-	$\neg a$	-	-	SAT

2.2.49 Use the DPLL algorithm with BCP, PL and CDCL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(x \lor y \lor w)$

Clause 2: $(\neg x \lor z)$

Clause 3: $(\neg y \lor w)$

Clause 4: $(\neg z \lor \neg w)$

Clause 5: $(\neg y)$

Clause 6: $(\neg x \lor w)$

Step 1 2 3 Decision Level 0 0 1	4
Decision Level 0 0 1	
	1
Assignment - $\neg y \mid \neg y, \neg w \mid \neg$	$\overline{y, \neg w, \neg x}$
Cl. 1: x, y, w x, y, w x, w x	{} X
Cl. 2: $\neg x, z$ $\neg x, z$ $\neg x, z$ $\neg x, z$	√
Cl. 3: $\neg y, w$ $\neg y, w$	✓
Cl. 4: $\neg z, \neg w$ $\neg z, \neg w$ $\neg z, \neg w$	✓
Cl. 5: ¬y	✓
Cl. 6: $\neg x, w$ $\neg x, w$ $\neg x, w$ $\neg x$	✓
BCP $\neg y$ - $\neg x$	-
PL	-
Decision - ¬w -	-
Conflict in step 4	
-	
5	
-	
5	
y 1	
5	
5 y 1 1 x	
$\frac{5}{\sqrt{-w}}$	
5 y 1 1 x	
$\frac{5}{\sqrt{-w}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5. \ \neg y$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{5. \ \neg y}{w} \qquad 6. \ \neg x \lor w$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$6. \neg x \lor w$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline & w \\ \hline & 8 \\ \hline & 0 \\ \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \neg x \lor w \\ \hline & w \\ \hline & 8 \\ \hline \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ & &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline & w \\ \hline & 8 \\ 0 \\ \neg y, w, \neg z, \\ & \neg x \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \neg x \lor w \\ \hline & w \\ \hline & 8 \\ 0 \\ \neg y, w, \neg z, \\ & \checkmark \\ & \checkmark $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \neg x \lor w \\ \hline & w \\ \hline & 8 \\ 0 \\ \neg y, w, \neg z, \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline w \\ \hline 8 \\ 0 \\ \neg y, w, \neg z, \\ \neg x \\ \checkmark \\ \checkmark \\ \checkmark \checkmark $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ & &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. \ \neg x \lor w \\ \hline w \\ \hline 8 \\ 0 \\ \neg y, w, \neg z, \\ \neg x \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline & 6. & \neg x \lor w \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\$

2.2.50 Use the DPLL algorithm with BCP, PL and CDCL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b)$

Clause 2: $(\neg a \lor c)$

Clause 3: $(c \lor d)$

Clause 4: $(\neg b \lor \neg c)$

Clause 5: $(d \lor e)$

Clause 6: $(\neg e \lor f)$

Clause 7: $(\neg d \lor \neg f)$

Clause 8: $(b \lor \neg f)$ Clause 9: $(\neg b \lor e)$

Solution								
Step	1	2	3	4	5	6		7
Decision Level	0	1	1	1	1	1		1
A		_	_ 1	- L -	$\neg a, b, \neg a$	$c, \neg a, b,$	$\neg c, \neg a,$	$b, \neg c,$
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, \neg c$	d	d, ϵ		$e, \neg f$
Cl. 1: a, b	a, b	b	✓	1	1	✓		✓
Cl. 2: $\neg a, c$	$\neg a, c$	✓	✓	✓	✓	✓		✓
Cl. 3: c, d	c, d	c, d	c, d	d	✓	✓		✓
Cl. 4: $\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg c$	✓	✓	✓		✓
Cl. 5: d, e	d, e	d, e	d, e	d, e	/	/		✓
Cl. 6: ¬e, f	$\neg e, f$	$\neg e, f$	$\neg e, f$	$\neg e, f$	$\neg e, f$	f		} X
Cl. 7: ¬d, ¬f	$\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	$\neg f$	$\neg f$		<u>/</u>
Cl. 8: b, ¬f	$b, \neg f$	$b, \neg f$	1	1	/	/		✓
Cl. 9: ¬b, e	$\neg b, e$	$\neg b, e$	e	e	e	√		✓
BCP PL	-	b	$\neg c$	d	e	$\neg f$		-
Decision	$\neg a$	-	-	-	-	-		-
Conflict in step		_	_	_				-
1	(b)	9		<u>→</u> (a				
$6. \neg e \lor f$			e	6	$\longrightarrow f$)——		.)
$6. \neg e \lor f$			<u>e</u> 3. ϵ	6 :∨d_	4. ¬b∨-	r_c		-)
$6. \neg e \lor f$			- 3. c	$\frac{e \vee d}{e \vee \neg b}$	<u>4.</u> ¬b∨ -) <u> </u>	$\neg b \lor e$.)
$\frac{6. \neg e \lor f}{}$			- 3. 6	$\frac{6}{e \lor d}$ $e \lor \neg b$	$4. \neg b \lor \neg b$	9.	. ¬b∨e	1. $a \lor b$
6. ¬e∨f			e 3. 6	$\frac{6}{e \vee d}$ $e \vee \neg b$	$ \underbrace{4. \neg b \lor \neg b} $	9.	a	$1. \ a \lor b$
Step	$779 \lor \neg d$		3. c	$e \lor d$ $\neg e \lor \neg b$ 11	12	13	a 14	$\frac{1.\ a \lor b}{\Box}$
	$\frac{7 7}{\neg e \lor \neg d}$	$\neg d \lor \neg f$ $\neg e \lor e$	- 3. 6 c	$e \lor d$ $e \lor \neg b$	12 0	13 0	a 14 0	1. <i>a</i> ∨ <i>b</i>
Step Decision Level	$ \begin{array}{c c} 7. & 7. \\ \hline \neg e \lor \neg d \end{array} $ $ \begin{array}{c c} 8 & 0 \end{array} $		3. 6 c	$\begin{array}{c} e \vee d \\ \hline e \vee \neg b \\ \hline \\ 11 \\ 0 \\ \end{array}$	$ \begin{array}{c c} 12 \\ 0 \\ a, c, \neg b, \end{array} $	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \end{array} $	$ \begin{array}{c c} a \\ 14 \\ 0 \\ a, c, \neg b, \end{array} $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment	$ \begin{array}{c c} 7. & 7. \\ \hline \neg e \lor \neg d \end{array} $	$ \begin{array}{c} $	3. 6 c - 10 0 a, c	$ \begin{array}{c c} c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \\ \hline \\ 11 \\ 0 \\ a, c, \neg b \\ \end{array} $	$ \begin{array}{c} 12 \\ 0 \\ a, c, \neg b, \\ \neg f \end{array} $	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e \end{array} $	$ \begin{array}{c c} a \\ \hline 14 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e, a \end{array} $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a, b	$ \begin{array}{c c} 7. \\ \hline $	$ \begin{array}{c} $	3. 6 c - 10 0 a, c	$ \begin{array}{c c} c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \end{array} $ $ \begin{array}{c c} 11 \\ 0 \\ a, c, \neg b \end{array} $	12 0 a, c, ¬b, ¬f ✓	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e \end{array} $	$ \begin{array}{c c} a \\ \hline 14 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e, \alpha \end{array} $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$	$ \begin{array}{c c} 7. & 7 \\ \hline $	$ \begin{array}{c c} & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor c \\ \hline & g \\ & 0 \\ & a \\ \hline & c \\ \end{array} $	3. 6 c - 10 0 a, c	$ \begin{array}{c c} c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \end{array} $ $ \begin{array}{c c} 11 \\ 0 \\ a, c, \neg b \\ \checkmark \end{array} $	$ \begin{array}{c c} 12 \\ 0 \\ a, c, \neg b, \\ \neg f \\ \checkmark \\ \checkmark $	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e \end{array} $	$ \begin{array}{c c} a \\ \hline 14 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e, \epsilon \end{array} $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: c,d	$ \begin{array}{c c} 7. \\ \hline \neg e \lor \neg d \end{array} $ $ \begin{array}{c c} 8 \\ 0 \\ \hline -a, b \\ \hline -a, c \\ c, d \end{array} $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor c \\ \hline & & & \\ & & & &$	3. 6 c	$ \begin{array}{c c} c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \end{array} $ $ \begin{array}{c c} 11 \\ 0 \\ a, c, \neg b \\ \checkmark \\ \checkmark $	12 0 a, c, ¬b, ¬f ✓	13 0 a, c, ¬b, ¬f, ¬e ✓	$ \begin{array}{c c} a \\ 14 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e, \epsilon \\ \checkmark \\ \checkmark \\ \checkmark $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: c,d Cl. 4: $\neg b, \neg c$	$ \begin{array}{c c} 7. & \hline $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor c \\ \hline & & \\ $	3. 6 c 10 0 a, c ✓ √ √ ¬b	$ \begin{array}{c c} \hline e \lor d \\ \hline e \lor \neg b \end{array} $ $ \begin{array}{c c} 11 \\ 0 \\ a, c, \neg b \end{array} $	12 0 a, c, ¬b, ¬f ✓	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e \\ \checkmark \\ \checkmark \\ \checkmark $	$ \begin{array}{c c} a \\ 14 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e, \epsilon \end{array} $	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: c,d Cl. 4: $\neg b, \neg c$ Cl. 5: d,e	$ \begin{array}{c c} 7. & \hline $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor c \\ \hline & & & \\ & & & &$	3. 6 c	$ \begin{array}{c c} c \lor d \\ \hline d \\ d \\ d \\ e \\ \hline d \\ d \\ e \\ \end{array} $	$ \begin{array}{c c} 12 & 0 \\ a, c, \neg b, \\ \neg f & \checkmark \\ \checkmark & \checkmark \\ d, e & \\ \end{array} $	$ \begin{array}{c} 13 \\ 0 \\ a, c, \neg b, \\ \neg f, \neg e \\ \checkmark \\ \checkmark \\ \checkmark \\ d \end{array} $	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: c, d Cl. 4: $\neg b, \neg c$ Cl. 5: d, e Cl. 6: $\neg e, f$	$ \begin{array}{c c} 7. \\ \hline $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor c \\ \hline & & \\ $	3. 6 c 10 0 a, c ✓ √ √ b d, e ¬e, f	$ \begin{array}{c c} \hline c \lor d \\ \hline c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \\ \hline c \lor \neg b \\ \hline c \lor \\ $	$ \begin{array}{c c} 12 & \\ 0 & \\ a, c, \neg b, \\ \neg f & \\ \checkmark & \\ \checkmark & \\ d, e & \\ \neg e & \\ \end{array} $	13 0 a, c, ¬b, ¬f, ¬e ✓ ✓ ✓ d	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: c, d Cl. 4: $\neg b, \neg c$ Cl. 5: d, e Cl. 6: $\neg e, f$ Cl. 7: $\neg d, \neg f$	$ \begin{array}{c c} 7. \\ \hline $	$ \begin{array}{c c} & & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor o \\ \hline & & & \\ & &$	3. 6 c 10 0 a, c ✓ √ √ b d, e ¬e, f ¬d, ¬f	$ \begin{array}{c c} \hline c \lor d \\ \hline c \lor d \end{array} $ $ \begin{array}{c c} \hline a, c, \neg b \\ \hline \checkmark \\ \checkmark \\ \hline d, e \\ \hline \neg e, f \\ \hline \neg d, \neg f \end{array} $	12 0 a, c, ¬b, ¬f ✓ ✓ ✓ d, e ¬e	13 0 a, c, ¬b, ¬f, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: c, d Cl. 4: $\neg b, \neg c$ Cl. 5: d, e Cl. 6: $\neg e, f$ Cl. 7: $\neg d, \neg f$ Cl. 8: $b, \neg f$	$ \begin{array}{c c} 7. & -7e \lor \neg d \\ \hline $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor o \\ \hline & & \\ $	3. 6 c 10 0 a, c ✓ √ √ b, d, e ¬e, f ¬d, ¬f b, ¬f	$ \begin{array}{c c} c \lor d \\ \hline c \lor d \\ \hline c \lor d \end{array} $ $ \begin{array}{c c} c \lor d \\ \hline c \lor \neg b $ $ \begin{array}{c c} c \lor d \\ \hline c \lor \\ c \lor \\ c \lor \\ \hline c \lor \\ $	$ \begin{array}{c c} 12 & 0 \\ a, c, \neg b, \\ \neg f \\ \checkmark \\ \checkmark \\ \checkmark \\ d, e \\ \neg e \\ \checkmark \\ \checkmark \\ \checkmark $	13 0 a, c, ¬b, ¬f, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: c,d Cl. 4: $\neg b, \neg c$ Cl. 5: d,e Cl. 6: $\neg e,f$ Cl. 7: $\neg d, \neg f$ Cl. 8: $b, \neg f$ Cl. 9: $\neg b,e$	$ \begin{array}{c c} 7. \\ \neg e \lor \neg d \end{array} $ $ \begin{array}{c c} 8 \\ 0 \\ -a, c \\ c, d \\ \neg b, \neg c \\ d, e \\ \neg e, f \\ \neg d, \neg f \\ b, \neg f \\ \neg b, e \end{array} $	$ \begin{array}{c c} & & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor o \\ \hline & & & \\ & &$	3. 6 c 10 0 a, c ✓ √ √ b, ¬f ¬b, e	$ \begin{array}{c c} \hline c \lor d \\ \hline c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \\ \hline c \lor \neg b \\ \hline c \lor \\ $	12 0 a, c, ¬b, ¬f ✓ ✓ ✓ d, e ¬e ✓	13 0 a, c, ¬b, ¬f, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a, b Cl. 2: $\neg a, c$ Cl. 3: c, d Cl. 4: $\neg b, \neg c$ Cl. 5: d, e Cl. 6: $\neg e, f$ Cl. 7: $\neg d, \neg f$ Cl. 8: $b, \neg f$	$ \begin{array}{c c} 7. & -7e \lor \neg d \\ \hline $	$ \begin{array}{c c} & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor o \\ \hline & & \\ $	3. 6 c 10 0 a, c ✓ √ √ b, d, e ¬e, f ¬d, ¬f b, ¬f	$ \begin{array}{c c} c \lor d \\ \hline c \lor \neg b \\ \hline c \lor \\ c \lor $	$ \begin{array}{c c} 12 & 0 \\ a, c, \neg b, \\ \neg f \\ \checkmark \\ \checkmark \\ \checkmark \\ d, e \\ \neg e \\ \checkmark \\ \checkmark \\ \checkmark $	13 0 a, c, ¬b, ¬f, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>
Step Decision Level Assignment Cl. 1: a,b Cl. 2: $\neg a,c$ Cl. 3: c,d Cl. 4: $\neg b, \neg c$ Cl. 5: d,e Cl. 6: $\neg e,f$ Cl. 7: $\neg d, \neg f$ Cl. 8: $b, \neg f$ Cl. 9: $\neg b,e$ Cl. 10: a	$ \begin{array}{c c} 7. \\ \neg e \lor \neg d \end{array} $ $ \begin{array}{c c} 8 \\ 0 \\ -a, b \\ \neg a, c \\ c, d \\ \neg b, \neg c \\ d, e \\ \neg e, f \\ \neg d, \neg f \\ b, \neg f \\ \neg b, e \\ a \end{array} $	$ \begin{array}{c c} & & & & \\ & \neg d \lor \neg f \\ \hline & \neg e \lor o \\ \hline & g \\ & 0 \\ & a \\ & \checkmark \\ & c \\ & c, d \\ & \neg b, \neg c \\ & d, e \\ & \neg e, f \\ & \neg d, \neg f \\ & b, \neg f \\ & \neg b, e \\ & \checkmark \end{array} $	3. 6 c 10 0 a, c √ √ √ ¬b d, e ¬e, f ¬d, ¬f b, ¬f ¬b, e ✓	$ \begin{array}{c c} \hline c \lor d \\ \hline c \lor d \\ \hline c \lor d \\ \hline c \lor \neg b \\ \hline c \lor \neg b \\ \hline c \lor \\ $	12 0 a, c, ¬b, ¬f ✓ ✓ d, e ¬e ✓	13 0 a, c, ¬b, ¬f, ¬e / / / d / / /	a 14 0 a, c, ¬b, ¬f, ¬e, o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1. <i>a</i> ∨ <i>b</i>

2.2.51 Use the DPLL algorithm with BCP, PL and CDCL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is

unsatisfiable.

