
Top-k Frequent Patterns in Streams and
Parameterized-Space LZ Compression
Patrick Dinklage #

TU Dortmund University, Germany

Johannes Fischer #

TU Dortmund University, Germany

Nicola Prezza #

Ca’ Foscari University of Venice, Italy

Abstract
We present novel online approximations of the Lempel-Ziv 77 (LZ77) and Lempel-Ziv 78 (LZ78)
compression schemes [Lempel & Ziv, 1977/1978] with parameterizable space usage based on estimating
which k patterns occur the most frequently in the streamed input for parameter k. This new approach
overcomes the issue of finding only local repetitions, which is a natural limitation of algorithms that
compress using a sliding window or by partitioning the input into blocks. For this, we introduce
the top-k trie, a summary for maintaining online the top-k frequent consecutive patterns in a
stream of characters based on a combination of the Lempel-Ziv 78 compression scheme and the
Misra-Gries algorithm for frequent item estimation in streams. Using straightforward encoding,
our implementations yield compression ratios (output over input size) competitive with established
general-purpose LZ-based compression utilities such as gzip or xz.

2012 ACM Subject Classification Theory of computation → Data compression; Theory of computa-
tion → Pattern matching; Theory of computation → Sketching and sampling

Keywords and phrases compression, streaming, heavy hitters, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.9

Supplementary Material Software (Source Code): https://github.com/pdinklag/top-k-compress
archived at swh:1:dir:c586220ee1ae265be3a77be75b09f2fdbc55843c

Funding Patrick Dinklage: Funded by the Deutsche Forschungsgemeinschaft (DFG) under the
Research Grants programme (project No. 501086801).
Johannes Fischer : Funded by the Deutsche Forschungsgemeinschaft (DFG) under the Research
Grants programme (project No. 501086801).
Nicola Prezza: Funded by the European Union (ERC, REGINDEX, 101039208). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

Acknowledgements The authors gratefully acknowledge the computing time provided on the Linux
HPC cluster at Technical University Dortmund (LiDO3), partially funded in the course of the
Large-Scale Equipment Initiative by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as project 271512359.

1 Introduction

Lempel-Ziv schemes are arguably among the most popular both in theory and practice of
compressing data. The main idea is to identify repeating patterns and replace them by
references to other occurrences. Compression is achieved if these references can be encoded
with less bits than the sequence they replace.

© Patrick Dinklage, Johannes Fischer, and Nicola Prezza;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patrick.dinklage@udo.edu
https://orcid.org/0000-0002-2004-6781
mailto:johannes.fischer@cs.tu-dortmund.de
mailto:nicola.prezza@unive.it
https://doi.org/10.4230/LIPIcs.SEA.2024.9
https://github.com/pdinklag/top-k-compress
https://archive.softwareheritage.org/swh:1:dir:c586220ee1ae265be3a77be75b09f2fdbc55843c;origin=https://github.com/pdinklag/top-k-compress;visit=swh:1:snp:1b99cff0700176fdc6a14215a8a8a33a4f7ffafc;anchor=swh:1:rev:96ac669c4986ae050a5ce4539e6d308ba859014d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

The memory requirement for computing Lempel-Ziv parsings, however, is a major practical
issue. If inputs become large, linear dependency on the input or output size becomes
prohibitive. One of the most common approaches to tackle this issue is by processing
the input using a sliding window: the memory requirement then depends only on the
(paramaterizable) window size. As a trade-off, the detection of repetitions is limited to within
the window. Despite this, sliding windows back popular everyday compression utilities such
as gzip (very small window) or xz/7-zip (arbitrarily large window).

In this work, we attempt to alleviate the issue of being able to find only local repetitions
and instead get a global sense of repeating patterns, all while keeping the space requirement
parameterizable. The key to our approach is the notion of heavy hitters: if we can estimate
which k patterns are the most frequent at any time while streaming the input, that helps
us find repetitions globally. Because the patterns are frequent, the hope is that they also
contribute the most to compression. We can encode them as references into a universe of size
k, i.e., an index into the k currently frequent patterns. The produced output can then be
decoded by following the same protocol. Because we never account for more than k patterns,
the parameter k directly controls our space consumption.

Related Work

Mining frequent items in a stream has a long history of research. Aggarwal and Yu [2] give a
survey on established techniques to estimate the frequencies of items. In this work, we use
and adapt the algorithm due to Misra and Gries [28] and the Space-Saving data structure due
to Metwally et al. [27] to estimate online the k most frequent items (outlined in section 2.1).

Maruyama and Tabei [25] use an idea similar to our work for grammar compression.
Their algorithm computes online and in O (k) space a straight-line program that produces
the input. They explore methods for estimating online the k most frequent production rules,
in the hope that these contribute the most for compression, using techniques similar to what
we describe in section 3. On large genomic sequences (hundreds of gigabytes), their approach
achieves good compression rates with impressively short running times. However, they make
heavy use of the fact that genomic sequences have a very small alphabet of nucleotide bases,
and it is not clear how their algorithm performs for larger alphabets. Another related result is
that of De Agostino [3], who considered a constrained-dictionary version of the Lempel-Ziv 78
scheme (LZ78). The dictionary is limited to size k and if it is full, a heuristic is used to
determine which entry to replace next, with the focus being on the last recently used (LRU)
heuristic and variants. Their experiments targeted inputs of few megabytes and very small
dictionaries, and they did not focus on performance other than the constrained memory
consumption. To that end, their results are difficult to project to larger inputs. The general
idea of constraining the size of the LZ78 dictionary, however, matches our work. Apart
from this, there has been work on finding trade-offs between the running time and space
consumption of LZ78 parsers, Arroyuelo et al. [6] give a recent overview.

