

Contents

5	Combinational Equivalence Checking								
	5.1	Normal Forms	1						
	5.2	Relations between Satisfiability, Validity, Equivalence and Entailment	3						
	5.3	Combinational Equivalence Checking	4						

5 Combinational Equivalence Checking

5.1 Normal Forms

- 5.1.1 Define the *Disjunctive Normal Form (DNF)* of formulas in propositional logic. Use the proper terminology and give an example.
- 5.1.2 Define the *Conjunctive Normal Form (CNF)* of formulas in propositional logic. Use the proper terminology and give an example.
- 5.1.3 Given a formula in propositional logic. Explain how to extract a CNF representation as well as a DNF representation of φ using the truth table from φ .
- 5.1.4 Given the formula $\varphi = (q \to p) \land (r \lor \neg p)$. Compute its representation in Disjunctive Normal Form (DNF) using a truth table.
- 5.1.5 Given the formula $\varphi = (q \to p) \land (r \lor \neg p)$. Compute its representation in Conjunctive Normal Form (CNF) using a truth table.
- 5.1.6 Given the formula $\varphi = (a \land \neg b \land \neg c) \lor ((\neg c \to a) \to b)$. Use the truth table of φ to compute its representation in (a) CNF and (b) DNF.
- 5.1.7 Given the formula $\varphi = (q \to \neg r) \land \neg (p \lor q \lor \neg r)$. Use the truth table of φ to compute its representation in (a) CNF and (b) DNF.
- 5.1.8 Given the formula $\varphi = \neg(a \to \neg b) \lor (\neg a \to c)$. Use the truth table of φ to compute its representation in (a) CNF and (b) DNF.
- 5.1.9 Consider the propositional formula $\varphi = (\neg(\neg a \land b) \land \neg c)$. Fill out the truth table for φ and its subformulas. Compute a CNF as well as a DNF for φ from the truth table.

a	b	c	$\neg a$	$\neg a \wedge b$	$\neg(\neg a \land b)$	$\neg c$	$\varphi = (\neg(\neg a \land b) \land \neg c)$
F	\mathbf{F}	\mathbf{F}					
\mathbf{F}	\mathbf{F}	\mathbf{T}					
\mathbf{F}	\mathbf{T}	F					
\mathbf{F}	\mathbf{T}	\mathbf{T}					
\mathbf{T}	\mathbf{F}	F					
\mathbf{T}	\mathbf{F}	\mathbf{T}					
\mathbf{T}	\mathbf{T}	F					
\mathbf{T}	Т	\mathbf{T}					

5.1.10 Consider the propositional formula $\varphi = (p \vee \neg q) \to (\neg p \wedge \neg r)$. Fill out the truth table for φ and its subformulas. Compute a CNF as well as a DNF for φ from the truth table.

p	q	r	$\neg q$	$p \vee \neg q$	$\neg p$	$\neg r$	$\neg p \wedge \neg r$	$\varphi = (p \vee \neg q) \to (\neg p \wedge \neg r)$
\mathbf{F}	\mathbf{F}	\mathbf{F}						
\mathbf{F}	\mathbf{F}	$ \mathbf{T} $						
\mathbf{F}	\mathbf{T}	\mathbf{F}						
\mathbf{F}	\mathbf{T}	$\mid \mathbf{T} \mid$						
\mathbf{T}	\mathbf{F}	\mathbf{F}						
\mathbf{T}	\mathbf{F}	$ \mathbf{T} $						
\mathbf{T}	\mathbf{T}	F						
\mathbf{T}	\mathbf{T}	\mathbf{T}						

5.2 Relations between Satisfiability, Validity, Equivalence and Entailment

5.2.1	Explain	the	duality	of	satisfiability	and	validity.

- 5.2.2 How can you check whether it is true that $\varphi \models \psi$ using a decision procedure for (a) satisfiability or (b) validity?
- 5.2.3 A formula φ is valid, if and only if $\neg \varphi$ is not satisfiable. Explain why this statement holds true.
- 5.2.4 Given two propositional logic formulas φ and ψ . How can we check whether $\varphi \equiv \psi$ using a decision procedure for (a) satisfiability, (b) for validity, and (c) for semantic entailment?
- 5.2.5 Given a propositional logic formula φ . How can we check whether φ is *valid* using a decision procedure for (a) satisfiability and (b) equivalence?