Clause 1: $(u \lor v)$

Clause 2: $(\neg u \lor w)$

Clause 3: $(v \lor \neg x)$

Clause 4: $(w \lor y)$

Clause 5: $(\neg v \lor \neg y)$

Clause 6: $(\neg w \lor z)$

Clause 7: $(\neg z \lor x)$

Clause 8: $(y \lor \neg z)$

Clause 9: $(x \lor \neg u)$

	C - 14:								
ΓL	Solution								
	Step	1	2	3	4	5	6		
	Decision Level	0	1	1	1	1	1		
	Assignment	-	$\neg u$	$\neg u, v$	$\neg u, v, \neg y$	$\begin{bmatrix} \neg u, v, \neg y, \\ w \end{bmatrix}$	$v, \neg u, v, \neg y, \\ w, \neg z$		
	Cl. 1: u, v	u, v	v	/	√	/	<i>'</i>		
	Cl. 2: ¬u, w	$\neg u, w$	/	/	/	/	/		
	Cl. 3: $v, \neg x$	$v, \neg x$	$v, \neg x$	/	√	/	1		
	Cl. 4: w, y	w, y	w, y	w, y	\overline{w}	/			
	Cl. 5: $\neg v, \neg y$	$\neg v, \neg y$	$\neg v, \neg y$	$\neg y$	<u>√</u>	/			
	Cl. 6: $\neg w, z$						{} X		
	Cl. 7: $\neg z, x$	$\neg w, z$	$\neg w, z$	$\neg w, z$	$\neg w, z$		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
	Cl. 7. $12, x$ Cl. 8: $y, \neg z$	$\neg z, x$	$\neg z, x$	$\neg z, x$	$\neg z, x$	$\neg z, x$			
		$y, \neg z$	$y, \neg z$	$y, \neg z$	$\neg z$	$\neg z$	•		
	Cl. 9: $x, \neg u$	$x, \neg u$	✓	1	✓	/	/		
	BCP	-	v	$\neg y$	w	$\neg z$	-		
	PL	-	-	-	-	-	-		
	Decision	$\neg u$		-		-	-		
	Conflict in step	6							
	<u></u>	v	5 →($\neg y$	8	v			
	6.	$\frac{\neg w \lor z}{z}$	4. u	$y \vee y$					
		\overline{z}	$\vee \overline{y}$		8. $y \vee \overline{}$	$\neg z$			
				\overline{y}		— 5.	$\neg v \lor \neg y$		
						$\neg v$		$1. u \vee v$	
							u		
			_	_					
	Step	7	8	9	10	11	12 13		
	Decision Level	0	0	0	0	0	0 0		
	Assignment	-	u	u, w	u, w, x	$\begin{bmatrix} u, w, x, & v \\ v & \end{bmatrix}$	$\begin{bmatrix} u, w, x, & u, w \\ v, \neg y & v, \neg y \end{bmatrix}$		
	Cl. 1: u, v	u, v	/	1	/	1	/ /		
	Cl. 2: ¬u, w	$\neg u, w$	\overline{w}	/	/	1	/ /	,	
	Cl. 3: $v, \neg x$	$v, \neg x$	$v, \neg x$	$v, \neg x$	v	1	/ /	•	
	Cl. 4: w, y	w, y	w, y	1	/	1	/ /		
	Cl. 5: $\neg v, \neg y$	$\neg v, \neg y$	$\neg v, \neg y$	$\neg v, \neg y$	$\neg v, \neg y$	$\neg y$	/ /		
	Cl. 6: $\neg w, z$								
	Cl. 6. $\neg w, z$ Cl. 7: $\neg z, x$	$\neg w, z$	$\neg w, z$	z	<i>z</i> ✓	<i>z</i> ✓	<i>z</i> {} ✓		
1	Cl. 8: 2: -2	$\neg z, x$	$\neg z, x$	$\neg z, x$					
	Cl. 8: $y, \neg z$	$y, \neg z$	$y, \neg z$	$y, \neg z$	$y, \neg z$	$y, \neg z$	$\neg z$	<i>-</i>	
1	Cl. 9: x,¬u	$x, \neg u$	<i>x</i>	<i>x</i>	/	/	/ /	,	
	Cl. 10: <i>u</i>	u	✓	<i>\</i>	/	/	/ /		
	BCP	u	w	x	v	$\neg y$	¬z -		
	PL	-	-	-	-	-		IA/TD	
	Decision	- 10		-	-	-	- UNS	AT	
	Conflict in step	2 u 9) > 3		5	→ (¬y) 8	$\neg z$	
	$8. \ y \lor \neg z$	$\neg v$		$v \vee \neg x$	6. ¬	$\underline{w \lor z}$	$2. \neg u \lor w$		
					:	$x \vee \neg u$	$\neg u$	$9. \ x \lor \neg u$	10. <i>u</i>

2.2.52 Use the DPLL algorithm (*without* BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(a \lor b \lor c)$ Clause 2: $(a \lor \neg b \lor \neg c)$ Clause 3: $(\neg a \lor \neg b \lor c)$ Clause 4: $(a \lor b \lor \neg c)$ Clause 5: $(\neg c \lor \neg a)$

Solution					
	1		2	9	4
Step Decision Level	0		1	3	3
Assignment	-		$\frac{1}{a}$	a, b	a,b,c
Cl. 1: a, b, c	a, b		<i>u</i> ✓	<i>a, o</i> ✓	<i>u, v, c</i> ✓
Cl. 1: a, b, c Cl. 2: $a, \neg b, \neg c$	$a, b, a, \neg b, b$		<u> </u>	✓	✓
Cl. 3: $\neg a, \neg b, c$	$\neg a, \neg b, \neg a, \neg$		b, c	<i>c</i>	✓
Cl. 4: $a, b, \neg c$	a, b,		<i>√</i>	<i>c</i>	✓ ✓
Cl. 4. $a, b, \neg c$ Cl. 5: $\neg c, \neg a$	$\neg c$		$\neg c$	$\neg c$	{} X
BCP	·c,		-	-	\{\frac{1}{2}\tau_{\text{olive}}
PL	-		-	+-	-
Decision	a		- b	- c	_
	<u> </u>			C	-
Step	5	6	_		
Decision Level	2	3	_		
Assignment	a, b	a, b, \neg	c		
Cl. 1: a, b, c	1	✓	_		
Cl. 2: $a, \neg b, \neg c$	1	√	_		
Cl. 3: $\neg a, \neg b, c$	<i>c</i>	{} X	_		
Cl. 4: a, b, ¬c	/		_		
Cl. 5: $\neg c, \neg a$	$\neg c$	✓	_		
BCP	-	-	_		
PL	-	-	_		
Decision	$\neg c$	-	<u> </u>		1
Step	7	8	\perp	9	
Decision Level	1	2		3	
Assignment	a	$a, \neg b$	a	$, \neg b, c$	
Cl. 1: a, b, c	1	/	\perp	/	
Cl. 2: $a, \neg b, \neg c$	/	/		✓	
Cl. 3: $\neg a, \neg b, c$	$\neg b, c$	/		✓	
Cl. 4: $a, b, \neg c$	✓	1		✓	
Cl. 5: $\neg c, \neg a$	$\neg c$	$\neg c$		{} X	
BCP	-	-		-	
PL	-	-		-	
Decision	$\neg b$	c		-	
Step	10	1	1]	
Decision Level	2	3]	
Assignment	$a, \neg b$	$a, \neg b$	$\neg c$	1	
Cl. 1: a, b, c	1	/	•	1	
Cl. 2: $a, \neg b, \neg c$	1	/	•	7	
Cl. 3: $\neg a, \neg b, c$	1	/	•	7	
Cl. 4: $a, b, \neg c$	1	/	•	7	
Cl. 5: $\neg c, \neg a$	$\neg c$	/	•	7	
BCP	-	-		7	
PL	-	-		7	
			_	_	
ecision	$\neg c$	SA	Т		

2.2.53 Use the DPLL algorithm (*without* BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor \neg b)$ Clause 2: $(\neg a \lor \neg d)$ Clause 3: $(c \lor \neg b)$ Clause 4: $(\neg c \lor d)$

tep	1	2	3	4
Decision Level	0	1	2	3
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$
Cl. 1: $\neg a, \neg b$	$\neg a, \neg b$	1	1	√
Cl. 2: $\neg a, \neg d$	$\neg a, \neg d$	1	✓	✓
Cl. 3: $c, \neg b$	$c, \neg b$	$c, \neg b$	✓	✓
Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	✓
BCP	-	-	-	-
PL	-	-	-	-
Decision	$\neg a$	$\neg b$	$\neg c$	SAT

2.2.54 Use the DPLL algorithm with Boolean Constrain Propagation (without PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg f \lor \neg b \lor \neg a)$ Clause 2: $(\neg e \lor a \lor \neg d)$ Clause 3: $(\neg a \lor c \lor b)$ Clause 4: $(f \lor \neg a \lor e)$ Clause 5: $(d \lor \neg a \lor \neg b)$ Clause 6: $(\neg a \lor \neg c \lor b)$

Step	1	2	3	4	5	6	
Decision Level	0	1	2	2	2	2	
Assignment	-	a	a, b	a, b, d	$a, b, d, \\ \neg f$	$a, b, d,$ $\neg f, e$	
Cl. 1: $\neg f, \neg b, \neg a$	$\neg f, \neg b, \neg a$	$\neg f, \neg b$	$\neg f$	$\neg f$	✓	✓	
Cl. 2: $\neg e, a, \neg d$	$\neg e, a, \neg d$	✓	1	1	✓	√	
Cl. 3: $\neg a, c, b$	$\neg a, c, b$	c, b	1	1	✓	√	
Cl. 4: $f, \neg a, e$	$f, \neg a, e$	f, e	f, e	f, e	e	√	
Cl. 5: $d, \neg a, \neg b$	$d, \neg a, \neg b$	$d, \neg b$	d	1	✓	√	
Cl. 6: $\neg a, \neg c, b$	$\neg a, \neg c, b$	$\neg c, b$	1	✓	✓	√	
BCP	-	-	d	$\neg f$	e	-	
PL	-	-	-	-	-	-	
Decision	a	b	-	-	-	SAT	

2.2.55 Use the DPLL algorithm with *Boolean Constrain Propagation* and *Pure Literals* (without clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg c \lor \neg d)$

Clause 2: $(a \lor \neg d \lor \neg e)$

Clause 3: $(e \lor \neg c)$

Clause 4: $(c \lor b)$

Clause 5: $(\neg b \lor \neg c)$

Clause 6: $(a \lor b)$

Step	1	2	3	4	5	6	
Decision Level	0	0	0	0	1	1	
Assignment	-	a	$a, \neg d$	$a, \neg d, e$	$a, \neg d, e, \\ b$	$a, \neg d, e, \\ b, \neg c$	
Cl. 1: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	✓	✓	✓	1	
Cl. 2: $a, \neg d, \neg e$	$a, \neg d, \neg e$	✓	✓	✓	✓	1	
Cl. 3: $e, \neg c$	$e, \neg c$	$e, \neg c$	$e, \neg c$	✓	✓	1	
Cl. 4: c, b	c, b	c, b	c, b	c, b	✓	1	
Cl. 5: $\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	$\neg c$	1	
Cl. 6: a, b	a, b	1	1	✓	✓	1	
BCP	-	-	-	-	$\neg c$	-	
PL	a	$\neg d$	e	-	-	-	
Decision	-	-	-	b	-	SAT	

2.2.56 Use the DPLL algorithm with Boolean Constrain Propagation (without PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor \neg b)$

Clause 2: $(\neg a \lor c)$

Clause 3: $(\neg b \lor \neg c)$

Clause 4: $(b \lor c)$

Clause 5: $(a \lor \neg b)$

Solution					
Step		1	2	3	4
Decision	Level	0	1	1	1
Assignme	ent	-	a	$a, \neg b$	$a, \neg b, c$
Cl. 1: ¬a	$\iota, \neg b$	$\neg a, \neg b$	$\neg b$	✓	✓
Cl. 2: ¬a	i, c	$\neg a, c$	c	c	✓
Cl. 3: ¬b	$\neg c$	$\neg b, \neg c$	$\neg b, \neg c$	✓	✓
Cl. 4: b,	c	b, c	b, c	c	✓
Cl. 5: a,	$\neg b$	$a, \neg b$	✓	✓	✓
BCP		-	$\neg b$	c	-
PL		-	-	-	-
Decision		a	-	-	SAT

2.2.57 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in

UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, b, c\}$

Clause 2: $\{\neg b, \neg c, d\}$

Clause 3: $\{c, d, \neg e\}$

Clause 4: $\{\neg a, d, \neg e\}$

Clause 5: $\{a, b, d\}$

Clause 6: $\{c, \neg d, e\}$

Step	1	2	3	4	5	
Decision Level	0	1	2	2	2	
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, d$	$\neg a, \neg b, d, c$	
Cl. 1: $\neg a, b, c$	$\neg a, b, c$	✓	1	✓	✓	
Cl. 2: $\neg b, \neg c, d$	$\neg b, \neg c, d$	$\neg b, \neg c, d$	1	✓	✓	
Cl. 3: $c, d, \neg e$	$c, d, \neg e$	$c, d, \neg e$	$c, d, \neg e$	✓	√	
Cl. 4: $\neg a, d, \neg e$	$\neg a, d, \neg e$	✓	✓	✓	✓	
Cl. 5: a, b, d	a, b, d	b, d	d	✓	✓	
Cl. 6: $c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	c, e	✓	
BCP	-	-	d	-	-	
PL	-	-	-	c	-	
Decision	$\neg a$	$\neg b$	-	-	SAT	

2.2.58 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$

Clause 2: $\{\neg a, \neg c, \neg e\}$

Clause 3: $\{\neg c, d\}$

Clause 4: $\{\neg b, d\}$

Clause 5: $\{\neg d, e\}$

Clause 6: $\{\neg a, b\}$

Clause 7: $\{a, d, \neg e\}$

Step	1	2	3	4	5	6
Decision Level	0	0	1	1	2	2
Assignment	-	$\neg c$	$\neg c, \neg a$	$\neg c, \neg a, \neg b$	$\neg c, \neg a, \neg b, \\ \neg d$	$\neg c, \neg a, \neg b, \\ \neg d, \neg e$
Cl. 1: $\neg a, \neg b$	$\neg a, \neg b$	$\neg a, \neg b$	✓	✓	✓	✓
Cl. 2: $\neg a, \neg c, \neg e$	$\neg a, \neg c, \neg e$	✓	✓	✓	✓	✓
Cl. 3: $\neg c, d$	$\neg c, d$	✓	✓	✓	✓	✓
Cl. 4: $\neg b, d$	$\neg b, d$	$\neg b, d$	$\neg b, d$	✓	✓	✓
Cl. 5: $\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	$\neg d, e$	✓	✓
Cl. 6: ¬a, b	$\neg a, b$	$\neg a, b$	✓	✓	✓	✓
Cl. 7: $a, d, \neg e$	$a, d, \neg e$	$a, d, \neg e$	$d, \neg e$	$d, \neg e$	$\neg e$	✓
BCP	-	-	-	-	$\neg e$	-
PL	$\neg c$	-	$\neg b$	-	-	-
Decision	-	$\neg a$	-	$\neg d$	-	SAT