Apart from these, there has been work on identifying frequent itemset subsequences,
Gan et al. give a survey in [17]. The problem is much more general than what we consider, as
(1) the subsequences need not be consecutive in the stream and (2) each item in a subsequence
may be any one from a set. Apostolico et al. [5] use mining techniques to find so-called motifs
later used for Lempel-Ziv-Welch compression. Motifs can roughly be considered strings with
wildcards, and thus their scenario is more related to mining frequent subsequences than it
is to mining frequent consecutive patterns. The bioinformatics community has done work
on estimating the number of distinct k-mers, or a histogram thereof, in streamed genomic
sequences [26, 29, 31, 8] (here, k refers to the fixed length of relevant substrings and is not

P. Dinklage, J. Fischer, and N. Prezza 9:3

to be confused with top-k). However, their algorithms are not concerned about what are
the most frequent k-mers. Furthermore, they aim at a fixed pattern length k and on a
known constant-size alphabet, properties that cannot be exploited without loss of generality.
Fischer et al. [14] consider the problem of string mining under frequency constraints, which
is more similar to our scenario. Their solution is optimal in terms of accuracy, but it requires
a full-text index and therefore disqualifies in an online scenario. It furthermore finds patterns
that have a given minimal support in the input, for which we know no direct translation to
maintaining the k most frequent patterns.

Our Contributions

We introduce the top-k trie (section 3), a framework to estimate and maintain online the
k most frequent patterns in a stream. It uses space at most O (k) and requires constant
amortized time per input character. We apply this to online approximations of the LZ78
(section 4) and LZ77 (section 5) parsings, which we implement and compare against established
general-purpose compressors (section 6). Our algorithms are competitive in terms of speed
and compression ratio albeit using a straightforward encoding. We finally analyze the impact
of the parameter k on resource usage and the number of emitted phrases.

2 Preliminaries

Let s ∈ Σ∗ be a string over an alphabet Σ. For i ∈ [1, |s|], we denote by s[i] the i-th character
of s. Let j ∈ [1, |s|] and j ≥ i, then s[i..j] denotes the (consecutive) substring of characters
from position i and j, both included, of s. For analysis, we use the word RAM model [18],
where the memory consists of contiguous words of length Θ(lg n) bits each (by default, we
state logarithms as base-2). We can access and perform arithmetic operations on a constant
number of words in constant time. We further consider a streaming model, particularly the
cash register model [30], where the input is a stream S = x1, x2, . . . , xn of n items drawn
from some domain Γ. The items are received one by one and in non-rewindable fashion.
There is no previous knowledge about the length n → ∞ of the stream, and it may far
exceed the size M of available memory. To that end, it is not possible to store S in memory
for random access. Furthermore, nothing is known about Γ, so even storing information
about all σ ≤ n distinct items that occur in S is infeasible (e.g., a histogram – see also [4]).
However, we are allowed to store pointers into the stream or count the number of occurrences
of a selected set of items. In that regard, we assume M = Ω (polylog n).

2.1 The Misra-Gries algorithm for top-k frequent item estimation

For an item x ∈ Γ, let fx ∈ [0, n] be its frequency, i.e., the number of occurrences of x in S.
We consider the problem of finding the top-k most frequent items from Γ that occur in S.
Formally, we want to find a set F with |F | = k and ∀x ∈ F : fx ≥ max{fy | y ∈ Γ \ F}. As
noted earlier, we cannot hope to maintain a histogram of frequencies for all the items of Γ.

The Misra-Gries algorithm [28] computes a summary of F in space O (k). For some
x ∈ Γ, we call f ′

x the estimated frequency of x in S. Before reading from S, we initialize
F := ∅. After reading the next item x from S, we act as follows: if x ∈ F , we increment the
estimated frequency f ′

x := f ′
x + 1. If x /∈ F and |F | < k, we insert x into F with f ′

x := 1.
Otherwise (x /∈ F ∧ |F | = k), we decrement the estimated frequencies f ′

y := f ′
y − 1 for all

y ∈ F and then delete any y from F for which f ′
y = 0.

SEA 2024

9:4 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

v ↔ w x y ↔ z · · ·
2 3 5

Figure 1 Space-Saving data structure for F ⊇ {v, w, x, y, z}, f ′
v = f ′

w = 2, f ′
x = 3 and f ′

y = f ′
z = 5.

It is easy to see that f ′
x ≤ fx holds for any x ∈ Γ, that is, the Misra-Gries algorithm

underestimates frequencies. As shown in [9], it holds that f ′
x ≥ fx − n/k. The algorithm is

fast in practice, even though it has a relatively high false positive rate [10, referred to as
Frequent]. For this work, however, false positives are not a serious disadvantage.

2.2 The Space-Saving Data Structure
The Space-Saving data structure of [27], even though proposed independently, can be used
to implement the Misra-Gries algorithm. For each distinct estimated frequency f ′ of the
items in F , it maintains a bucket. Each bucket holds a doubly-linked list of the items x ∈ F

such that f ′
x = f ′ in arbitrary order. The buckets are also maintained in a doubly-linked list

ordered by their represented frequencies f ′. Figure 1 shows an example.
The data structure requires space at most O (k) as |F | = k. Creating, deleting, inserting

items into or deleting items from a bucket each takes constant time thanks to the use of
doubly-linked lists. Thus, a new item x with f ′

x = 1 can be inserted in constant time by
inserting it into the first bucket, and the frequency of an item y can be incremented in
constant time by removing it from bucket f ′

y and inserting it into bucket f ′
y + 1.

For the Misra-Gries algorithm, we require an operation to decrement all frequencies. This
can be simulated by maintaining a threshold θ that is initially zero [1]. Let x /∈ F and
|F | = k. Instead of decrementing all frequencies, we first test whether there is any item y

with f ′
y ≤ θ. This can be done in constant time by testing whether the minimum bucket

represents a frequency f ′ ≤ θ. If that is the case, we delete an arbitrary item y contained in
the bucket and recycle its entry for x, inserting it with f ′

x := θ. Otherwise, we increment
θ := θ + 1. This lazy approach simulates the decrement-all operation in constant time.