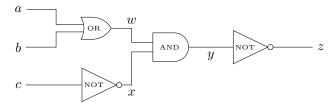
5.2.6	Given a propositional logic formula φ . Tick all statements that are true.
	A formula φ is <i>valid</i> , if and only if $\neg \varphi$ is <i>satisfiable</i> .
	A formula ψ is $satisfiable$, if and only if $\neg \varphi$ is $valid$.
	A formula φ is <i>satisfiable</i> , if and only if $\neg \varphi$ is <i>not valid</i> .
	A formula φ is $valid$, if and only if $\neg \varphi$ is $not \ satisfiable$.
5.2.7	Given two propositional logic formulas φ and ψ . Tick all statements that are true.
	If $\neg \varphi$ is not satisfiable, φ is not valid.
	If $\top \models \varphi$, φ is valid.
	If $\varphi \leftrightarrow \psi$ is valid, φ entails ψ .
	If $\varphi \to \psi$ is valid, both formulas are equivalent.
5.2.8	Given two propositional logic formulas φ and ψ . Tick all statements that are true.
	If $\varphi \wedge \neg \psi$ is not satisfiable, φ entails ψ .
	If $\neg \varphi$ is not valid, φ is satisfiable.
	If φ entails ψ and ψ entails φ , both formulas are equivalent.
П	If φ is equivalent to T , φ is valid.

5.3 Combinational Equivalence Checking

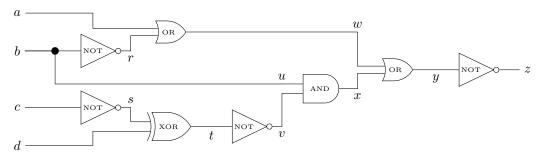
- 5.3.1 Explain the algorithm used to decide the equivalence of combinational circuits via the reduction to satisfiability.
- 5.3.2 Give the definition of equisatisfiability.
- 5.3.3 Given a propositional logic formula φ , the Tseitin transformation computes an equisatisfiable formula φ' in CNF. Why is this enough for equivalence checking?
- 5.3.4 (a) What does it mean that two formulas φ and ψ are equisatisfiable? (b) Explain the difference between satisfiability and equisatisfiability.
- 5.3.5 Explain the algorithm of *Tseitin transformation* to obtain an equisatisfiable formula in CNF. Give step-by-step instructions of how to apply Tseitin transformation to a propositional formula.

(Note: Focus on the concept. You do not need to quote the rewrite rules!)

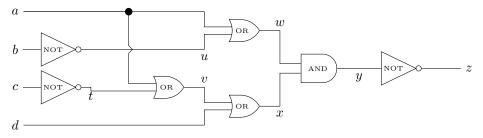
- 5.3.6 What is the advantage of applying *Tseitin transformation* to obtain an equisatisfiable CNF, especially compared to using truth tables?
- 5.3.7 Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced by the node $x \leftrightarrow (p \rightarrow q)$?
- 5.3.8 Compute the propositional formula φ represented by the following circuit. Furthermore, compute an equisatisfiable formula φ' using the Tseitin transformation.



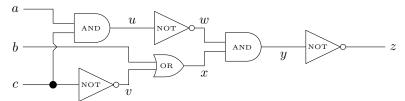
5.3.9 Compute the propositional formula φ represented by the following circuit. Furthermore, compute an equisatisfiable formula φ' using the Tseitin transformation.



5.3.10 Compute the propositional formula φ represented by the following circuit. Furthermore, compute an equisatisfiable formula φ' using the Tseitin transformation.



5.3.11 Compute the propositional formula φ represented by the following circuit. Furthermore, compute an equisatisfiable formula φ' using the Tseitin transformation.



We list the *Tseitin-rewriting rules* to be applied for the following examples.

$$\begin{array}{ll} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow (\neg \chi \lor \neg \varphi) \land (\chi \lor \varphi) \end{array}$$

- 5.3.12 Apply the Tseitin transformation to $\varphi = \neg(a \lor \neg b) \lor (\neg a \land c)$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.13 Apply the Tseitin transformation to $\varphi = ((p \lor q) \land r) \lor \neg p$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.14 Apply the Tseitin transformation to $\varphi = \neg(\neg b \land \neg c) \lor (\neg c \land a)$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.15 Apply the Tseitin transformation to $\varphi = (q \wedge \neg r) \vee \neg (q \wedge \neg r)$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.16 Apply the Tseitin transformation to $\varphi = (\neg(\neg a \land b) \land \neg c)$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.17 Apply the Tseitin transformation to $\varphi = (p \vee \neg q) \vee (\neg p \wedge \neg r)$. For each variable you introduce, clearly indicate which subformula it represents.
- 5.3.18 Apply the Tseitin transformation to $\varphi = \neg(p \to q) \land (r \land p)$. For each variable you introduce, clearly indicate which subformula it represents. Derive the Tseitin transformation rule for \to or transform the input such that you can use the rules above.
- 5.3.19 Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are semantically equivalent using the reduction to satisfiability. Follow the algorithm discussed in the lecture and state the final formula that is used as input for a SAT solver.
- 5.3.20 Check whether $\varphi_1 = (a \wedge b) \vee \neg c$ and $\varphi_2 = (a \vee \neg c) \wedge (b \vee \neg c)$ are semantically equivalent using the reduction to satisfiability. Follow the algorithm discussed in the lecture and state the final formula that is used as input for a SAT solver.