2.2.59 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg c\}$

Clause 2: $\{b, c, e\}$

Clause 3: $\{b, e\}$

Clause 4: $\{\neg a, c\}$

Clause 5: $\{d, \neg e\}$

Clause 6: $\{b, \neg d\}$

Clause 7: $\{\neg d, \neg e\}$

Clause 8: $\{a, c\}$

Solution						 	
Step	1	2	3	4	5		
Decision Level	0	0	0	1	1		
Assignment	-	b	$b, \neg e$	$b, \neg e, \neg a$	$b, \neg e, \neg a, \\ \neg c$		
Cl. 1: $a, \neg c$	$a, \neg c$	$a, \neg c$	$a, \neg c$	$\neg c$	✓		
Cl. 2: b, c, e	b, c, e	1	1	√	1		
Cl. 3: b, e	b, e	1	1	✓	1		
Cl. 4: $\neg a, c$	$\neg a, c$	$\neg a, c$	$\neg a, c$	✓	1		
Cl. 5: $d, \neg e$	$d, \neg e$	$d, \neg e$	✓	✓	1		
Cl. 6: $b, \neg d$	$b, \neg d$	✓	✓	✓	1		
Cl. 7: $\neg d$, $\neg e$	$\neg d, \neg e$	$\neg d, \neg e$	✓	✓	✓		
Cl. 8: a, c	a, c	a, c	a, c	c	{} X		
BCP	-	-	-	$\neg c$	-		
PL	b	$\neg e$	-	-	-		
Decision Conflict in step	-	-	$\neg a$	-	-		
$\neg a$ 8	$\begin{pmatrix} \neg c \end{pmatrix}$						
			1.	$a \lor \neg c$	$8.\ a \lor c$		
		7	1.	$a \lor \neg c$ a	8. $a \lor c$		
8	c	0	8		$8.\ a \lor c$		
Step Decision Level Assignment	6 0	0 $b, \neg e, a$	$ \begin{array}{c} 8 \\ \hline 0 \\ b, \neg e, a, \\ c \end{array} $		8. $a \lor c$		
Step Decision Level Assignment Cl. 1: a, ¬c	$ \begin{array}{c c} 6 & \\ 0 & \\ b, \neg e \\ a, \neg c \end{array} $	0 b,¬e, a ✓	8 0 b, ¬e, a, c ✓		$8.\ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e	6 0 b, ¬e a, ¬c	0 b,¬e, a ✓	8 0 b,¬e, a, c ✓		$8.\ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e	6 0 b, ¬e a, ¬c	0 b,¬e, a ✓ ✓	8 0 b, ¬e, a, c ✓		$8.\ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$	6 0 b, ¬e a, ¬c ✓	0 b,¬e, a ✓ ✓ ✓	8 0 b,¬e, a, c ✓		$8.\ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$	6 0 b, ¬e a, ¬c ✓	0 b,¬e, a ✓ ✓ ✓	8 0 b, ¬e, a, c ✓ ✓ ✓		$8.\ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$	6 0 b,¬e a,¬c ✓ ✓ ¬a,c	0 b,¬e,a ✓ ✓ ✓ ✓	8 0 b, ¬e, a, c ✓ ✓ ✓ ✓		$8. \ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$ Cl. 7: $\neg d, \neg e$	6 0 b, ¬e a, ¬c ✓ ✓ ¬a, c ✓	0 b,¬e, a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	8 0 b, ¬e, a, c ✓ ✓ ✓ ✓ ✓		$8. \ a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, c	$ \begin{array}{c c} 6 \\ 0 \\ b, \neg e \\ a, \neg c \end{array} $ $ \begin{array}{c c} \checkmark \\ \neg a, c \end{array} $ $ \begin{array}{c c} \checkmark \\ \checkmark \\ a, c \end{array} $	0 b, ¬e, a	8 0 b, ¬e, a, c ✓ ✓ ✓ ✓ ✓		8. $a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, c Cl. 9: a	6 0 b,¬e a,¬c ✓ ✓ ¬a,c ✓ ✓ d a,c a	0 b, ¬e, a / / / / / c / / / / / / / / / / / / /	8 0 b, ¬e, a, a, c ✓ ✓ ✓ ✓ ✓		8. $a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, c Cl. 9: a BCP	6 0 b,¬e a,¬c ✓ ✓ ¬a, c ✓ ✓ d, c a a	0 b, ¬e, a	8 0 b, ¬e, a, c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		8. $a \lor c$		
Step Decision Level Assignment Cl. 1: $a, \neg c$ Cl. 2: b, c, e Cl. 3: b, e Cl. 4: $\neg a, c$ Cl. 5: $d, \neg e$ Cl. 6: $b, \neg d$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, c Cl. 9: a	6 0 b,¬e a,¬c ✓ ✓ ¬a,c ✓ ✓ d a,c a	0 b, ¬e, a / / / / / c / / / / / / / / / / / / /	8 0 b, ¬e, a, a, c ✓ ✓ ✓ ✓ ✓		8. $a \lor c$		

2.2.60 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{b, d\}$

Clause 2: $\{\neg a, c\}$

Clause 3: $\{a, \neg d\}$

Clause 4: $\{\neg b, c\}$

Clause 5: $\{\neg c, d\}$

Clause 6: $\{\neg c, e\}$

Clause 7: $\{\neg d, \neg e\}$

2.2.61 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the

learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg b, \neg e\}$

Clause 2: $\{a, d, e\}$

Clause 3: $\{b, \neg c\}$

Clause 4: $\{c, \neg d, e\}$

Clause 5: $\{\neg c, e\}$

Clause 6: $\{\neg a, c\}$

Clause 7: $\{a, b, \neg e\}$

Solution						
Step	1	2	3	4	5	6
Decision Level	0	1	2	2	2	2
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c, \\ \neg e$	$\neg a, \neg b, \neg c, \\ \neg e, \neg d$
Cl. 1: $\neg b, \neg e$	$\neg b, \neg e$	$\neg b, \neg e$	✓	✓	✓	✓
Cl. 2: a, d, e	a, d, e	d, e	d, e	d, e	d	{} X
Cl. 3: $b, \neg c$	$b, \neg c$	$b, \neg c$	$\neg c$	✓	✓	✓
Cl. 4: $c, \neg d, e$	$\neg d, e$	$\neg d$	✓			
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓	✓
Cl. 6: $\neg a, c$	$\neg a, c$	✓	✓	✓	✓	✓
Cl. 7: $a, b, \neg e$	$a, b, \neg e$	$b, \neg e$	$\neg e$	$\neg e$	✓	✓
BCP	-	-	$\neg c$	$\neg e$	$\neg d$	-
PL	-	-	-	-	-	-
Decision	$\neg a$	$\neg b$	-	-	-	-

Conflict in step 6

Step	7	8	9	10	11
Decision Level	1	1	1	1	1
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, \neg e$	$\neg a, b, \neg e, \\ \neg c$	$\neg a, b, \neg e, \\ \neg c, \neg d$
Cl. 1: $\neg b, \neg e$	$\neg b, \neg e$	$\neg e$	✓	✓	✓
Cl. 2: a, d, e	d, e	d, e	d	d	{} X
Cl. 3: $b, \neg c$	$b, \neg c$	✓	✓	1	1
Cl. 4: $c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	$c, \neg d$	$\neg d$	1
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c$	1	/
Cl. 6: $\neg a, c$	1	✓	✓	1	/
Cl. 7: $a, b, \neg e$	$b, \neg e$	✓	✓	1	/
Cl. 8: a, b	b	✓	✓	1	/
BCP	b	$\neg e$	$\neg c$	$\neg d$	-
PL	-	-	-	-	-
Decision	-	-	-	-	-

Conflict in step 11

Step	12	13	14	15	16	
Decision Level	0	0	0	0	0	
Assignment	-	a	a, c	a, c, b	$a, c, b, \\ \neg e$	
Cl. 1: $\neg b, \neg e$	$\neg b, \neg e$	$\neg b, \neg e$	$\neg b, \neg e$	$\neg e$	✓	
Cl. 2: a, d, e	a, d, e	1	1	1	1	
Cl. 3: $b, \neg c$	$b, \neg c$	$b, \neg c$	b	1	✓	
Cl. 4: $c, \neg d, e$	$c, \neg d, e$	$c, \neg d, e$	✓	1	✓	
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	e	e	{} X	
Cl. 6: $\neg a, c$	$\neg a, c$	c	✓	1	✓	
Cl. 7: $a, b, \neg e$	$a, b, \neg e$	✓	✓	1	✓	
Cl. 8: a, b	a, b	✓	✓	✓	✓	
Cl. 9: a	a	✓	✓	✓	✓	
BCP	a	c	b	$\neg e$	-	
PL	-	-	-	-	-	
Decision	-	-	-	-	UNSAT	
Conflict in step	16					
9 <u>a</u>	6	→ (c)	$\frac{3}{5}$	<u>b</u>	1 e	→ (⊥)
-	1. ¬b∨-	$\neg e \qquad 3$ $\neg e \lor \neg c$	$b \lor \neg c$	5.	$\frac{\neg c \lor e}{\neg a}$	$ \begin{array}{ccc} 6. \neg a \lor c \\ \hline \bot \end{array} $ 9. a

2.2.62 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor \neg b \lor c)$

Clause 2: $(\neg a \lor b)$

Clause 3: $(b \lor c)$

Clause 4: $(\neg c \lor d)$

Clause 5: $(\neg c \lor e)$

Clause 6: $(\neg d \lor \neg e)$

Step 1 2 3 4 5 6 2 Decision Level 0 1 2 2 2 2 2 2 Assignment	Solution							
Decision Level 0 1 2 2 2 2 2 2 Assignment	C4	1	0	9	4	F	C	
Assignment $-a - a, -b - a, -b, c - a, -c, a - a, -b, c - a, -c, a - a, -b, c - a, -c, a - a, -c, -c, a - a, $								
Assignment $-a = a = a, b = a$	Decision Level	0	1	2	2			
Cl. 2: $-a,b$ $-a,b$ $$	Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$			
Cl. 2: $-a,b$ $-a,b$ $$	Cl. 1: $a, \neg b, c$	$a, \neg b, c$	$\neg b, c$	√	1	1	✓	
Cl. 3: b, c b, c b, c c c d			,					
Cl. 4: $\neg c, d$ $\neg c, d$ $\neg c, d$ $\neg c, d$ d \checkmark \checkmark Cl. 5: $\neg c, e$ e e e $? \checkmark$						_		
Cl. 5: $\neg c, e$ $\neg c, e$ $\neg c, e$ $\neg c, e$ e			,					
Cl. 6: $\neg d$, $\neg e$ $\neg d$ $\neg e$ $\rightarrow e$ \rightarrow						<i>,</i>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	$\neg c, e$			e	{} X	
PL	Cl. 6: $\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg e$	✓	
Decision	BCP	-	-	c	d	$\neg e$	-	
Decision	PL	_	_	_	_	_	_	
Conflict in step 6 (a) (b) (c) (d) (e) (d) (e) (e) (e) (e) (e								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10			_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(-b)$ $\xrightarrow{3}$			 (,)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	$\frac{\neg d \lor \neg e}{\neg e}$	$\frac{4 }{\vee \neg c}$	$\frac{\neg c \lor d}{\neg c}$	$5. \neg c \lor e$ b	$3.\ b \lor c$	
Assignment $ \neg a \qquad \neg a, b \qquad \neg a, b, c \qquad \neg a, b, c, \\ d \qquad d, \neg e \\ \hline Cl. 1: a, \neg b, c \qquad \neg b, c \qquad c \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \hline Cl. 2: \neg a, b \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \hline Cl. 3: b, c \qquad b, c \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \hline Cl. 4: \neg c, d \qquad \neg c, d \qquad d \qquad \checkmark \qquad \checkmark \\ \hline Cl. 5: \neg c, e \qquad \neg c, e \qquad \neg c, e \qquad e \qquad e \qquad \{\} X \\ \hline Cl. 6: \neg d, \neg e \qquad \neg d, \neg e \qquad \neg d, \neg e \qquad \neg e \qquad \checkmark \\ \hline Cl. 7: b \qquad b \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \hline Cl. 7: b \qquad b \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \hline BCP \qquad b \qquad c \qquad d \qquad \neg e \qquad - \\ \hline PL \qquad - \qquad - \qquad - \qquad - \\ \hline Decision \qquad - \qquad - \qquad - \qquad - \\ \hline Decision \qquad - \qquad - \qquad - \qquad - \\ \hline - \qquad - \qquad - \qquad - \\ \hline Conflict in step 11 \qquad \qquad$		7	8	9	10	11		
Assignment $\neg a$ $\neg a, b$ $\neg a, b, c$ d $d, \neg e$ Cl. 1: $a, \neg b, c$ $-b, c$ c \checkmark \checkmark \checkmark Cl. 2: $\neg a, b$ \checkmark \checkmark \checkmark \checkmark Cl. 3: b, c b, c \checkmark \checkmark \checkmark \checkmark Cl. 4: $\neg c, d$ $\neg c, d$ $\neg c, d$ d \checkmark \checkmark Cl. 5: $\neg c, e$ $\neg c, e$ $\neg c, e$ e e e e e e e e e								
Cl. 2: $\neg a, b$	_	$\neg a$	$\neg a, b$	$\neg a, b, c$	_			
Cl. 3: b, c b, c \checkmark		$\neg b, c$	c	✓	✓			
Cl. $4: \neg c, d$ $\neg c, d$ $\neg c, d$ d \checkmark \checkmark Cl. $5: \neg c, e$ $\neg c, e$ $\neg c, e$ e e e $\{\} \checkmark$ Cl. $6: \neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg e$ \checkmark Cl. $7: b$ b c d $\neg e$ $-$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl. 2: $\neg a, b$	✓	✓	✓	1	✓		
Cl. $4: \neg c, d$ $\neg c, d$ $\neg c, d$ d \checkmark \checkmark Cl. $5: \neg c, e$ $\neg c, e$ $\neg c, e$ e e e $\{\} \checkmark$ Cl. $6: \neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg e$ \checkmark Cl. $7: b$ b c d $\neg e$ $-$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl. 3: b, c	b, c	/	/	1	/		
Cl. 5: $\neg c, e$ $\neg c, e$ $\neg c, e$ e e e $\{\} \times$ Cl. 6: $\neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg d, \neg e$ $\neg e$ \checkmark Cl. 7: b b c d $\neg e$ $-$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\neg c, d$					
Cl. 6: $\neg d$, $\neg e$ $ \neg e$ $ \checkmark$ Cl. 7: b $ b$ $ \checkmark$ $ \checkmark$ $ \checkmark$ BCP $ b$ $ c$ $ d$ $ \neg e$ $ -$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Cl. 7: b b c d $\neg e$ $-$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
BCP b c d $\neg e$ $-$ PL $ -$ Decision $ -$ Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
PL								
Decision Conflict in step 11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Conflict in step 11 7 b 1 c 5 e $ 6. \neg d \lor \neg e$ 1 e $ 6. \neg d \lor \neg e$ 1 e $ 6. \neg c \lor d$ e $ 7c$ $ 7c$ $ 1. a \lor \neg b \lor c a \lor \neg b 7. b$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		l	-	-	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Conflict in step	o 11						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	\		4		6	e)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\sim	_	~ (a)					
	$\bigcap a$)1		5		<u>e</u>		
	e	_1\/	. 4	-0\/ 1				
	0.	$\neg u \lor \neg e$	$\frac{2}{e \vee \neg c}$	$c \lor a$	5 -0	V/ e		
$a \lor \neg b$ 7. b			C V IC		<i>5.</i> €	1	$a \lor \neg b \lor c$	
$a \lor \neg b$ 1. b								7 h
					-	$u \vee \neg v$	\overline{a}	1.0

Step	12	13	14	15	16
Decision Level	0	0	0	0	0
Assignment	-	a	a, b	$a, b, \neg c$	$a, b, \neg a$
Cl. 1: $a, \neg b, c$	$a, \neg b, c$	✓	✓	✓	✓
Cl. 2: $\neg a, b$	$\neg a, b$	b	✓	√	✓
Cl. 3: b, c	b, c	b, c	✓	✓	✓
Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	✓	✓
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
Cl. 6: $\neg d, \neg e$	✓				
Cl. 7: b	b	b	✓	✓	1
Cl. 8: a	a	✓	✓	✓	1
BCP	a	b	-	-	-
PL	-	-	$\neg c$	$\neg d$	-
Decision	-	-	-	-	SAT