2.3 Tries
A trie [16] represents a set S of m distinct strings in a tree as follows. The root represents
the empty string ε. For every string s ∈ S, there is a path πs = v0, v1, . . . , v|s| of nodes such
that v0 is the root and each node vi represents the prefix s[1..i]. To that end, the edge from
node vi−1 to vi is labeled by s[i], and thus s is the concatenation of the edge labels along πs.
The total number of nodes in the trie is at most 1 +

∑
s∈S |s|.

2.4 Lempel-Ziv 78
The Lempel-Ziv 78 (LZ78) compression scheme [35] factorizes the input S ∈ Σ∗ into z

phrases f1, . . . , fz such that f1 · · · fz = S. The i-th phrase (1 ≤ i ≤ z) is fi = fjα for j < i

and α ∈ Σ such that fj is the longest possible previous phrase such that fjα does not occur in
f1 · · · fi−1. In case no such j exists, we say fj = f0 := ε and fi = α denotes a new character.

Standard algorithms to compute the LZ78 parsing use a trie T where each node represents
a phrase and is labeled by the phrase number. Figure 2 shows an example. Suppose that we
have already computed the first i − 1 phrases. We memorize the current node number j,
which is initially the root (representing j = 0 and the empty phrase ε). When we read the
next character α from S, we attempt to follow the edge at node j labeled α. If that edge

P. Dinklage, J. Fischer, and N. Prezza 9:5

ε f1

f2

f3 f5

f4

a

b

b a

b

Figure 2 LZ78 trie after parsing the string abababbaba with f1 = a, f2 = b, f3 = ab, f4 = abb
and f5 = aba. The root represents the empty string ε, other nodes represent one phrase each.

exists, we set j to the number of the connected node. Otherwise, node j spells out fj , the
longest phrase such that fjα has no previous occurrence in S, and thus the next phrase is
fjα, which we encode as the tuple (j, α). We create a new child node i and connect it to j

with an edge labeled α. Then, we reset j := 0 back to the root to begin with the next phrase.
This process is repeated until S has been fully parsed.

2.5 Lempel-Ziv 77
The Lempel-Ziv 77 (LZ77) compression scheme [34] factorizes the input S ∈ Σ∗ into z

phrases f1, . . . , fz such that f1 · · · fz = S. The i-th phrase fi is either the first occurrence of
some character α = fi in S, or it is the longest possible prefix of S[|f1 · · · fi−1| + 1 .. n] that
already occurs previously in S[1 .. |f1 · · · fi|].

One key difference to LZ78 is that LZ77 phrases may overlap. Consider, as an example,
the input S = α6 for some character α: while the LZ78 parsing of S consists of the three
phrases α, α2 and α3, the LZ77 parsing consists only of the two phrases f1 = α and f2 = α5.
As a result of overlaps, LZ77 parsings typically consist of fewer phrases than LZ78 parsings
for the same input, which in turn allows for smaller encodings of the compressed input.

However, compared to LZ78, computing the LZ77 parsing is more complicated. Finding
the next LZ77 phrase means finding the longest previous occurrence of a prefix of the
remaining input. Algorithms to compute LZ77 therefore typically make use of some kind of
(possibly compressed) full-text index. In appendix C, we describe the well-known algorithm
that computes the LZ77 parsing in time and space O (n) via the suffix array of the input. More
recent examples that improve on the time and/or space requirement include [12, 19, 32, 15].

Approximations

The requirement of space linear in the input or output size becomes prohibitive in practice
when the size of the input or the index data structure exceeds the available memory. It is
therefore straightforward to think about a trade-off where only an approximation of LZ77 is
computed in smaller – preferably parameterized – space at the cost of worse compression.
Myriad approximation algorithms have been proposed that compute so-called LZ-like parsings
via hashing [13], references [24] or samplings with synchronizing properties [12], to name but
a few examples. Considering everyday compression utilities such as gzip or xz, however, the
arguably most popular strategy involves using a sliding window of fixed size w. Here, the
requirement of finding a longest previous occurrence is relaxed to a search only within the
window. While the space is then governed only by parameter w, the number of produced
phrases may increase dramatically. A common way to counter this is to encode phrases using
sophisticated encoding schemes (e.g., DEFLATE [11] or LZMA1).

1 To the best of our knowledge, there is no official specification of LZMA, but a de-facto specification of
the XZ format is available at https://tukaani.org/xz/xz-file-format.txt.

SEA 2024

https://tukaani.org/xz/xz-file-format.txt

9:6 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

Algorithm 1 Framework for maintaining online the top-k trie TF for an input stream.
In this listing, the trie is modeled as a set of node numbers where 0 denotes the root node.

Input : Stream S ∈ Σ∗, parameter k ∈ N
Output : Top-k trie TF (maintained online)

1 TF ← {0}, θ ← 0, v ← 0
2 while there is another character α on S do
3 if v has a child u with edge labeled α then
4 f ′

u ← f ′
u + 1

5 v ← u

6 else
7 if |TF | < k then
8 TF ← TF ∪ {new node u} // grow trie
9 f ′

u ← θ + 1
10 make u a child of v with edge labeled α

11 else if there is a leaf u in TF with f ′
u ≤ θ then

12 delete the edge to u // recycle non-frequent
13 f ′

u ← θ + 1
14 make u a child of v with edge labeled α

15 else
16 θ ← θ + 1 // decrement all
17 v ← 0

3 The Top-k Trie for Frequent Pattern Estimation

Consider a stream S ∈ Σ∗ of characters from the alphabet Σ and the problem of maintaining
online the k most frequent substrings (consecutive patterns of characters) occurring in S.
Even if the alphabet is small (e.g., a byte alphabet, an ASCII alphabet or even nucleotide
bases from a DNA sequence), the number of substrings is quadratic in the number of
characters read from S and thus maintaining a histogram of frequencies for all patterns is
impractical. Instead, this motivates the use of a summary.