2.2.63 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg c, \neg d\}$

Clause 2: $\{c, e\}$

Clause 3: $\{\neg d, c\}$

Clause 4: $\{d, \neg e\}$

Clause 5: $\{b, \neg d\}$

Clause 6: $\{\neg d, \neg e\}$

Clause 7: $\{a, c\}$

Step	1	2	3	4	5	6	
Decision Level	0	0	0	1	1	1	
Assignment	-	a	a, b	$a, b, \neg c$	$a, b, \neg c, \\ \neg d$	$a, b, \neg c, \\ \neg d, \neg e$	
Cl. 1: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	1	1	1	
Cl. 2: c, e	c, e	c, e	c, e	e	e	{} X	
Cl. 3: ¬d, c	$\neg d, c$	$\neg d, c$	$\neg d, c$	$\neg d$	1	√	
Cl. 4: $d, \neg e$	$d, \neg e$	$d, \neg e$	$d, \neg e$	$d, \neg e$	$\neg e$	✓	
Cl. 5: $b, \neg d$	$b, \neg d$	$b, \neg d$	✓	✓	✓	✓	
Cl. 6: $\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	✓	✓	
Cl. 7: a, c	a, c	✓	✓	✓	✓	✓	
BCP	-	-	-	$\neg d$	$\neg e$	-	
PL	a	b	-	-	-	-	
Decision Conflict in step	-	-	$\neg c$	-	-	-	
	$\overline{\hspace{1cm}}$	4	$\neg e$	2 6	/ 0		
$\overline{\neg c}$	-d	→	$ \begin{array}{c} $	2. c \	$\frac{\frac{e}{c}}{c}$	$\neg d \lor c$	
3	_d _7	→	$ \begin{array}{c c} \hline & e \\ \hline & d \\ \hline & g \end{array} $	$\frac{2. c \vee \sqrt{c}}{10}$	<u>/ e</u> 3	$\neg d \lor c$	
3 Step	7 0	_4. (9	10	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment		4. 6	9	10	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c, \neg d$	0	$ \begin{array}{c c} 4. & c \\ \hline 8 & 0 \\ a, b, c \\ \hline \neg d \end{array} $	9 0 a,b,c, ¬d ✓	$ \begin{array}{c c} 10 \\ 0 \\ a, b, c, \end{array} $	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e	$ \begin{array}{c} 0 \\ a, b \\ \neg c, \neg d \\ c, e \end{array} $	$ \begin{array}{c c} & & & \\ \hline 4. & & \\ 8 & & \\ 0 & \\ a, b, c & \\ \hline \neg d & \\ \checkmark \end{array} $	9 0 a,b,c, ¬d ✓	$ \begin{array}{c c} 10 \\ \hline 0 \\ a,b,c,\\ \neg d,\neg e \end{array} $	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c	$ \begin{array}{c} 0 \\ a, b \\ \neg c, \neg d \\ c, e \\ \neg d, c \end{array} $	4. 6 8 0 a,b,c ¬d ✓	9 0 a,b,c, ¬d ✓	$ \begin{array}{c c} 10 \\ \hline 0 \\ a,b,c,\\ \neg d,\neg e \end{array} $	<u>/ e</u> 3.	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$	$ \begin{array}{c} 0 \\ a, b \\ \neg c, \neg d \\ c, e \\ \neg d, c \\ d, \neg e \end{array} $	$ \begin{array}{c c} & & & \\ \hline & & & \\ $	9 0 a,b,c, ¬d ✓	10 0 a,b,c, ¬d,¬e	$\frac{\sqrt{e}}{c}$ 3.	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$ Cl. 5: b , $\neg d$	$\begin{matrix} 0 \\ a,b \\ \neg c,\neg d \\ c,e \\ \neg d,c \\ d,\neg e \end{matrix}$	4. <i>a</i> 8 0 <i>a,b,c</i> ¬ <i>d</i> ✓ ✓ ✓	9 0 a,b,c, ¬d ✓ ✓ ✓	10 0 a,b,c, ¬d,¬e ✓ ✓ ✓	7 <u>e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$ Cl. 5: b , $\neg d$ Cl. 6: $\neg d$, $\neg e$	0 a, b $\neg c, \neg d$ c, e $\neg d, c$ $d, \neg e$ \checkmark $\neg d, \neg e$		9 0 a,b,c, ¬d ✓ ✓ ✓	10 0 a,b,c, ¬d,¬e ✓ ✓ ✓	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$ Cl. 5: b , $\neg d$ Cl. 6: $\neg d$, $\neg e$ Cl. 7: a , c	0 a, b ¬c, ¬d c, e ¬d, c d, ¬e ✓ ¬d, ¬e		9 0 a,b,c, ¬d ✓ ✓ ✓ ✓ ✓	10 0 a,b,c, ¬d,¬e ✓ ✓ ✓ ✓	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$ Cl. 5: b , $\neg d$ Cl. 6: $\neg d$, $\neg e$ Cl. 7: a , c Cl. 8: c	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9 0 a,b,c, ¬d ✓ ✓ ✓ ✓ ¬e ✓	10 0 a,b,c, ¬d,¬e ✓ ✓ ✓ ✓ ✓	<u>/ e</u> 3	$\neg d \lor c$	
Step Decision Level Assignment Cl. 1: $\neg c$, $\neg d$ Cl. 2: c , e Cl. 3: $\neg d$, c Cl. 4: d , $\neg e$ Cl. 5: b , $\neg d$ Cl. 6: $\neg d$, $\neg e$	0 a, b ¬c, ¬d c, e ¬d, c d, ¬e ✓ ¬d, ¬e		9 0 a,b,c, ¬d ✓ ✓ ✓ ✓ ✓	10 0 a,b,c, ¬d,¬e ✓ ✓ ✓ ✓	<u>/ e</u> 3	$\neg d \lor c$	

2.2.64 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor b \lor \neg c)$

Clause 2: $(\neg a \lor b)$

Clause 3: $(b \lor c)$

Clause 4: $(\neg c \lor d)$

Clause 5: $(\neg c \lor e)$

Clause 6: $(\neg d \lor \neg e)$

Solution					
Step	1	2	3	4	
Decision Level	0	0	0	0	
Assignment	-	b	$b, \neg c$	$b, \neg c, \neg d$	
Cl. 1: $a, b, \neg c$	$a, b, \neg c$	✓	✓	✓	
Cl. 2: $\neg a, b$	$\neg a, b$	✓	√	✓	
Cl. 3: b, c	b, c	✓	✓	✓	
Cl. 4: $\neg c, d$	$\neg c, d$	$\neg c, d$	✓	✓	
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	√	✓	
Cl. 6: $\neg d, \neg e$	✓				
BCP	-	-	-	-	
PL	b	$\neg c$	$\neg d$	-	
Decision	-	-	-	SAT	

2.2.65 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, c\}$

Clause 2: $\{\neg b, \neg c, d\}$

Clause 3: $\{\neg c, d, \neg e\}$

Clause 4: $\{\neg a, d, \neg e\}$

Clause 5: $\{c, b, d\}$

Clause 6: $\{\neg a, \neg d, e\}$

Solution				
Step	1	2	3	4
Decision Level	0	1	1	1
Assignment	=	$\neg a$	$\neg a, d$	$\neg a, d, b$
Cl. 1: a, b, c	a, b, c	b, c	b, c	✓
Cl. 2: $\neg b, \neg c, d$	$\neg b, \neg c, d$	$\neg b, \neg c, d$	1	✓
Cl. 3: $c, d, \neg e$	$c, d, \neg e$	$c, d, \neg e$	1	✓
Cl. 4: $\neg a, d, \neg e$	$\neg a, d, \neg e$	✓	1	✓
Cl. 5: c, b, d	c, b, d	c, b, d	✓	✓
Cl. 6: $\neg a, \neg d, e$	$\neg a, \neg d, e$	✓	✓	✓
BCP	-	-	-	-
PL	-	d	b	-
Decision	$\neg a$	-	-	SAT

2.2.66 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg c, \neg d\}$

Clause 2: $\{c, e\}$

Clause 3: $\{\neg d, c\}$

Clause 4: $\{d, \neg e\}$

Clause 5: $\{\neg a, \neg e, \neg c\}$

Clause 6: $\{\neg d, \neg c\}$

Clause 7: $\{a, c\}$

Solution Step Decision Level 0 0 0 1 $\neg a, b, \neg c,$ Assignment $\neg a, b$ $\neg a, b, \neg c$ $\neg a$ $\neg d$ Cl. 1: $\neg c, \neg d$ $\neg c, \overline{\neg d}$ $\neg c, \overline{\neg d}$ $\neg c, \overline{\neg d}$ Cl. $\underline{2: c, e}$ c, ec, ec, eeeCl. 3: $\neg d, c$ $\neg d, c$ $\neg d, c$ $\neg d, c$ Cl. 4: $d, \neg e$ $d, \neg e$ $d, \neg e$ $d, \neg e$ $b, \neg d$ $b, \neg d$ Cl. 5: $b, \neg d$ Cl. 6: $\neg a, \neg e, \neg c$ 1 $\neg a, \neg e, \neg c$ Cl. 7: d, c d, cd, cd, c \overline{d} {} X BCP $\neg d$ PL b $\neg a$ Decision $\neg c$

$3. \neg d \lor c$	7. $d \lor c$

Step	6	7	8	9
Decision Level	0	0	0	0
Assignment	$\neg a, b$	$\neg a, b, c$	$\neg a, b, c, \\ \neg d$	$\neg a, b, c,$ $\neg d, \neg e$
Cl. 1: $\neg c, \neg d$	$\neg c, \neg d$	$\neg d$	✓	✓
Cl. 2: c, e	c, e	✓	✓	✓
Cl. 3: $\neg d, c$	$\neg d, c$	✓	✓	✓
Cl. 4: $d, \neg e$	$d, \neg e$	$d, \neg e$	$\neg e$	✓
Cl. 5: b, ¬d	✓	✓	✓	✓
Cl. 6: $\neg a, \neg e, \neg c$	✓	✓	✓	✓
Cl. 7: d, c	d, c	✓	✓	✓
Cl. 8: c	c	✓	✓	✓
BCP	c	$\neg d$	$\neg e$	-
PL	-	-	-	-
Decision	-	-	-	SAT

2.2.67 Use the DPLL algorithm with BCP, PL and CDCL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(x \lor y \lor w)$

Clause 2: $(\neg x \lor z \lor \neg w)$

Clause 3: $(\neg y \lor w)$

Clause 4: $(\neg z \lor \neg w)$

Clause 5: $(\neg y \lor z)$

Clause 6: $(\neg x \lor w)$

Solution Step 4 Decision Level 0 1 1 1 Assignment $\neg w$ $\neg w, \neg x$ $\neg w, \neg x, \neg y$ Cl. 1: x, y, w{} **X** x, y, wx, yCl. 2: $\neg x, z, \neg w$ $\neg x, z, \neg w$ Cl. 3: $\neg y, w$ $\neg y, w$ $\neg y$ $\neg y$ Cl. 4: $\neg z$, $\neg w$ $\neg z, \neg w$ Cl. 5: $\neg y, z$ $\neg y, z$ $\neg y, z$ $\neg y, z$ Cl. 6: $\neg x, w$ $\neg x, w$ $\neg x$ BCP $\neg x$ $\neg y$ PL Decision $\neg w$ Conflict in step 4 $\neg x$ 3 $x \vee w$ $6. \neg x \lor w$ 9 Step Decision Level 0 0 0 0 0 $w, \neg z, \neg x,$ Assignment w $w, \neg z$ $w, \neg z, \neg x$ Cl. 1: x, y, wx, y, wCl. 2: $\neg x, z, \neg w$ $\neg x, z, \neg w$ $\neg x, z$ $\neg x$ Cl. 3: $\neg y, w$ 1 $\neg y, w$ Cl. 4: $\neg z$, $\neg w$ Cl. 5: $\neg y$, zCl. 6: $\neg x$, w $\neg z, \neg w$ $\neg z$ $\frac{\neg y}{\checkmark}$ $\neg y, z$ $\neg y, z$ $\neg x, w$ Cl. 7: w wBCP w $\neg z$ $\neg x$ $\neg y$ PLDecision SAT

2.2.68 Use the DPLL algorithm with BCP, PL and CDCL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(u \lor \neg v)$

Clause 2: $(\neg u \lor w)$ Clause 3: $(v \lor \neg x)$ Clause 4: $(w \lor \neg y)$ Clause 5: $(v \lor \neg y)$ Clause 6: $(\neg w \lor z)$ Clause 7: $(z \lor x)$ Clause 8: $(y \lor \neg z)$

Step	1	2	3	4		5	6	1
Decision Level	0	1	1	1		1	1	
Assignment	-	$\neg u$	$\neg u, \neg v$	 	72	$ \begin{array}{c} \overline{u, \neg v, \neg x,} \\ \neg y \end{array} $		
Cl. 1: u, ¬v	$u, \neg v$	$\neg v$	/	/		<u>√</u>	<i>y</i> , √	
Cl. 2: $\neg u, w$	$\neg u, w$	√	1			<u> </u>	/	
Cl. 3: $v, \neg x$	$v, \neg x$	$v, \neg x$	$\neg x$	/		√	1	
Cl. 4: w, ¬y	$w, \neg y$	$w, \neg y$	$w, \neg y$	w,	$\neg y$	√	/	
Cl. 5: $v, \neg y$	$v, \neg y$	$v, \neg y$	$\neg y$	7	y	✓	/	
Cl. 6: $\neg w, z$	$\neg w, z$	$\neg w, z$	$\neg w, z$	$\neg w$,z	$\neg w, z$	$\neg w$	
Cl. 7: z, x	z, x	z, x	z, x	z		z	{} X	
Cl. 8: $y, \neg z$	$y, \neg z$	$y, \neg z$	$y, \neg z$	y,-	$\neg z$	$\neg z$	1	
BCP	-	$\neg v$	$\neg x$	$\neg i$	y	$\neg z$	-	
PL	-	-	-	-		-	-	
Decision Conflict in step	$\neg u$	-	-	-		-	-	
$\neg u$ \longrightarrow 1	$\neg v$	5	\bigcirc	8				
$\neg u$	$\frac{y \vee \neg z}{\underline{i}}$		$\frac{z \vee x}{y \vee y}$		$\frac{\sqrt{\neg x}}{v}$	5. v ∨	$\frac{\neg y}{u}$ 1. u	V ¬ <i>v</i> _
8. Step			$y \lor$	3. v		$5. \ v \lor $	1. <i>u</i>	$\vee \neg v$
8. Step	$y \vee \neg z$ $\underline{\underline{i}}$	7.	$y \lor$	3. v	_v		1. <i>u</i>	$\vee \neg v$
8. Step Decision Level	$y \vee \neg z$ $\frac{1}{2}$	$7.$ $1 \lor x$ 8	$y \lor$	3. v		12	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment	$y \lor \neg z$ $\underline{\underline{y}}$	$7.$ $y \lor x$	$\begin{array}{c c} y \lor \\ \hline & 9 \\ \hline & 0 \\ \hline \end{array}$	3. v v	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \end{array} $	$ \begin{array}{ c c c } \hline 12 \\ \hline 0 \\ u, w, z, \end{array} $	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$	$ \begin{array}{c c} y \lor \neg z \\ \hline & 3 \\ \hline & 7 \\ \hline & 0 \\ \hline & - \end{array} $	$ \begin{array}{c c} 7. \\ \hline & 8 \\ \hline & 0 \\ \hline & u \end{array} $	$\begin{array}{c c} y \lor \\ \hline & 9 \\ \hline & 0 \\ \hline & u, w \\ \end{array}$	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \end{array} $	$ \begin{array}{c c} 12 \\ 0 \\ u, w, z, \\ y, v \end{array} $	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$	$y \lor \neg z$ $\frac{3}{2}$ 0 $-$ $u, \neg v$	$ \begin{array}{c c} 7. \\ \hline & 8 \\ \hline & 0 \\ \hline & u \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \\ \checkmark \\ v, \neg x \end{array} $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \checkmark \\ \hline v, \neg x \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ v, \neg x \end{array} $	12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$	$y \lor \neg z$ $\frac{1}{2}$ 0 $-$ $u, \neg v$ $\neg u, w$	$ \begin{array}{c c} 7. \\ \hline & 8 \\ \hline & 0 \\ \hline & u \\ \hline & w \\ \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \end{array} $	3. v v 10 0 u, w, z		12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$	$y \lor \neg z$ $\frac{1}{2}$	$ \begin{array}{c c} 7. \\ 8 \\ 0 \\ u \\ \checkmark \\ w \\ v, \neg x \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \\ \checkmark \\ \checkmark \\ v, \neg x \\ \checkmark \\ v, \neg y \end{array} $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ v, \neg x \\ \hline v, \neg y \\ \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ v \end{array} $	12 0 u, w, z, y, v	1. <i>u</i>	<u>∨¬v</u> _
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$	$y \lor \neg z$ $\frac{1}{2}$ 7 0 $-$ $u, \neg v$ $\neg u, w$ $v, \neg x$ $w, \neg y$	$ \begin{array}{c c} 7. \\ 8 \\ 0 \\ u \\ \checkmark \\ w \\ v, \neg x \\ w, \neg y \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \end{array} $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ \hline v, \neg x \\ \hline v, \neg y \\ \checkmark \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ v, \neg x \\ \hline v \\ \checkmark \\ \checkmark \\ \end{array} $	12 0 u, w, z, y, v	1. <i>u</i>	<u>∨¬v</u> _
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$ Cl. 7: z, x	$y \lor \neg z$ $\frac{1}{2}$ 7 0 $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $w, \neg y$ $v, \neg x$ $w, \neg y$ $v, \neg y$	$ \begin{array}{c c} 7. \\ 8 \\ 0 \\ u \\ \checkmark \\ w \\ v, \neg x \\ w, \neg y \\ v, \neg y \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \\ \checkmark \\ \checkmark \\ v, \neg x \\ \checkmark \\ v, \neg y \end{array} $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ v, \neg x \\ \hline v, \neg y \\ \end{array} $	$ \begin{array}{c c} \hline v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ \hline \checkmark \\ \checkmark \\$	12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$ Cl. 7: z, x Cl. 8: $y, \neg z$	$y \lor \neg z$	$ \begin{array}{c c} 7. \\ \hline 8 \\ 0 \\ u \\ \hline w \\ v, \neg x \\ w, \neg y \\ v, \neg y \\ \neg w, z \\ \hline z, x \\ y, \neg z \\ \end{array} $	$ \begin{array}{c c} y \lor \\ \hline $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ v, \neg x \\ \hline \checkmark \\ v, \neg y \\ \hline \checkmark \\ y \\ \hline \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ \hline \checkmark \\ \checkmark \\$	12 0 u, w, z, y, v	1. <i>u</i>	<u>∨¬v</u> _
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$ Cl. 7: z, x Cl. 8: $y, \neg z$ Cl. 9: u	$y \lor \neg z$	$ \begin{array}{c c} 7. \\ \hline 8 \\ 0 \\ u \\ \hline \hline w \\ v, \neg x \\ w, \neg y \\ v, \neg y \\ \neg w, z \\ z, x \\ \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \\ \checkmark \\ \checkmark \\ v, \neg x \\ \checkmark \\ v, \neg y \\ z \\ z, x \end{array} $	3. v v 10 0 u,w,z v,¬x v,¬y v,¬y ✓	$ \begin{array}{c c} \hline v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ \hline \checkmark \\ \checkmark \\$	12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$ Cl. 7: z, x Cl. 8: $y, \neg z$ Cl. 9: u BCP	$\begin{array}{c c} y \vee \neg z \\ \hline & 1 \\ \hline & 7 \\ \hline & 0 \\ \hline & - \\ \hline & u, \neg v \\ \hline & \neg u, w \\ v, \neg x \\ w, \neg y \\ \hline & v, \neg y \\ \hline & \neg w, z \\ \hline & z, x \\ y, \neg z \\ \hline & u \\ \end{array}$	$ \begin{array}{c c} 7. \\ \hline 8 \\ 0 \\ u \\ \hline w \\ v, \neg x \\ w, \neg y \\ v, \neg y \\ \neg w, z \\ z, x \\ y, \neg z \\ \hline w \\ \end{array} $	$ \begin{array}{c c} y \lor \\ \hline $	$ \begin{array}{c c} 3. & v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ v, \neg x \\ \hline \checkmark \\ v, \neg y \\ \hline \checkmark \\ y \\ \hline \checkmark \\ y \\ \hline \end{array} $	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ \hline \checkmark \\ \checkmark \\$	12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$
Step Decision Level Assignment Cl. 1: $u, \neg v$ Cl. 2: $\neg u, w$ Cl. 3: $v, \neg x$ Cl. 4: $w, \neg y$ Cl. 5: $v, \neg y$ Cl. 6: $\neg w, z$ Cl. 7: z, x Cl. 8: $y, \neg z$ Cl. 9: u	$\begin{array}{c c} y \vee \neg z \\ \hline & \frac{1}{2} \\ \hline & 7 \\ \hline & 0 \\ \hline & - \\ \hline & u, \neg v \\ \hline & \neg u, w \\ v, \neg y \\ \hline & v, \neg y \\ \hline & v, \neg y \\ \hline & \neg w, z \\ z, x \\ y, \neg z \\ u \end{array}$	$ \begin{array}{c c} 7. \\ \hline 8 \\ 0 \\ \hline u \\ \hline w \\ v, \neg x \\ w, \neg y \\ v, \neg y \\ \neg w, z \\ z, x \\ y, \neg z \\ \checkmark \end{array} $	$ \begin{array}{c c} y \lor \\ \hline 9 \\ 0 \\ u, w \\ \checkmark \\ \checkmark \\ \checkmark \\ v, \neg x \\ \checkmark \\ v, \neg y \\ z \\ z, x \\ y, \neg z \\ \checkmark \\ \checkmark $	$ \begin{array}{c c} 3. v \\ \hline v \\ \hline 10 \\ 0 \\ u, w, z \\ \hline \checkmark \\ v, \neg x \\ \hline \checkmark \\ v, \neg y \\ \checkmark \\ \checkmark$	$ \begin{array}{c c} v \\ \hline 11 \\ 0 \\ u, w, z, \\ y \\ \checkmark \\ \checkmark \\ v, \neg x \\ \checkmark \\ \checkmark$	12 0 u, w, z, y, v	1. <i>u</i>	$\vee \neg v$

2.2.69 Use the DPLL algorithm with BCP and PL to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: (a \vee b)

Clause 2: $(a \lor c)$

Clause 3: $(d \lor e)$

Clause 4: $(\neg b \lor \neg c)$

Clause 5: (e $\vee \neg f$)

Clause 6: $(\neg d \lor \neg f)$

Clause 7: $(d \lor \neg f)$

Clause 8: (b ∨e)

Clause 9: (a $\vee \neg f$)

Step	1	2	3	4	5	6	
Decision Level	0	0	0	0	0	0	
Assignment	-	a	$a, \neg c$	$a, \neg c, b$	$a, \neg c, b,$ e	$a, \neg c, b, e, \neg f$	
Cl. 1: a, b	a, b	/	/	/	/	1	
Cl. 2: a, c	a, c	1	1	1	✓	1	
Cl. 3: d, e	d, e	d, e	d, e	d, e	✓	1	
Cl. 4: $\neg b, \neg c$	$\neg b, \neg c$	$\neg b, \neg c$	√	✓	✓	1	
Cl. 5: $e, \neg f$	$e, \neg f$	$e, \neg f$	$e, \neg f$	$e, \neg f$	✓	✓	
Cl. 6: $\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	$\neg d, \neg f$	1	
Cl. 7: $d, \neg f$	$d, \neg f$	$d, \neg f$	$d, \neg f$	$d, \neg f$	$d, \neg f$	1	
Cl. 8: b, e	b, e	b, e	b, e	✓	✓	1	
Cl. 9: <i>a</i> , ¬ <i>f</i>	$a, \neg f$	✓	✓	✓	✓	1	
BCP	-	-	-	-	-	-	
PL	a	$\neg c$	b	e	$\neg f$	-	
Decision	-	-	-	-	-	SAT	

2.2.70 Use the DPLL algorithm (without BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the negative phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \lor \neg b)$

Clause 2: $(c \vee \neg d)$

Clause 3: $(a \lor \neg b)$

Clause 4: $(c \lor d)$

Step	1	2	3	4	5	
Decision Level	0	1	2	3	4	
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c,$	
_					$\neg d$	
Cl. 1: $\neg a, \neg b$	$\neg a, \neg b$	✓	✓	√	√	
Cl. 2: c,¬d	$c, \neg d$	$c, \neg d$	$c, \neg d$	$\neg d$	√	
Cl. 3: a, ¬b	$a, \neg b$	$\neg b$	✓	√	/	
Cl. 4: c, d	c, d	c, d	c, d	d	{} X	
BCP PL	-	-	-	-	-	
Decision	-	- ¬b	-	- ¬d	-	
	$\neg a$	70	$\neg c$	$\neg u$	-	
Step	6		7	-		
Decision Level	3		4	-		
Assignment	$\neg a, \neg b, \neg b, \neg b, \neg b, \neg c$	$\neg c \mid \neg a$	d , $\neg b$, $\neg c$, d			
Cl. 1: $\neg a, \neg b$	✓		1	1		
Cl. 2: $c, \neg d$	$\neg d$		{} X	1		
Cl. 3: $a, \neg b$	✓		✓]		
Cl. 4: c, d	d		✓			
BCP	ı		-			
PL	ı		-			
Decision	d		-			
Step	8	9				
Decision Level	2	3				
Assignment	$\neg a, \neg b$	$\neg a, \neg b$	b, c			
Cl. 1: $\neg a, \neg b$	✓	1				
Cl. 2: $c, \neg d$	$c, \neg d$	1				
Cl. 3: $a, \neg b$	✓	1				
Cl. 4: c, d	c, d	/				
BCP	-	-				
PL	-	-				

2.2.71 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $(a \lor \neg b \lor c)$

Clause 2: $(\neg a \lor \neg b \lor \neg c)$

Clause 3: $(a \lor c \lor \neg e)$

Clause 4: $(b \lor \neg c \lor e)$

Clause 5: $(c \lor e)$

Clause 6: $(b \lor \neg d)$

Clause 7: $(\neg b \lor d)$

Clause 8: $(\neg c \lor e)$

Step	1	2	3	4	5	6
Decision Level	0	1	2	2	3	3
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg d$	$\neg a, \neg b, \neg d, \\ \neg c$	$\neg a, \neg b, \neg d, \\ \neg c, \neg e$
Cl. 1: $a, \neg b, c$	$a, \neg b, c$	$\neg b, c$	✓	✓	√	√
Cl. 2: $\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c$	1	√	√	√	✓
Cl. 3: $a, c, \neg e$	$a, c, \neg e$	$c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$	√
Cl. 4: $b, \neg c, e$	$b, \neg c, e$	$b, \neg c, e$	$\neg c, e$	$\neg c, e$	√	✓
Cl. 5: c, e	c, e	c, e	c, e	c, e	e	{} X
Cl. 6: $b, \neg d$	$b, \neg d$	$b, \neg d$	$\neg d$	1	✓	√
Cl. 7: ¬b, d	$\neg b, d$	$\neg b, d$	✓	1	✓	✓
Cl. 8: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
BCP	-	-	$\neg d$	-	$\neg e$	-
PL	-	-	-	-	-	-
Decision Conflict in step	$\neg a$	$\neg b$	-	$\neg c$	-	-
3	ne)					
(The state of the s	3. a	· \ c \ -	$\neg e \qquad 5. \ c$ $n \lor c$	<u>V e</u>	
3			· V c V -	$re ext{5. } c$	<u>V e_</u>	
Step	7	8	V c V -	9	<u>V e</u>	
3	7 2	8 2		9	∨ e_	
Step Decision Level Assignment	$ \begin{array}{c c} 7\\ 2\\ \neg a, \neg b, \neg d \end{array} $	$ \begin{array}{c c} 8 \\ 2 \\ \neg a, \neg b, \neg c \end{array} $		$ \begin{array}{c c} 9 \\ \hline 2 \\ \neg b, \neg d, \\ c, e \end{array} $	<u>V e</u> _	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$	$ \begin{array}{c c} 7\\2\\ \neg a, \neg b, \neg d\\ \checkmark $	8 2 ¬a,¬b,¬ c		$ \begin{array}{c c} 9 \\ \hline 2 \\ \neg b, \neg d, \\ c, e \\ \checkmark $	<u>V e</u> _	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$	$ \begin{array}{c c} 7\\2\\ \neg a, \neg b, \neg d\\ \checkmark\\ \checkmark \end{array} $	8 2 ¬a,¬b,¬ c ✓		$ \begin{array}{c c} 9\\ \hline 2\\ \neg b, \neg d,\\ c, e\\ \checkmark\\ \checkmark \end{array} $	<u>V e</u> _	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$	$ \begin{array}{c c} 7 \\ 2 \\ \neg a, \neg b, \neg d \end{array} $ $ \begin{array}{c c} \checkmark \\ c, \neg e \end{array} $	8 2 ¬a,¬b,¬ c ✓		$ \begin{array}{c c} 9 \\ \hline 2 \\ \neg b, \neg d, \\ c, e \\ \checkmark \\ \checkmark \end{array} $	<u>V e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$	$ \begin{array}{c c} 7\\ 2\\ \neg a, \neg b, \neg d\\ \checkmark\\ \checkmark\\ c, \neg e\\ \neg c, e \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓		$ \begin{array}{c} 9 \\ 2 \\ \neg b, \neg d, \\ c, e \\ \checkmark \\ \checkmark \\ \checkmark \checkmark $	<u>V e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e	$ \begin{array}{c c} 7\\ 2\\ \neg a, \neg b, \neg d\\ \checkmark\\ \checkmark\\ c, \neg e\\ \neg c, e\\ c, e \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓		9 2 ¬b, ¬d, c, e ✓ ✓ ✓	<u>V e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$	$ \begin{array}{c c} 7\\ 2\\ \neg a, \neg b, \neg d\\ \checkmark\\ \checkmark\\ c, \neg e\\ \neg c, e\\ c, e\\ \checkmark \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ e		9 2 ¬b, ¬d, c, e ✓ ✓ ✓	<u>V e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$ Cl. 7: $\neg b, d$	$ \begin{array}{c cccc} & 7 & & \\ & 2 & \\ & \neg a, \neg b, \neg d & \\ & \checkmark & \\ & \checkmark & \\ & c, \neg e & \\ & \neg c, e & \\ & c, e & \\ & \checkmark & \\ & V &$	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ e ✓		9 2 ¬b, ¬d, c, e ✓ ✓ ✓ ✓	∨ e_	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$ Cl. 7: $\neg b, d$ Cl. 8: $\neg c, e$	$ \begin{array}{c cccc} & 7 & & \\ & 2 & \\ & \neg a, \neg b, \neg d & \\ & \checkmark & \\ & \checkmark & \\ & \neg c, e & \\ & & \checkmark & \\ & & \neg c, e & \\ & & \checkmark & \\ & & \neg c, e & \\ \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ ✓ ✓ e ✓ ✓ ✓ ✓ e ✓ ✓		9 2 ¬b,¬d, c,e ✓ ✓ ✓ ✓ ✓ ✓	∨ e_	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$ Cl. 7: $\neg b, d$ Cl. 8: $\neg c, e$ Cl. 9: a, c	$ \begin{array}{c c} 7 \\ 2 \\ \neg a, \neg b, \neg d \end{array} $ $ \begin{array}{c} \checkmark \\ c, \neg e \\ \neg c, e \\ c, e \end{array} $ $ \begin{array}{c} \checkmark \\ \checkmark \\ \neg c, e \\ c \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ e ✓ ✓ ✓		9 2 ¬b, ¬d, c, e ✓ ✓ ✓ ✓ ✓ ✓	<u>∨ e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$ Cl. 7: $\neg b, d$ Cl. 8: $\neg c, e$ Cl. 9: a, c BCP	$ \begin{array}{c cccc} & 7 & & & \\ & 2 & & \\ & \neg a, \neg b, \neg d & & \\ & \checkmark & & \\ & \checkmark & & \\ & \neg c, e & & \\ & c & & \\ & & \neg c, e & \\ & c & $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ e ✓ ✓ e ✓ e ✓ e		9 2 ¬b,¬d, c,e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	<u>∨ e</u>	
Step Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ Cl. 4: $b, \neg c, e$ Cl. 5: c, e Cl. 6: $b, \neg d$ Cl. 7: $\neg b, d$ Cl. 8: $\neg c, e$ Cl. 9: a, c	$ \begin{array}{c c} 7 \\ 2 \\ \neg a, \neg b, \neg d \end{array} $ $ \begin{array}{c} \checkmark \\ c, \neg e \\ \neg c, e \\ c, e \end{array} $ $ \begin{array}{c} \checkmark \\ \checkmark \\ \neg c, e \\ c \end{array} $	8 2 ¬a,¬b,¬ c ✓ ✓ ✓ e ✓ ✓ ✓	d , $\neg a$,	9 2 ¬b, ¬d, c, e ✓ ✓ ✓ ✓ ✓ ✓	<u>∨ e</u>	