We propose a variation of the lazy Misra-Gries algorithm that maintains the currently
frequent patterns in a trie TF of size at most k, the Space-Saving data structure containing
the nodes of TF and a threshold θ. At each node v ∈ [0, k] in TF , we store the estimated
frequency f ′

v of the pattern spelled out by the edge labels on the path from the root to v,
as well as a back link into the Space-Saving data structure for constant-time access. In the
remainder of this article, we refer to this data structure as the top-k trie. Because TF has at
most k nodes and the Space-Saving data structure can only have k distinct buckets holding
a total of k entries, the space of the top-k trie is O (k).

We process the input stream S as shown in algorithm 1. Initially, TF consists of only
the root numbered 0. We call v the current node, initially the root. Upon reading the next
character α from S, we find the edge labeled α from v to a child u. If the edge exists, we
increment f ′

u and continue with v := u. Otherwise, if TF is not yet full (|TF | < k, line 7),
we create a new leaf u and make it a child of v with edge labeled α. If TF is full, let u

be a leaf (not an inner node, as we will discuss later) with f ′
u ≤ θ that we find using the

Space-Saving data structure. If u exists, we recycle it by severing its edges (from its parent
and to its children) and making it a child of v with edge label α (line 11). Otherwise, if there
is no node to recycle, we increment the threshold θ to simulate the decrementation for all
frequent patterns (line 15). Unless we can follow an existing edge, we reset the current node
to the root (line 17). Whenever a frequency f ′

u is modified for some node u, we update the
Space-Saving data structure accordingly.

P. Dinklage, J. Fischer, and N. Prezza 9:7

There is a very apparent similarity between algorithm 1 and the LZ78 compression scheme
(section 2.4). Our algorithm makes implicit use of the intuitive correlation between frequent
patterns and Lempel-Ziv phrases, which capture repeating patterns. In section 4, we show
how the top-k trie can be used to approximate LZ78.

Preventing Orphans by Recycling Leaves

The recycling of a node in algorithm 1 comes with a complication: u may be an inner node
with up to O (k) children that become orphans as a result of the operation. If the represented
pattern was to be inserted back due to becoming frequent again, to ensure integrity, the
orphaned former children that still remain would have to be connected back. However, this
is non-trivial, because the node number may now be other than u.

A pragmatic solution would be to delete the entire subtrie of u from TF if u is to be
recycled. This would be safe in the sense that we cannot lose any frequent patterns, because
the represented string is a prefix of all strings represented in the subtrie, and thus their
frequencies are at most f ′

u ≤ θ. However, this would take time O (k).
Instead, we ensure that only the leaves of TF can ever be recycled. To achieve this,

only the leaves are maintained in the Space-Saving data structure to begin with. (Besides
preventing orphans, this yields practical speedups because for realistic inputs, a vast majority
of nodes in TF are inner nodes. Avoiding the operations for incrementing the frequencies of
inner nodes, albeit constant time, saves a considerable amount of work.) This requires us
to consider two new operations in the Space-Saving data structure. First, whenever a leaf
becomes an inner node because a child is added to it, it needs to be deleted from the data
structure. This can trivially be done in constant time thanks to the use of doubly-linked
lists. Second, when an inner node v becomes a leaf because its last child has been recycled,
we need to insert it into the Space-Saving data structure. The insert frequency f ′

v can be
arbitrarily large, and finding the bucket into which to insert v would require up to O (k)
steps in a doubly-linked list of buckets. We address this in the following.

Frequency Limitation and Renormalization for Fast Bucket Access

Instead of maintaining the buckets of the Space-Saving data structure in a doubly-linked
list, we propose to maintain them in an array of fixed size f ′

max = Θ (k) where the head
of the bucket for frequency f ′ is stored in the f ′-th entry. Trivially, this requires space
O (f ′

max) = O (k). Along with this change, we introduce two constraints that ensure that
estimated frequencies always fall in the range [0, f ′

max] independent of the input stream:
1. We do not any increment a frequency f ′

v = f ′
max (for some node v) any further.

2. Whenever θ is incremented to f ′
max/2, we renormalize the data structure by setting

f ′
v := f ′

v − f ′
max/2 for all nodes v of TF and reset θ := 0. (Note that θ is only incremented

if there is no node u with f ′
u ≤ θ. Thus, f ′

v > θ holds before and after renormalization.)

The renormalization introduced by constraint 2 takes time O (k), but amortizes to constant
time since at least Θ (f ′

max) = Θ (k) incrementations are needed for another renormalization
to be required. In actuality, let us recall how TF behaves a lot like the LZ78 trie (see section 4).
The only occasions at which θ may be incremented is when a leaf of TF has been reached
and algorithm 1 attempts to follow an edge that does not exist. Let z be the number of LZ78
phrases of S, then there are only ever O (z) occasions at which θ may be incremented. Thus,
renormalizations are expected to occur rarely if S is repetitive and/or f ′

max is sufficiently
large. In our experiments on inputs of size 100 GiB (section 6), we never observed even
one renormalization. This practical observation also justifies neglecting the bias introduced

SEA 2024

9:8 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

by constraint 1, which causes very frequent patterns to be underestimated more than less
frequent patterns. For this underestimation to cause some pattern u of frequency fu > f ′

max
to fade out of TF , at least one renormalization would have to occur and then, additionally, a
sufficiently long substring of S with no occurrence of u would have to follow.

Error in Frequency Estimation

We note2 that the estimated frequency of some frequent pattern u is actually the sum of
the frequencies stored in the subtrie of the node corresponding to u in TF . For example, let
S = α10 for some α ∈ Σ (and k ≥ 4): after processing S with algorithm 1, the frequency
of stored at the node corresponding to α will be only f ′

α = 4. The sum of the frequencies
stored in its subtrie, however, is indeed 10.