2.2.72 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, d\}$

Clause 2: $\{a, c\}$

Clause 3: $\{\neg a, b, \neg c\}$

Clause 4: $\{\neg b, e\}$

Clause 5: $\{a, \neg c\}$

Clause 6: $\{\neg a, \neg e, \neg d\}$

Clause 7: $\{a, \neg b\}$

Clause 8: $\{b, \neg d\}$

Solution Step Decision Level 0 1 Assignment $\neg a$ $\neg a, \neg b$ $\neg a, \neg b, \neg c$ Cl. 1: a, d \overline{d} a, ddCl. 2: a, c a, c{} **X** ccCl. 3: $\neg a, b, \neg c$ Cl. 4: $\neg b, e$ $\neg a, b, \neg c$ $\neg b, e$ $\neg b, e$ Cl. 5: $a, \neg c$ Cl. 6: $\neg a, \neg e, \neg d$ $\neg a, \overline{\neg e, \neg d}$ Cl. 7: $a, \neg b$ $a, \neg b$ $\neg b$ Cl. 8: $b, \neg d$ $b, \neg d$ $b, \neg d$ $\neg d$ $\neg d$ BCP $\neg b$ $\neg c$ PL Decision $\neg a$ Conflict in step 4 5 $5. \ a \lor \neg c$ 9 Decision Level 0 0 0 0 0 $a, \neg \overline{c}, \overline{\neg d},$ Assignment a $a, \neg c, \neg d$ $a, \neg c$ $\neg b$ Cl. 1: a, d a, dCl. 2: a, c a, cCl. 3: $\neg a, b, \neg c$ Cl. 4: $\neg b, e$ $\neg a, b, \neg c$ $b, \neg c$ $\neg b, e$ Cl. 5: $a, \neg c$ $a, \neg c$ Cl. 6: $\neg a, \neg e, \neg d$ $\neg a, \overline{\neg e, \neg d}$ $\neg e, \overline{\neg d}$ $\neg e, \neg \overline{d}$ Cl. 7: $a, \neg b$ $a, \neg b$ Cl. 8: $b, \neg d$ $b, \neg d$ $b, \neg d$ Cl. 9: a aBCP a \overline{PL} $\neg d$ $\neg c$ Decision SAT

2.2.73 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg d\}$

Clause 2: $\{a, b, c\}$

Clause 3: $\{\neg a, b\}$

Clause 4: $\{\neg b, c\}$

Clause 5: $\{\neg c, d\}$

Clause 6: $\{\neg c, e\}$

Clause 7: $\{\neg d, \neg e\}$

olution							
Step	1	2	3	4	5	6	
Decision Level	0	1	2	2	2	2	
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c, d$	$\neg a, \neg b, c, \\ d, \neg e$	
Cl. 1: $\neg a, \neg d$	$\neg a, \neg d$	1	✓	✓	✓	1	
Cl. 2: a, b, c	a, b, c	b, c	c	✓	✓	1	
Cl. 3: ¬a, b	$\neg a, b$	✓	✓	✓	1	1	
Cl. 4: $\neg b, c$	$\neg b, c$	$\neg b, c$	√	✓	/	1	
Cl. 5: $\neg c, d$	$\neg c, d$	$\neg c, d$	$\neg c, d$	d	/	√	
Cl. 6: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	e	{} X	
Cl. 7: $\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg d, \neg e$	$\neg e$	1	
BCP	_	_	\overline{c}	d	$\neg e$	-	
PL	-	-	-	-	-	-	
Decision	$\neg a$	$\neg b$	-	_	_	_	
onflict in ster	0.6						
		6	─ ──(<u>e</u>			
	7. ¬a	$\frac{e \lor \neg e}{\neg e \lor}$	$\frac{5. \neg c}{\neg c}$	$\frac{a \vee a}{a}$	$\exists . \neg c \lor e$		
				$\neg c$	$a \lor b$	$2. a \lor b \lor$	<u>√ c</u>
Step	7	8	9	$rac{\neg c}{10}$	$a \lor b$	$2. \ a \lor b \lor$	<u>/ c</u>
	7	8	9	$rac{10}{1}$	$\begin{array}{c c} a \lor b \\ \hline \hline 11 \\ \hline 1 \\ \end{array}$	$2. a \lor b \lor$	<u>/ c</u>
Decision Level	'	0	J	1 $\neg a, b, c,$	$\frac{1}{\neg a, b, c}$	$2. \ a \lor b \lor$	<u>/ c</u>
Decision Level Assignment	1	$\frac{1}{\neg a, b}$	$\frac{3}{1}$ $\neg a, b, c$	1	1	$2. a \lor b \lor$	<u>√ c</u>
Step Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c	1 ¬a	1	1	$ \begin{array}{c c} \hline 1 \\ \neg a, b, c, \\ d \end{array} $	$ \begin{array}{c c} \hline 1 \\ \neg a, b, c, \\ d, \neg e \end{array} $	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c	$ \begin{array}{c} 1 \\ \neg a \\ \hline b, c \end{array} $	$ \begin{array}{c} 3 \\ \hline 1 \\ \hline \neg a, b \\ \checkmark \end{array} $	$ \begin{array}{c} 3 \\ \hline 1 \\ \neg a, b, c \end{array} $	1 ¬a, b, c, d	$ \begin{array}{c c} 1 \\ \neg a, b, c, \\ d, \neg e \end{array} $	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$	1 ¬a	$ \begin{array}{c} $	1 ¬a,b,c ✓ ✓	1	1 ¬a, b, c, d, ¬e ✓	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$	1 ¬a b, c ¬b, c	1 ¬a, b	1 ¬a,b,c	1	11 1 ¬a, b, c, d, ¬e ✓	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$	$ \begin{array}{c} $	$ \begin{array}{c c} \hline 1 \\ \hline \neg a, b \\ \hline \checkmark \\ \hline \checkmark \\ \hline c \\ \hline \neg c, d \end{array} $	1 ¬a,b,c ✓ ✓ ✓ ✓ ✓ ✓ d	1 1 ¬a, b, c, d ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$	$ \begin{array}{c c} & \neg a \\ & \checkmark \\ & b, c \\ & \checkmark \\ & \neg b, c \\ & \neg c, d \\ & \neg c, e \end{array} $	$ \begin{array}{c c} \hline 1 \\ \hline \neg a, b \\ \hline \checkmark \\ \hline \checkmark \\ \hline c \\ \hline \neg c, d \\ \hline \neg c, e \end{array} $	1 ¬a,b,c ✓ ✓ ✓ ✓ ✓ d e	10 1 ¬a, b, c, d ✓ ✓ ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>√ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$	1 ¬a b, c √ ¬b, c ¬c, d ¬c, e ¬d, ¬e	1 ¬a, b ✓ ✓ c ¬c, d ¬c, e ¬d, ¬e	3 1 ¬a,b,c ✓ ✓ ✓ ✓ d e ¬d,¬e	10 1 ¬a, b, c, d ✓ ✓ ✓ ✓ ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ¬a, b ✓ ✓ c ¬c, d ¬c, e ¬d, ¬e ✓	3 ¬a,b,c ✓ ✓ ✓ d e ¬d,¬e ✓	10 1 7a, b, c, d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, b BCP	1 ¬a b, c √ ¬b, c ¬c, d ¬c, e ¬d, ¬e	1 ¬a, b ✓ ✓ c ¬c, d ¬c, e ¬d, ¬e	3 1 ¬a,b,c ✓ ✓ ✓ ✓ d e ¬d,¬e	10 1 ¬a, b, c, d ✓ ✓ ✓ ✓ ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, b BCP PL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3 ¬a,b,c ✓ ✓ ✓ d e ¬d,¬e ✓	10 1 7a, b, c, d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ e ¬e ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, b BCP PL Decision	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3 ¬a,b,c ✓ ✓ ✓ d e ¬d,¬e ✓	10 1 7a, b, c, d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ e ¬e ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c Cl. 3: $\neg a, b$ Cl. 4: $\neg b, c$ Cl. 5: $\neg c, d$ Cl. 6: $\neg c, e$ Cl. 7: $\neg d, \neg e$ Cl. 8: a, b BCP PL Decision	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3 ¬a,b,c ✓ ✓ ✓ d e ¬d,¬e ✓	10 1 7a, b, c, d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ e ¬e ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b \lor$	<u>/ c</u>
Decision Level Assignment Cl. 1: $\neg a, \neg d$ Cl. 2: a, b, c	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3 ¬a,b,c ✓ ✓ ✓ d e ¬d,¬e ✓	10 1 7a, b, c, d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ e ¬e ✓	1 ¬a, b, c, d, ¬e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$2. a \lor b$	

2.2.74 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg c, \neg e\}$

Clause 2: $\{a, \neg e\}$

Clause 3: $\{b, e\}$

Clause 4: $\{\neg b, d\}$

Clause 5: $\{\neg b, \neg d\}$

Clause 6: $\{c, \neg d\}$

Clause 7: $\{c, d\}$

Step	1	2	3	4	5	
Decision Level	0	0	0	0	0	
Assignment	-	a	a, c	a, c, e	$a, c, e, \\ \neg b$	
Cl. 1: $a, \neg c, \neg e$	$a, \neg c, \neg e$	1	1	1	1	
Cl. 2: $a, \neg e$	$a, \neg e$	1	1	1	1	
Cl. 3: b, e	b, e	b, e	b, e	✓	✓	
Cl. 4: $\neg b, d$	$\neg b, d$	$\neg b, d$	$\neg b, d$	$\neg b, d$	✓	
Cl. 5: $\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	$\neg b, \neg d$	✓	
Cl. 6: $c, \neg d$	$c, \neg d$	$c, \neg d$	✓	√	✓	
Cl. 7: c, d	c, d	c, d	✓	✓	✓	
BCP	-	-	-	-	-	
PL	a	c	e	$\neg b$	-	
Decision	-	-	-	-	SAT	

2.2.75 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{b, c, d\}$

Clause 2: $\{\neg a, \neg c\}$

Clause 3: $\{b, c\}$

Clause 4: $\{\neg b, \neg d\}$

Clause 5: $\{\neg d, e\}$

Clause 6: $\{d, e\}$

Clause 7: $\{\neg c, \neg e\}$

Clause 8: $\{\neg b, c, \neg d\}$

2.2.76 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the

positive phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, d\}$

Clause 2: $\{\neg d, c, \neg a\}$

Clause 3: $\{\neg b, e\}$

Clause 4: $\{\neg b, \neg e\}$

Clause 5: $\{\neg b, f\}$

Clause 6: $\{b, \neg f\}$

Solution							
Step	1	2	3	4]		
Decision Level	0	0	1	1	1		
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, e$	1		
Cl. 1: $\neg a, d$	$\neg a, d$	✓	✓	✓	1		
Cl. 2: $\neg d, c, \neg a$	$\neg d, c, \neg a$	✓	✓	✓	1		
Cl. 3: $\neg b, e$	$\neg b, e$	$\neg b, e$	e	✓	1		
Cl. 4: $\neg b, \neg e$	$\neg b, \neg e$	$\neg b, \neg e$	$\neg e$	{} X	1		
Cl. 5: $\neg b, f$	$\neg b, f$	$\neg b, f$	f	f	1		
Cl. 6: $b, \neg f$	$b, \neg f$	$b, \neg f$	✓	✓	1		
BCP	-	-	e	-			
PL	$\neg a$	-	-	-			
Decision	-	b	-	-	1		
onflict in step							
3	(e)						
· · · · · · · · · · · · · · · · · · ·	\ ` \						
$\overline{}$							
b 4							
$\overline{}$	$(\neg e)$						
$\overline{}$							
$\overline{}$			3. ¬ <i>b</i> \	/e 4	$1. \neg b \lor \neg e$		
$\overline{}$			3. ¬ <i>b</i> ∖	$\frac{/e}{\neg b}$	$4. \ \neg b \lor \neg e$	-	
b 4	(¬e)			/ e	$\underline{4.} \neg b \lor \neg e$		
b 4 Step	<u>-е</u> 5	6	7	<u>⁄ e </u>	$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level	5 0	6 0	7 0		$4. \neg b \lor \neg e$	-	
Step Decision Level Assignment	5 0 ¬a	6 0 ¬a, ¬b	$ \begin{array}{c} 7 \\ 0 \\ \neg a, \neg b, \neg \end{array} $		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$	5 0 ¬a	6 0 ¬a,¬b ¬	7 0 $\neg a, \neg b, \neg$		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$	5 0 ¬a ¬	6 0 ¬a,¬b -	$ \begin{array}{c} 7 \\ 0 \\ \neg a, \neg b, \neg \end{array} $		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$	5 0 ¬a ¬ ✓	6 0 ¬a,¬b ¬	7 0 ¬a, ¬b, ¬ ✓ ✓		$4. \neg b \lor \neg e$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$ Cl. 4: $\neg b, \neg e$	5 0 ¬a - ✓ ✓ ¬b, e ¬b, ¬e	6 0 ¬a,¬b ¬	7 0 ¬a,¬b,¬ ✓ ✓ ✓		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$ Cl. 4: $\neg b, \neg e$ Cl. 5: $\neg b, f$	5 0 ¬a - ✓ ✓ ¬b, e ¬b, ¬e ¬b, f	6 0 ¬a,¬b ¬	7 0 ¬a,¬b,¬ ✓ ✓ ✓		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$ Cl. 4: $\neg b, \neg e$ Cl. 5: $\neg b, f$ Cl. 6: $b, \neg f$	5 0 ¬a -b, e ¬b, re ¬b, re ¬b, rf	6 0 ¬a,¬b ¬ ✓ ✓ ✓ ✓ ✓	7 0 ¬a,¬b,¬ ✓ ✓ ✓ ✓		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$ Cl. 4: $\neg b, \neg e$ Cl. 5: $\neg b, f$ Cl. 6: $b, \neg f$ Cl. 7: $\neg b$	5 0 ¬a -b, e ¬b, e ¬b, ¬e ¬b, f b, ¬f ¬b	6 0 ¬a,¬b ¬ ✓ ✓ ✓ ✓ ✓ ✓	7 0 ¬a,¬b,¬ ✓ ✓ ✓		$\underline{4.\ \neg b \lor \neg e}$		
Step Decision Level Assignment Cl. 1: $\neg a, d$ Cl. 2: $\neg d, c, \neg a$ Cl. 3: $\neg b, e$ Cl. 4: $\neg b, \neg e$ Cl. 5: $\neg b, f$ Cl. 6: $b, \neg f$ Cl. 7: $\neg b$ BCP	5 0 ¬a -b, e ¬b, re ¬b, re ¬b, rf	6 0 ¬a,¬b ¬ ✓ ✓ ✓ ✓ ✓	7 0 ¬a,¬b,¬ ✓ ✓ ✓ ✓		$\underline{4. \neg b \lor \neg e}$		
	5 0 ¬a -b, e ¬b, e ¬b, ¬e ¬b, f b, ¬f ¬b	6 0 ¬a,¬b ¬ ✓ ✓ ✓ ✓ ✓ ✓	7 0 ¬a, ¬b, ¬		$\underline{4. \neg b \lor \neg e}$		