It has been shown [9] that the underestimation of item frequencies by the Misra-Gries
algorithm is bounded by n/k. However, it is crucial to see that this is based on the assumption
that every occurrence of an item on the stream is treated equally. That is not the case in
our scenario: we do not account for all substrings of S, but only a subset that is the result of
a parsing similar to LZ78. It seems straightforward that this contributes to additional error
in the Misra-Gries algorithm if considering the frequency of every substring of S individually,
but leave open a detailed analysis that we conjecture to be non-trivial. However, we can
still look at our running time improvements and how they contribute to the error of the
underlying Misra-Gries structure under the assumption that all substrings are counted.

First, we established that we only recycle leaves from TF and never inner nodes. This
does not introduce any additional error, because the Misra-Gries algorithm cares not what
item is removed as long as is has zero frequency. (In fact, in Misra-Gries, all items of zero
frequency would be removed immediately.)

The limitation of estimated frequencies to f ′
max, on the other hand, introduces arbitrary

error. Consider S = αn for some α ∈ Σ: there are n occurrences of α, but the highest
estimated frequency will be O (f ′

max) = O (k), and clearly it is limn→∞ n/k = ∞. This
corresponds to the underestimation bias against very frequent patterns that we discussed
earlier. Even though the error is unbounded in the mentioned case, we found it to be
negligible in practice for sufficiently large f ′

max.
The renormalization of frequencies does not contribute to any error directly. Recall how

the threshold θ simulates a marker for items that have zero estimated frequency. If θ > 0, it
means that in the original Misra-Gries algorithm, the frequencies of all items would have
been decremented θ times. To this end, the described renormalization can be considered a
lazy application of these decrementations.

Summary

The top-k trie requires space O (k) and allows processing each character from S in constant
amortized time with a very unlikely worst case (renormalization). Even though it is not of
interest in the following where we compress S, the k patterns maintained by the algorithm
could be enumerated via a traversal of TF .

2 We thank the anonymous reviewer to point out this fact.

P. Dinklage, J. Fischer, and N. Prezza 9:9

4 Online Approximation of LZ78 in Parameterized Space

The similarity between the LZ78 and our top-k trie of section 3 should be very apparent at
this point. We make it more explicit in a parameterized-space algorithm to approximate the
LZ78 parsing of a stream S using the top-k trie. The algorithm can be seen as constrained-
dictionary LZ78 similar to that of De Agostino [3], with the heuristic that only the k most
frequently used phrases are maintained in the trie.

It works largely similar to the original LZ78 algorithm: let v be the current node in
TF (initially the root), and consider the next character α from S. If there is an outgoing
edge labeled α from v, we follow that edge and set v to the number of the connected node.
Otherwise, we output fvα as the next phrase (e.g., by encoding the tuple (v, α)). Whenever
we visit a node or create a new node, we update the Space-Saving data structure as described
in section 3. This algorithm is an immediate application of the top-k trie and therefore, it is
easy to see that it requires O (k) space and amortized constant time per input character.

To decode the produced parsing, the decoder can simulate TF like the encoder. For this,
the parameter k must be stored at the beginning of the compressed output.

Let z be the number of LZ78 phrases and z′ be the number of phrases produced by our
parsing. It holds that z′ ≥ z: for k ≥ z, the trie TF is able to hold a node for every LZ78
phrase and it is z′ = z. For k < z, our approximation produces more phrases. Consider
a unary string αn for some α ∈ Σ. In this case, z = Θ (

√
n). For our approximation,

because the size of TF is limited to k, it is z′ = Θ (n/k), and so the approximation ratio is
z′/z = Θ (

√
n/k). We conjecture that this also holds for arbitrary strings.

5 Online Approximation of LZ77 in Parameterized Space

We propose a new approximation of LZ77 that combines the top-k trie of section 3 with
a blockwise computation of LZ77. We partition S into blocks of size B such that the i-th
block is Si := S[iB .. iB + B − 1]. Let the top-k trie TF be initially empty. After reading
block Si from S, we first compute its LZ77 parsing (using the algorithm of appendix C)
consisting of the z′ phrases f1, . . . , fz′ . Then, we compute a parsing of Si consisting of
≤ z′ phrases as follows. Let m be the current position within Si (initially m := 1). Let
c := min{j | |f1 · · · fj | ≥ m} be the index of the LZ77 phrase that contains position m. We
call ℓ := |f1 · · · fc| − m the length of the remainder of fc. Furthermore, let sm be the longest
prefix of Si[m .. B − 1] that can be spelled using the top-k trie TF starting at the root. Now,
if |sm| > m − |f1 · · · fc|, then the next phrase in our parsing is g := sm and we advance
to position m := m + |sm|. Otherwise, we choose the phrase g := Si[m .. m + ℓ − 1] (the
remainder of fc) and advance to position m := m + ℓ. We then enter g into TF in similar
fashion as we parse the input in section 4 (LZ78): starting from the root, we navigate (and
possibly insert) the edges of TF using the characters from g as deep as possible and increment
the frequencies of the corresponding prefixes.

To create an intuition, this algorithm attempts to get the best out of both worlds: it looks
at the (remainder of the) next LZ77 phrase and the longest prefix that can be spelled out by
TF , and then greedily picks whatever allows us to advance further in Si. This is visualized
in figure 3. It is easy to see that the number of phrases produced this way is at most z′, and
may be less than z′ if TF contains useful strings. Doing this for all ⌈n/B⌉ blocks results in
an approximation of LZ77 with the total number of phrases being lower bounded by z (for
B ≥ n or suitable S, we produce exactly z phrases).

SEA 2024

9:10 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

f1 f2 f3 f4 f5 f6 f7 f8

Si

· · · · · ·

s1 s2 s3 s4 s5 s6

g1
g2 g3 g4 g5 g6

Figure 3 Visualization of the top-k LZ77 algorithm processing some block Si. The LZ77 parsing
consists of the phrases f1, . . . , f8, the patterns s1, . . . , s6 are contained in the top-k trie TF . The
arrows at the bottom represent the produced greedy parsing g1, . . . , g6, taking the remainder of a
LZ77 phrase or a string from TF depending on which advances further towards the end of Si.