2.2.77 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in

UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, b, c\}$

Clause 2: $\{a, c\}$

Clause 3: $\{b, \neg c\}$

Clause 4: $\{\neg b, d\}$

Clause 5: $\{\neg c, \neg d\}$

Clause 6: $\{c, e\}$

Clause 7: $\{c, \neg e\}$

Solution						
Step	1	2	3	4	5	
Decision Level	0	1	1	1	1	
Assignment	-	$\neg a$	$\neg a, c$	$\neg a, c, b$	$\neg a, c, b, \\ \neg d$	
Cl. 1: $\neg a, b, c$	$\neg a, b, c$	✓	1	✓	✓	
Cl. 2: a, c	a, c	c	1	✓	✓	
Cl. 3: $b, \neg c$	$b, \neg c$	$b, \neg c$	b	1	✓	
Cl. 4: $\neg b, d$	$\neg b, d$	$\neg b, d$	$\neg b, d$	d	{} X	
Cl. 5: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	$\neg d$	$\neg d$	/	
Cl. 6: c, e	c, e	c, e	/	/	/	
Cl. 7: c, ¬e	$c, \neg e$	$c, \neg e$	√	✓	1	
BCP	-	c	b	$\neg d$	-	
PL	-	-	-	-	-	
Decision	$\neg a$	-	-	-	-	
Conflict in step	0 0		_		_	
		3	(b)—	<u>4</u> →	$\binom{d}{d}$	
2	$\begin{pmatrix} c \end{pmatrix}$		\bigcirc		\sim	
		5		\bigcirc		→ (⊥)
		_		- (¬d)—		\bigcirc
				$\overline{}$		
	4 -	$\neg b \lor d$	3 h	\/ ¬c		
		$\frac{d}{d}$	/ ¬c	<u> </u>	5 ¬c\	$/\neg d$
			ıc.	$\neg c$	9. CV	$\frac{a}{a}$ 2. $a \lor c$
						$\frac{\sqrt{\neg d}}{a}$ 2. $a \lor c$
Step	6	7	0	9	_	
Decision Level	0	0	8	1		
Assignment	-	$\frac{a}{a}$	$a, \neg b$	$a, \neg b, \neg $	7.0	
Cl. 1: $\neg a, b, c$	$\neg a, b, c$	b, c	c	{} x		
Cl. 2: a, c	a, c	<i>v</i> , €	✓	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
Cl. 3: $b, \neg c$	$b, \neg c$	$b, \neg c$	$\neg c$	\ \ \ \		
Cl. 4: ¬b, d	$\neg b, d$	$\neg b, d$	✓			
Cl. 5: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg a$			
Cl. 6: c, e	c, e	c, e	c, e	e		
Cl. 7: $c, \neg e$	$c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$		
Cl. 8: a	a	1	1	1		
BCP	a	-	$\neg c$	-		
PL	-	-	-	-		
Decision	-	$\neg b$	-	-		
Conflict in ster	9					
8	\					
	\downarrow 1					
_		_				
	1	c				
	\					
$(\neg b)$			آس	(\perp)		
\circ	3	$\rightarrow (\neg c)$		_		
		\bigcirc				
		1 -	$\neg a \lor b$	\/ c	8. a	
		_1.	$\frac{\neg a \lor b}{b}$	\/ c		$3 h \vee -c$
			_0	v C	b	$3.\ b \lor \neg c$
					O	

Step	10	11	12	13	14	
Decision Level	0	0	0	0	0	
Assignment	a	a, b	a, b, d	$a, b, d,$ $\neg c$	$a, b, d, \\ \neg c, \neg e$	
Cl. 1: $\neg a, b, c$	b, c	/	1	1	✓	
Cl. 2: a, c	✓ /	/	/	/	✓	
Cl. 3: b, ¬c	$b, \neg c$	√	1	1	√	
Cl. 4: ¬b, d	$\neg b, d$	d	1	1	✓	
Cl. 5: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	$\neg c$	/	✓	
Cl. 6: c, e	c, e	c, e	c, e	e	{} X	
Cl. 7: $c, \neg e$	$c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$	✓	
Cl. 8: a	√	✓	1	✓	✓	
Cl. 9: b	b	✓	1	✓	✓	
BCP	b	d	$\neg c$	$\neg e$	-	
PL	ı	-	-	-	-	
Decision	-	-	-	-	UNSAT	
$\xrightarrow{9} b$) 4	\rightarrow d	5	\rightarrow $\bigcirc c$	7	
	6. $c \lor e$	2 7. <u>c</u>	$c \lor \neg e$	5 ¬d	$\frac{\neg c \vee \neg d}{\neg b}$	

2.2.78 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{b, \neg d, a\}$

Clause 2: $\{\neg a, c\}$

Clause 3: $\{\neg a, b, c\}$

Clause 4: $\{\neg b, e\}$

Clause 5: $\{a, d\}$

Clause 6: $\{a, \neg c\}$

Clause 7: $\{\neg a, \neg e, \neg d\}$

Clause 8: $\{a, \neg b\}$

g:		-				_	
Step	1	2	3	4	5		
Decision Level	0	1	1	1	1		
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\begin{vmatrix} \neg a, \neg b, \neg c, \\ \neg d \end{vmatrix}$		
Cl. 1: $b, \neg d, a$	$b, \neg d, a$	$b, \neg d$	$\neg d$	$\neg d$	1	7	
Cl. 2: $\neg a, c$	$\neg a, c$	√	√	✓	✓	7	
Cl. 3: $\neg a, b, c$	$\neg a, b, c$	✓	✓	1	✓		
Cl. 4: $\neg b, e$	$\neg b, e$	$\neg b, e$	✓	1	✓		
Cl. 5: a, d	a, d	d	d	d	{} X		
Cl. 6: $a, \neg c$	$a, \neg c$	$\neg c$	$\neg c$	✓	✓		
Cl. 7: $\neg a, \neg e, \neg d$	$\neg a, \neg e, \neg d$	√	✓	✓	✓		
Cl. 8: $a, \neg b$	$a, \neg b$	$\neg b$	✓	✓	✓		
BCP	-	$\neg b$	$\neg c$	$\neg d$	-		
PL	-	-	-	-	-		
Decision Conflict in step 5	$\neg a$	-	-	-	-		
5	1	$\neg d$					
	$\longrightarrow \hspace{-0.5cm} \left(d \right)$	$b \vee \neg d$	$\bigvee_{b \vee a} \underbrace{a}_{b \vee a}$	$\frac{5. \ a \lor d}{a}$	8. <i>a</i> ∨ −	<u>.b</u>	
	$\longrightarrow \hspace{-0.5cm} \left(d \right)$	$b \vee \neg d$	$\bigvee a \\ b \lor a$	$5. \ a \lor d$	8. a V -	<u>.b</u>	
5	1.			$\frac{5. \ a \lor d}{a}$		<u>.b</u>	
5 Step	1. 6	7	8	$ \begin{array}{c c} 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ \hline \end{array} $	10	<u>ob</u>	
Step Decision Level	1. 6 0	7 0	8 0	$ \begin{array}{c c} 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ \hline & 0 \\ \end{array} $	$ \begin{array}{c c} 10 \\ \hline 0 \\ a, c, \neg b, \end{array} $	<u>bb</u>	
Step Decision Level Assignment	1. 6 0 -	7 0 a	8 0 a, c	$ \begin{array}{c c} 5. & a \lor d \\ \hline & a \\ \hline & 0 \\ \hline & a, c, \neg b \end{array} $	$ \begin{array}{c c} 10 \\ \hline 0 \\ a, c, \neg b, \\ \neg d \end{array} $	<u>nb</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$	$ \begin{array}{c} $	7 0 a	8 0 a, c	$ \begin{array}{c c} \hline 5. & a \lor d \\ \hline a \\ \hline 0 \\ a, c, \neg b \\ \checkmark \end{array} $	$ \begin{array}{c c} 10 \\ \hline 0 \\ a, c, \neg b, \\ \neg d \end{array} $	<u>bb</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$	$ \begin{array}{c} $	7 0 a •	8 0 a, c	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ \hline & 0 \\ \hline & a, c, \neg b \\ \hline & \checkmark \\ \end{array} $	$ \begin{array}{c c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \end{array} $	<u>.b</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$ Cl. 5: a, d	$ \begin{array}{c} $	$ \begin{array}{c c} 7 \\ 0 \\ a \\ \hline c \\ b, c \end{array} $	8 0 a, c	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ \hline & 0 \\ \hline & a, c, \neg b \\ \hline & \checkmark \\ \hline & \checkmark \\ \hline & \checkmark $	$ \begin{array}{c c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark \end{array} $	<u>.b</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$ Cl. 5: a, d Cl. 6: $a, \neg c$	$ \begin{array}{c} $	7 0 a ✓ c b, c ¬b, e	8 0 a, c / / / -b, e	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ \hline & \checkmark \\ \hline & Y $	$ \begin{array}{c c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark$	<u>.b</u>	
Step Decision Level Assignment Cl. 1: b, ¬d, a Cl. 2: ¬a, c Cl. 3: ¬a, b, c Cl. 4: ¬b, e Cl. 5: a, d Cl. 6: a, ¬c Cl. 7: ¬a, ¬e, ¬d	$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$ \begin{array}{c c} 7 \\ 0 \\ a \\ \hline c \\ b, c \\ \neg b, e \\ \checkmark $	8 0 a, c / / / -b, e	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ \hline & \checkmark \\ \hline & Y $	$ \begin{array}{c c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark$	<u>.b</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$ Cl. 5: a, d Cl. 6: $a, \neg c$	$ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$	7 0 a ✓ c b, c ¬b, e	8 0 a, c / / / -b, e	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ \hline & \checkmark \\ \hline & Y $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark$	<u>.b</u>	
Step Decision Level Assignment Cl. 1: b, ¬d, a Cl. 2: ¬a, c Cl. 3: ¬a, b, c Cl. 4: ¬b, e Cl. 5: a, d Cl. 6: a, ¬c Cl. 7: ¬a, ¬e, ¬d	$ \begin{array}{c} & 6 \\ & 0 \\ & - \\ & b, \neg d, a \\ & \neg a, c \\ & \neg a, b, c \\ & \neg b, e \\ & a, d \\ & a, \neg c \\ & \neg a, \neg e, \neg d \end{array} $	7 0 a	8 0 a, c ✓ ✓ ✓ ¬b, e ✓	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ \hline & \checkmark \\ & \checkmark \\ \hline & \begin{matrix} & \checkmark \\ & \checkmark \\ \hline & \begin{matrix} & \checkmark \\ & \checkmark \\ \hline & \begin{matrix} & X \\ & Y \\ \hline $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark$	<u>.b</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$ Cl. 5: a, d Cl. 6: $a, \neg c$ Cl. 7: $\neg a, \neg e, \neg d$ Cl. 8: $a, \neg b$ Cl. 9: a BCP	$ \begin{array}{c} & 1. \\ & 6 \\ & 0 \\ & - \\ & b, \neg d, a \\ & \neg a, c \\ & \neg a, b, c \\ & \neg b, e \\ & a, d \\ & a, \neg c \\ & \neg a, \neg e, \neg d \\ & a, \neg b \end{array} $	7 0 a	8 0 a, c / / / -b, e / / -e, ¬d	$ \begin{array}{c c} \hline & 5. & a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ \hline & \checkmark \\ & \checkmark \\ \hline & Y \\ $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg b, \\ \neg d \\ \checkmark \\ \checkmark$	<u>.b</u>	
Step Decision Level Assignment Cl. 1: $b, \neg d, a$ Cl. 2: $\neg a, c$ Cl. 3: $\neg a, b, c$ Cl. 4: $\neg b, e$ Cl. 5: a, d Cl. 6: $a, \neg c$ Cl. 7: $\neg a, \neg e, \neg d$ Cl. 8: $a, \neg b$ Cl. 9: a	$ \begin{array}{c} & 1. \\ & 6 \\ & 0 \\ & - \\ & b, \neg d, a \\ & \neg a, c \\ & \neg a, b, c \\ & \neg b, e \\ & a, d \\ & a, \neg c \\ & \neg a, \neg e, \neg d \\ & a, \neg b \\ & a \end{array} $	$\begin{matrix} 7 \\ 0 \\ a \\ \checkmark \\ c \\ b, c \\ \neg b, e \\ \checkmark \\ \checkmark \\ \neg e, \neg d \\ \checkmark \\ \checkmark \\ \end{matrix}$	8 0 a, c ✓ ✓ ✓ ¬b, e ✓ ✓	$ \begin{array}{c c} & 5. \ a \lor d \\ \hline & a \\ \hline & 9 \\ & 0 \\ & a, c, \neg b \\ & \checkmark \\$	10 0 a, c, ¬b, ¬d ✓ ✓ ✓ ✓ ✓ ✓ ✓	<u>.b</u>	

2.2.79 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, c\}$

Clause 2: $\{\neg a, b\}$

Clause 3: $\{\neg b, c\}$

Clause 4: $\{c, d\}$ Clause 5: $\{\neg c, e\}$ Clause 6: $\{\neg d, \neg e\}$

Step	1	2	3	4	5	6	
Decision Level	0	1	2	2	2	2	
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, c$	$\neg a, \neg b, c,$ e	$\neg a, \neg b, c,$ $e, \neg d$	
Cl. 1: a, b, c	a, b, c	b, c	c	✓	✓	✓	
Cl. 2: ¬a, b	$\neg a, b$	1	1	✓	✓	√	
Cl. 3: ¬b, c	$\neg b, c$	$\neg b, c$	✓	✓	✓	✓	
Cl. 4: c, d	c, d	c, d	c, d	✓	1	1	
Cl. 5: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	e	1	1	
Cl. 6: $\neg d, \neg e$	$\neg d, \neg e$	$\neg d$	✓				
BCP	-	-	c	e	$\neg d$	-	
PL.	-	-	-	-	-	-	
Decision	$\neg a$	$\neg b$	-	-	-	SAT	

2.2.80 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *positive* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, d\}$

Clause 2: $\{\neg d, c, \neg a\}$

Clause 3: $\{\neg b, e\}$

Clause 4: $\{\neg b, \neg e\}$

Clause 5: $\{b, f\}$

Clause 6: $\{b, \neg f\}$

Solution						
	1	2	9	A	1	
Step Decision Level	0	0	3	4		
Assignment	-	$\neg a$	$\neg a, b$	$\neg a, b, e$		
Cl. 1: $\neg a, d$	$\neg a, d$	<i>√</i>	<i>1a</i> , <i>b</i>	<i>1a, b, €</i>		
$\frac{1. \ 1. \ \neg a, a}{1. \ 2: \ \neg d, c, \neg a}$	$\neg d, c, \neg a$	✓	✓	✓		
1. 3: $\neg b, e$	$\neg b, e$	$\neg b, e$	e	✓		
$\begin{array}{c c} 3. & b, e \\ \hline 1. & 4: & \neg b, \neg e \end{array}$	$\neg b, \neg e$	$\neg b, \neg e$	$\neg e$	{} X		
l. 5: b, f	b, f	b, f	<i>√</i>	\{\frac{\fin}}}}}}}{\frac{\fin}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}{\frac{		
1. 6: $b, \neg f$			✓	✓		
$\frac{0: \ \theta, \neg j}{\text{CP}}$	$b, \neg f$	$b, \neg f$				
) F	-	-	<i>e</i>	-		
ision	¬a	- b				
lict in step		0	-	-		
	$(\neg e)$		3. ¬b \	/e 4	$1. \ \neg b \lor \neg e$	
ер	5	6	7	$\neg b$	$1. \ \neg b \lor \neg e$	
ecision Level	0	0	0	\dashv		
Assignment			$\neg a, \neg b, f$	=		
l. 1: ¬a, d	1	✓ /	<u>√</u>	-		
$1. 2: \neg d, c, \neg a$	1	/		\dashv		
$3: \neg b, e$	$\neg b, e$	1	· /	\dashv		
$. 4: \neg b, \neg e$	$\neg b, \neg e$	1	√	-		
. 5: b, f	b, f	f	· /	\dashv		
1. 6: $b, \neg f$	$b, \neg f$	$\neg f$	{} X	7		
7: ¬b	$\neg b$	1	√	7		
CP	$\neg b$	f	-	\dashv		
	-	-	-	\dashv		
cision	-	_ 1	UNSAT	7		
flict in step	7	l		_		
-1		f				
7	5	*	<u> </u>	_		
$\xrightarrow{\iota}$ $(\neg b)$	6	_	(_)		
\smile		$\rightarrow (\neg f)$				
		5. b	$\vee f$	$\frac{6.\ b\lor}{b}$	$\frac{\neg f}{}$ 7. $\neg b$	
			-	0		

2.2.81 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, \neg b, c\}$

Clause 2: $\{b, \neg c, d\}$

Clause 3: $\{a, \neg b\}$

Clause 4: $\{a, c\}$ Clause 5: $\{\neg c, \neg d\}$ Clause 6: $\{\neg a, c\}$

Solution										
Step	1	2	3	4		5				
Decision Level	0	1	1	1		1				
Assignment	-	$\neg a$	$\neg a, \neg b$	$b \mid \neg a, \neg b$		$\neg b, c, \\ \neg d$				
Cl. 1: $a, \neg b, c$	$a, \neg b, c$	$\neg b, c$	1	/		/				
Cl. 2: $b, \neg c, d$	$b, \neg c, d$	$b, \neg c, d$	$\neg c, d$	d	{}	Х				
Cl. 3: $a, \neg b$	$a, \neg b$	$\neg b$	1	1		/				
Cl. 4: a, c	a, c	c	c	1		/				
Cl. 5: $\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg d$	$\neg c, \neg c$	d -d		/				
Cl. 6: $\neg a, c$	$\neg a, c$	✓	1	✓		/				
BCP	-	$\neg b$	c	$\neg d$		-				
PL	-	-	-	-		-				
Decision	$\neg a$	-	-	-		-				
Conflict in step	p 5									
	(c)	2 5	d)							
		5			3. a	$\frac{a \vee \neg}{a}$)	4. a	∨ <i>c</i> _	
Step		5			3. 3. 10	$\frac{a \vee \neg}{a}$)	4. a	∨ <i>c</i> _	
Step Decision Level	2. b \	$ \begin{array}{c} 5 \\ & \checkmark \neg c \lor d \\ & \underline{b} \lor \end{array} $	$ \begin{array}{c} $	$\neg c \lor \neg d$ $\underline{\neg c \lor}$	$\frac{\frac{R}{a}}{\frac{10}{0}}$	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	
	2. b \(\)	$ \begin{array}{c} 5 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	5. /¬c	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \\ \hline 9 \\ 0 \end{array} $	10	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	<u>∨ c</u> _	
Decision Level Assignment	2. b \(\)	$ \begin{array}{c} 5 \\ $	$ \begin{array}{c} $	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg d, \end{array} $	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	
Decision Level	$ \begin{array}{c c} \underline{2. \ b \lor} \\ \hline 6 \\ 0 \\ \hline - \\ a, \neg b, c \end{array} $	$ \begin{array}{c} 5 \\ $	5. /¬c	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $ $ \begin{array}{c c} 9 \\ 0 \\ a, c, \neg d \end{array} $	$ \begin{array}{c} 10 \\ \hline 0 \\ a, c, \neg d, \\ b \end{array} $	$\frac{a \vee \neg}{a}$)	4. a	<u>∨ c</u> _	
Decision Level Assignment Cl. 1: $a, \neg b, c$	$ \begin{array}{c c} \underline{2. \ b \lor} \\ \hline 6 \\ 0 \\ \hline - \\ a, \neg b, c \\ b, \neg c, d \end{array} $	$ \begin{array}{c} 5 \\ $	$ \begin{array}{c c} \hline & 5. \\ & 7c \end{array} $ $ \begin{array}{c c} \hline & 8 & 0 \\ \hline & a, c & \checkmark \end{array} $	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $ $ \begin{array}{c c} 9 \\ 0 \\ a, c, \neg d \end{array} $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg d, \\ b \end{array} $	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	<u>∨ c</u>	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$	$ \begin{array}{c c} \underline{2. \ b \lor} \\ \hline 6 \\ 0 \\ \hline - \\ a, \neg b, c \end{array} $	$ \begin{array}{c} 5 \\ $	$ \begin{array}{c c} \hline & 5. \\ \hline & 7c \end{array} $ $ \begin{array}{c c} \hline & 8 & 0 \\ \hline & a, c & \\ \hline & b, d & \\ \end{array} $	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $ $ \begin{array}{c c} 9 \\ 0 \\ a, c, \neg d \\ \hline \checkmark \\ b \end{array} $	10 0 a, c, ¬d, b ✓	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	<u>∨ c</u>	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$ Cl. 3: $a, \neg b$	$ \begin{array}{c c} & 2. \ b \\ \hline & 6 \\ & 0 \\ \hline & - \\ & a, \neg b, c \\ & b, \neg c, d \\ \hline & a, \neg b \end{array} $	$ \begin{array}{c c} \hline 5 \\ \hline & c \lor d \\ \hline & b \lor \\ \hline & c \lor d \\ \hline & b \lor \\ \hline & c \lor d \\ \hline & c$	5. / ¬c	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $ $ \begin{array}{c c} 9 \\ 0 \\ a, c, \neg d \\ \hline \checkmark \\ b \end{array} $	10 0 a, c, ¬d, b ✓	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$ Cl. 3: $a, \neg b$ Cl. 4: a, c	$ \begin{array}{c c} & 2. \ b \\ \hline & 6 \\ \hline & 0 \\ \hline & - \\ \hline & a, \neg b, c \\ \hline & b, \neg c, d \\ \hline & a, \neg b \\ \hline & a, c \end{array} $	$ \begin{array}{c c} \hline 5 \\ \hline & c \lor d \\ \hline & b \lor \\ \hline & c \lor d \\ \hline & b \lor \\ \hline & c \lor d \\ \hline & c$	5. / ¬c 8 0 a, c b, d ✓	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline \neg c \lor \end{array} $ $ \begin{array}{c c} 9 \\ 0 \\ a, c, \neg d \end{array} $ $ \begin{array}{c c} b \\ \checkmark \end{array} $	$ \begin{array}{c} 10 \\ 0 \\ a, c, \neg d, \\ b \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$ Cl. 3: $a, \neg b$ Cl. 4: a, c Cl. 5: $\neg c, \neg d$ Cl. 6: $\neg a, c$ Cl. 7: a	$ \begin{array}{c c} \underline{2. \ b \lor} \\ 6 \\ 0 \\ - \\ a, \neg b, c \\ b, \neg c, d \\ a, \neg b \\ a, c \\ \neg c, \neg d \end{array} $	$ \begin{array}{c c} \hline & & \\ & & \\ \hline &$	5. / ¬c 8 0 a, c b, d / ¬d	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline $	10 0 a, c, ¬d, b ✓ ✓ ✓	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	$\lor c$	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$ Cl. 3: $a, \neg b$ Cl. 4: a, c Cl. 5: $\neg c, \neg d$ Cl. 6: $\neg a, c$	$ \begin{array}{c c} & 2. \ b \\ \hline & 6 \\ & 0 \\ \hline & - \\ & a, \neg b, c \\ & b, \neg c, d \\ & a, \neg b \\ & a, c \\ & \neg c, \neg d \\ & \neg a, c \end{array} $	$ \begin{array}{c c} \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ &$	5. / ¬c 8 0 a, c b, d / ¬d / ¬d	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline $	10 0 a, c, ¬d, b ✓ ✓ ✓	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	
Decision Level Assignment Cl. 1: $a, \neg b, c$ Cl. 2: $b, \neg c, d$ Cl. 3: $a, \neg b$ Cl. 4: a, c Cl. 5: $\neg c, \neg d$ Cl. 6: $\neg a, c$ Cl. 7: a	$ \begin{array}{c c} $	$ \begin{array}{c c} \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ $	5. / ¬c 8 0 a, c / b, d / ¬d / ¬d	$ \begin{array}{c c} \neg c \lor \neg d \\ \hline $	10 0 a, c, ¬d, b ✓ ✓ ✓ ✓	$\frac{a \vee \neg}{a}$	<u>)</u>	4. a	∨ <i>c</i> _	

2.2.82 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b, c\}$ Clause 2: $\{\neg b, \neg c, e\}$ Clause 3: $\{b, e\}$ Clause 4: $\{b, \neg d\}$ Clause 5: $\{\neg c, d\}$ Clause 6: $\{\neg c, e\}$ Clause 7: $\{\neg a, \neg b, \neg c\}$ Clause 8: $\{a, c, \neg e\}$

Solution Step 3 4 5 Decision Level 0 1 2 2 2 $\neg a, \neg b, c,$ Assignment $\neg a, \neg b, c$ $\neg a$ $\neg a, \neg b$ $\neg d$ Cl. 1: a, b, ca, b, cb, ccCl. 2: $\neg a, \neg b, \neg c$ Cl. 3: $a, c, \neg e$ $\neg a, \neg b, \neg c$ $a, c, \neg e$ $\overline{c}, \neg e$ Cl. 4: $\neg b, \neg c, e$ $\overline{\neg b, \neg c, e}$ $\overline{\neg b, \neg c, e}$ Cl. 5: b, e b, eb, eCl. 6: $b, \neg d$ $b, \neg d$ $b, \neg d$ $\neg d$ $\neg d$ Cl. 7: $\neg c, d$ $\neg c, d$ $\neg c, d$ $\neg c, d$ d{} **X** Cl. 8: $\neg c, e$ $\neg c, e$ $\neg c, e$ $\neg c, e$ eeBCP $\neg d$ cPL $\neg b$ Decision $\neg a$ Conflict in step 5

3	-d		
	7	\rightarrow d	

7. $\neg c \lor$	d 1. $a \lor b \lor c$	
	$d \lor a \lor b$	6. $b \vee \neg d$
	$a \lor b$	

Step	6	7	8	9	10
Decision Level	1	1	1	2	2
Assignment	$\neg a$	$\neg a, b$	$\neg a, b, d$	$\neg a, b, d,$ $\neg c$	$\neg a, b, d,$ $\neg c, \neg e$
Cl. 1: a, b, c	b, c	1	√	✓	1
Cl. 2: $\neg a, \neg b, \neg c$	✓	✓	✓	✓	✓
Cl. 3: $a, c, \neg e$	$c, \neg e$	$c, \neg e$	$c, \neg e$	$\neg e$	✓
Cl. 4: $\neg b, \neg c, e$	$\neg b, \neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
Cl. 5: b, e	b, e	1	✓	✓	✓
Cl. 6: $b, \neg d$	$b, \neg d$	✓	✓	✓	✓
Cl. 7: $\neg c, d$	$\neg c, d$	$\neg c, d$	✓	✓	✓
Cl. 8: $\neg c, e$	$\neg c, e$	$\neg c, e$	$\neg c, e$	✓	✓
Cl. 9: a, b	b	1	✓	✓	✓
BCP	b	-	-	$\neg e$	-
PL	-	d	-	-	-
Decision	-	-	$\neg c$	-	SAT

2.2.83 Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the *negative* phase. For conflicts, draw conflict graphs after the end of the table, and add the

learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{a, b\}$

Clause 2: $\{\neg b, c\}$

Clause 3: $\{\neg a, \neg c\}$

Clause 4: $\{b, c\}$

Clause 5: $\{a, \neg b\}$

Clause 6: $\{\neg b, \neg c\}$

Solution				
Step	1	2	3	
Decision Level	0	1	1	_
Assignment	-			_
Cl. 1: a, b		$\neg a$ b	$\neg a, \neg b$ {} \boldsymbol{X}	_
Cl. 1: a, b Cl. 2: $\neg b, c$	a, b $\neg b, c$			_
C1. 2: $\neg o, c$ C1. 3: $\neg a, \neg c$		¬b, c	✓ ✓	_
Cl. 4: b, c	$a, \neg c$ b, c			_
Cl. 5: $a, \neg b$	$a, \neg b$	b, c $\neg b$	<i>c</i> ✓	_
Cl. 6: $\neg b, \neg c$	$a, b, \neg c$	$\neg b, \neg c$	✓	_
BCP	-	¬b	_	_
PL		-	_	_
Decision	$\neg a$	_	_	_
Conflict in step		-	_	
Johnnet in ster	, ,			
$\neg a$ 5				
\rightarrow	$(\neg b)$			
	_			
			1.	$a \vee b$ 5. $a \vee \neg b$
				$\frac{a \lor b}{a} \qquad \frac{5. \ a \lor \neg b}{a}$
Step	4	5	6	7
Decision Level	0	0	0	0
Assignment	-	a	$a, \neg c$	$\overline{a, \neg c, \neg b}$
Cl. 1: a,b		<i>√</i>	<i>a</i> , .c	<u>√</u>
	a, b			
Cl. 2: $\neg b, c$	$\neg b, c$	$\neg b, c$	$\neg b$	✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$	$\neg b, c$ $\neg a, \neg c$	$\neg b, c$ $\neg c$	¬b ✓	✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c			¬b ✓ b	✓ ✓ {} X
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$	$ \begin{array}{c} \neg b, c \\ \neg a, \neg c \\ \hline b, c \\ a, \neg b \end{array} $	$\neg b, c$ $\neg c$ b, c \checkmark	¬b ✓ b ✓	√
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$	$ \begin{array}{c} \neg b, c \\ \neg a, \neg c \\ \hline b, c \end{array} $		¬b ✓ b	✓ ✓ {} X
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a			¬b ✓ b ✓	✓ ✓ {} X ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$		$ \begin{array}{c c} \neg b, c \\ \neg c \\ \hline b, c \\ \checkmark \\ \neg b, \neg c \end{array} $	¬b ✓ b ✓	√ √ {} X ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP		$ \begin{array}{c c} \neg b, c \\ \hline \neg c \\ b, c \\ \checkmark \\ \neg b, \neg c \\ \checkmark \\ \neg c $	¬b ✓ b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP			¬b ✓ b ✓ ✓ ✓ –b –b –	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision	$\neg b, c$ $\neg a, \neg c$ b, c $a, \neg b$ $\neg b, \neg c$ a a $-$ $-$ $-$ 7		¬b	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b √ b √ √ √ √ ¬b - - - 2	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision	$\neg b, c$ $\neg a, \neg c$ b, c $a, \neg b$ $\neg b, \neg c$ a a $-$ $-$ $-$ 7	¬b, c ¬c b, c ✓ ¬b, ¬c ✓ ¬c	¬b ✓ b ✓ ✓ ✓ –b –b –	✓ ✓ {} X ✓ ✓ ✓
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b √ b √ √ √ ¬b ¬-b ¬- ¬- ¬- - - - 4	\(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(\fr
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b √ b √ √ √ ¬b ¬-b ¬- ¬- ¬- - - - 4	\(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(\fr
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b √ b √ √ √ ¬b ¬-b ¬- ¬- ¬- - - - 4	\(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(\fr
Cl. 2: $\neg b, c$ Cl. 3: $\neg a, \neg c$ Cl. 4: b, c Cl. 5: $a, \neg b$ Cl. 6: $\neg b, \neg c$ Cl. 7: a BCP PL Decision			¬b √ b √ √ √ ¬b ¬-b ¬- ¬- ¬- - - - 4	✓ ✓ {} X ✓ ✓ ✓