The LZ77 parsing of Si can be computed in time and space O (B). Processing Si then
takes O (B) amortized time: we navigate an edge in TF at most twice for every character,
first for finding sm, and a second time for entering the new phrase g. Over all ⌈n/B⌉ blocks,
the total amortized time to process S becomes O (n), i.e., constant amortized time per input
character. By choosing B = O (k), the space requirement becomes O (k).

Phrase Encoding

We encode an LZ77 phrase g as a tuple (ℓ, δ). The value ℓ = 0 indicates that g is a literal
phrase. Then, δ = g ∈ Σ is a character. Otherwise, g has a previous occurrence and it is a
referencing phrase. Then, it is ℓ = |g| > 0 and δ ∈ N is the distance from said occurrence
and a decoder can interpret the tuple as copy ℓ characters starting δ characters ago.

In our case, g may also be a string from the top-k trie TF . To support this, we apply two
changes to the semantics of the tuple (ℓ, δ). First, we forbid referencing phrases of length
ℓ = 1 and instead replace them by the corresponding literal phrases with ℓ = 0 and δ = g

their only character. Second, we reserve length ℓ = 1 to indicate a top-k phrase, where δ is
the number of the node in TF that represents g. If k is stored at the beginning of the output,
the parsing can be decoded by simulating TF like the encoder.

6 Experiments

6.1 Implementation
We implemented the online approximations of LZ78 (topk-lz78, section 4) and LZ77
(topk-lz77, section 5) in C++20. The source code is publicly available as referred to on
the front matter. In the experiment, we also consider blockwise-lz77, which computes the
LZ77 parsing for every input block of size B and then encodes it, i.e., without using the
top-k trie. The variant blockwise-lz77+ simply uses a larger block size B′ > B.

To be able to compare compression ratios, we implemented a blockwise encoding of the
tuples representing LZ78 or LZ77 phrases, respectively, emitted by the compressors. For a
parameter b, we buffer b tuples in memory and write them to file once the buffer overflows.
In a preliminary experiment, we found that b := 32 · 210 gives the best overall results and
thus use this value throughout our experiments. We encode tuples as follows.

In topk-lz78, tuples are of the form (j, α) where j < k is the number of a node in the
top-k trie and α ∈ Σ is the appended character. We encode j in binary using ⌈lg(k − 1)⌉
bits and α using Huffman codes according to the distribution among the b buffered tuples.
In topk-lz77, tuples are of the form (ℓ, δ) as described in section 5. We encode ℓ using
Huffman codes according the distribution of all values ℓ among the b buffered tuples.
We exploit the practical observation that most referencing phrases are short: if ℓ ≥ 255,

P. Dinklage, J. Fischer, and N. Prezza 9:11

Table 1 Listing of compressors that we compare against. For each compressor, we list the URL
of its main website as well as the command line flags we use to execute it for best compression.

Compressor URL Execution Flags
gzip http://gzip.org/ -9
xz https://tukaani.org/xz/ -9
zstd http://facebook.github.io/zstd/ -19
bzip2 https://sourceware.org/bzip2/ -9
bsc http://libbsc.com/ -b2047

Table 2 Selected statistics on the inputs used in the experiments: n is the file size, σ = |Σ| the
number of distinct characters (bytes), H0 :=

∑σ

i=1(ni/n) log2(ni/n) the zeroth-order entropy, z78

the number of LZ78 phrases and z77 the number of LZ77 phrases.

Input n σ H0 z78 z77

CommonCrawl 100 · 230 243 6.20 7,149,629,111 2,596,068,363
DNA 100 · 230 4 2.00 5,895,129,082 4,414,716,848
Wikipedia 100 · 230 213 5.37 5,340,147,122 3,513,405,017

we encode the length 255 followed by the binary representation of ℓ − 255 using ⌈lg B⌉
bits. If the phrase is a literal phrase (ℓ = 0), δ ∈ Σ is a character that we encode using a
Huffman code as for topk-lz78. If the phrase is a top-k phrase (ℓ = 1), we encode the
top-k trie node number δ < k in binary using ⌈lg(k − 1)⌉ bits. Otherwise, if the phrase
is referencing (ℓ > 1), then we encode δ in binary using at most ⌈lg δmax⌉ bits (where
δmax < B is the largest δ encountered among the b tuples).
In blockwise-lz77, tuples are also of the form (ℓ, δ), but there are only literal or
referencing phrases and no top-k phrases.

6.2 Experimental Setup
The experiment is conducted on a machine with an Intel Xeon E5-2640v4 processor running
at 2.4 GHz with a 25 MB cache and 64 GB of RAM. We measure the average compression
time over three iterations as well as the compression ratio (output size divided by input
size) for our compressors from section 6.1 and the compressors listed in table 1, which we
execute with flags for lowest compression ratio. For a fair comparison, we disabled the
parallel computation features of bsc by compiling it without OpenMP. Our code is compiled
with GCC 13.2 and all optimizations enabled (-O3). We set k as high as possibly in our
compressors to fill the available RAM. Preliminary experiments revealed that the threshold
θ increases only very rarely for large k, confirming our assessments of section 3. This allows
us to set f ′

max very low with no need for any renormalization. Specifically,
for topk-lz78, we set k := 896 · 220 and f ′

max := 220,
for topk-lz77, we set B := 231 − 1, which is the largest block size that allows us to use
32-bit indices for computing the LZ77 parsing. We set k := 640 · 220 and f ′

max := 220, and
for blockwise-lz77, we set B := 231 − 1 for a direct comparison with topk-lz77.
for blockwise-lz77+, we set B′ := 3 · 230 ≈ 1.5B to fill the available RAM (here, 64-bit
indices are required to randomly access the block).

The input files for the compressors are CommonCrawl (web crawls from the Common
Crawl Project, text only), DNA (raw human genomic sequences consisting of only A, C, G
and T) and Wikipedia (XML dumps of the German and English versions of Wikipedia).
Each file is of size 100 GiB. Table 2 shows additional statistics on the inputs. In appendix B,
we give more detailed information as to how they have been generated.

SEA 2024

http://gzip.org/
https://tukaani.org/xz/
http://facebook.github.io/zstd/
https://sourceware.org/bzip2/
http://libbsc.com/

9:12 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

0 5 10 15 20
10

15

20

25

30

35

co
m

p.
ra

ti
o

[%
]

CommonCrawl

topk-lz77 topk-lz78 blockwise-lz77 blockwise-lz77+ gzip
xz zstd bzip2 bsc

0 5 10 15 20 25 30 35 40 45 50

time [h]

DNA

0 5 10 15 20

Wikipedia

Figure 4 Running time versus compression ratio of the evaluated algorithms on inputs of size
100 GiB. For DNA, the dashed line marks the compression ratio of 25 % that can be trivially
achieved by encoding the file using two bits per character as opposed to one byte (since the alphabet
size is four).

6.3 Results
Our main results are shown in figure 4, where we plot the running times and achieved
compression ratios of the stated compressors for the individual inputs.

Among the LZ-based compressors (gzip, xz, zstd and ours), our top-k LZ77 approxima-
tion topk-lz77 achieves the best combination of compression time and ratio. Even though
xz can achieve slightly lower compression ratios (under 1 % lower on DNA and Wikipedia),
it takes a multiple of the time (about twice as long on CommonCrawl and Wikipedia,
and nearly five times as long on DNA). The running times are also roughly independent of
the input with a standard deviation of only approximately 37 minutes. This is in contrast
to the other LZ-based compressors, which take substantially longer to compress DNA (for
computing the next phrase, gzip generates candidate lists based on the first three charac-
ters and then processes these rather naïvely – if the alphabet is small and near-uniformly
distributed, the lists become very long; xz and zstd presumably use similar heuristics).

As expected – due to the fact that LZ78 typically produces a larger number phrases than
LZ77 – the compression ratios of our LZ78 approximation topk-lz78, albeit comparatively
fast, are among the worst. However, we note that computing the exact LZ78 factorization of
the inputs could not be computed within the available memory.

The block-sorting compressor bsc achieves the best compression ratios by far, which
indicates that compression based on the Burrows-Wheeler Transform (BWT) works very well
for natural languages. Since it involves mainly suffix sorting – a problem very well studied in
practice – it achieves this also at relatively short running times. Even though bzip2 is based
on the same fundamentals, it uses much smaller block sizes and thus achieves only much
higher compression ratios, albeit also very fast.

Impact of k

To analyze the impact of the parameter k on compression and resource usage, we run
topk-lz77 and topk-lz78 for different k and present the results in figures 5 (appendix A).

The memory usage is approximately 60 B per trie node. The block text index used by
topk-lz77 requires 8 B per character (suffix array, its inverse, and the LCP array). Therefore,
with the chosen B := 231 − 1, topk-lz77 requires almost 16 GiB of memory additional to

P. Dinklage, J. Fischer, and N. Prezza 9:13

the top-k trie and independent of k. Despite the fact that our algorithms require constant
(amortized) time per input character, the running times become longer for larger k. This
can be explained by the higher number of cache misses that occur navigating the trie and
updating the Space-Saving data structure: for the largest k, these are spread across the
majority of the available RAM and it becomes far more likely that every navigation step
(either in the top-k trie or the Space-Saving data structure) incurs a cache miss.

The parameter k affects the number of phrases emitted by topk-lz78 significantly. As an
example, CommonCrawl has 7,149,629,111 LZ78 phrases. For k = 220, topk-lz78 emits
15,661,924,249 (more than twice as many), but only 7,910,221,374 phrases (10.6 % more
than LZ78) for the largest k = 896 · 220. The compression ratio improves accordingly. The
difference between the number of emitted phrases and the number z78 of actual LZ78 phrases
increases only sublinearly with decreasing k for all inputs. Empirically, this respects our
conjecture of section 4 that topk-lz78 is a Θ (

√
n/k) approximation of LZ78.

For topk-lz77, there is a much less visible effect. We refer to figure 6 for a closer look
on the number of phrases. For k = 220, on average, topk-lz77 emits only less than 0.5 %
fewer phrases than blockwise-lz77 and can hardly be considered an improvement. For the
largest k = 229, it emits approximately 2.5 % phrases less than blockwise-lz77 on average.
Increasing k helps only marginally to approach the number z77 of actual LZ77 phrases.

Top-k LZ77 versus (blockwise) LZ77

To give a more detailed comparison, table 3 (in appendix A lists the number of phrases
emitted by blockwise-lz77 and topk-lz77 (for k = 640 · 220) in comparison to the number
z77 of LZ77 phrases. The top-k trie contributes significantly to the output: on average,
55.6 % of the phrases are top-k phrases (70.9 % on CommonCrawl, 36.6 % on DNA and
59.2 % on Wikipedia). This indicates that the trie contains frequent patterns typically
longer than referencing (block-local) LZ phrases starting at the same position.

As stated previously, each trie node occupies approximately 60 B of memory, whereas each
additional character in the block only adds 8 B to the text index size. Even though these are
not directly comparable, a fair question is why not simply increase the block size to fill the
RAM instead of using the top-k trie? To address this, consider blockwise-lz77+, where we
set the block size accordingly (1 GiB larger than blockwise-lz77+). An important difference
is that now, with blocks ≥ 231, each character contributes 16 B to the text index as we require
64 bits for block access. (We did not consider implementing, e.g., 40-bit integers). In table 3,
we can see that indeed, blockwise-lz77+ emits slightly less phrases than topk-lz77 (4.0 %
less on CommonCrawl, 1.9 % less on DNA and 0.9 % less on Wikipedia). However, from
figure 4, we can take that topk-lz77, albeit somewhat slower, still yields better compression
ratios, which implies that top-k phrases can be encoded more efficiently.

7 Conclusions and Outlook

Our top-k LZ77 approximation achieves competitive compression ratios among other Lempel-
Ziv-based compressors. This is remarkable considering the fact that our chosen encoding
(described in section 6.1) is far less sophisticated than that of the competitors and likely
allows for future improvements. Furthermore, this result is achieved at competitive speeds.
Our top-k LZ78 approximation is a viable alternative to LZ78 if memory is limited, yielding
good compression (albeit not competitive) at relatively fast running times.

To improve running times, parallel variants of our compressors could be considered. The
key issue would be how to use the top-k trie, which currently only supports strictly sequential
operations. If p is the number of processors, working with p independent tries that are

SEA 2024

9:14 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

synchronized regularly can be an option. Then, however, each trie can only be of size at
most O (k/p) to stay within O (k) total space. Synchronizing (e.g., merging) the p tries is
also non-trivial, as the node numbering may be different in each of the tries.

To improve compression, an idea that we did not pursue in this work would be to encode
more frequent patterns with shorter codewords than less frequent patterns. For example,
instead of encoding simply the index v < k of a node in the trie using ⌈lg k⌉ bits, one could
encode the tuple (f ′

v, v′), where f ′
v is the frequency of the pattern represented by v and v′ is

v’s index within the bucket corresponding to frequency f ′
v. Because larger f ′

v will naturally
be encoded more frequently, they could be encoded using Huffman codes, much like the
phrase lengths. The issue that arises with this particular proposal would be how to locate
and access v′ efficiently in dynamic buckets (currently, they are doubly-linked lists).

The top-k trie as presented tends to contain redundant information. This comes from the
fact that every proper substring of a frequent pattern is also frequent. Particularly, consider
a proper suffix v of a frequent pattern u that may also be frequent independently of u (not
all occurrences of u imply an occurrence of v). Every pattern of which v is a proper prefix is
contained in an additional branch off the trie’s root, potentially rephrasing many substrings
also contained in the path to u. To make most of the working space, an important open goal
is therefore to compress the trie or use a different representation altogether. Ideally, based on
the idea of string attractors [23], it could be of interest to maintain dynamically the smallest
string that is a k-attractor for the input, where k is a parameter to control the space usage.

A more general issue with using heavy hitters for compression is that they tend to consist
of shorter patterns, as these are naturally more frequent. Going away from a strict streaming
model, future work may consider a precompression pass, where a different algorithm, aimed
specifically at finding long repetitions, preprocesses the input.

It is straightforward to think about random access to the compressed string. In the
presented encoding, a node index v always refers to the trie TF in the instant in which it is
was encoded. Accessing a particular character S[i] would therefore require to decode the
entire prefix S[1..i]. It may be interesting to consider a two-pass variant of top-k LZ78 similar
to the work of Arz and Fischer [7]: in the first pass, we compute the top-k trie TF for all of
S. In the second pass, we then compute a greedy parsing of S using the fixed trie TF . By
keeping TF in RAM and precomputing a suitable rank/select data structure for the phrases,
it is then possible to access any S[i] in time at most O (h), where h is the height of TF .

Looking past compression, the top-k trie may have applications as a framework for online
frequent pattern estimation where frequent patterns are of interest, e.g., for mining key
phrases in a document. In this work, we did not consider output of frequent patterns, but
this can easily be done by traversing the trie after processing the input. Depending on the
application, the error introduced by our approach as discussed in section 3 may be relevant.

References

1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and
Ke Yi. Mergeable summaries. ACM Trans. Database Syst., 38(4):26, 2013. doi:10.1145/
2500128.

2 Charu C. Aggarwal and Philip S. Yu. A survey of synopsis construction in data streams. In
Data Streams - Models and Algorithms, volume 31 of Advances in Database Systems, pages
169–207. Springer, 2007. doi:10.1007/978-0-387-47534-9_9.

3 Sergio De Agostino. Bounded size dictionary compression: Relaxing the lru deletion heuristic.
Int. J. Found. Comput. Sci., 17(6):1273–1280, 2006. doi:10.1142/S0129054106004406.

https://doi.org/10.1145/2500128
https://doi.org/10.1145/2500128
https://doi.org/10.1007/978-0-387-47534-9_9
https://doi.org/10.1142/S0129054106004406

P. Dinklage, J. Fischer, and N. Prezza 9:15

4 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

5 Alberto Apostolico, Matteo Comin, and Laxmi Parida. Bridging lossy and lossless compression
by motif pattern discovery. In General Theory of Information Transfer and Combinatorics,
volume 4123 of Lecture Notes in Computer Science, pages 793–813. Springer, 2006. doi:
10.1007/11889342_51.

6 Diego Arroyuelo, Rodrigo Cánovas, Johannes Fischer, Dominik Köppl, Marvin Löbel, Gonzalo
Navarro, and Rajeev Raman. Engineering practical Lempel-Ziv tries. ACM J. Exp. Al-
gorithmics, 26:14:1–14:47, 2021. doi:10.1145/3481638.

7 Julian Arz and Johannes Fischer. Lempel-Ziv-78 compressed string dictionaries. Algorithmica,
80(7):2012–2047, 2018. doi:10.1007/S00453-017-0348-7.

8 Sairam Behera, Sutanu Gayen, Jitender S. Deogun, and N. V. Vinodchandran. KmerEstimate:
A streaming algorithm for estimating k-mer counts with optimal space usage. In ACM
International Conference on Bioinformatics, Computational Biology and Health Informatics
(BCB), pages 438–447. ACM, 2018. doi:10.1145/3233547.3233587.

9 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Bounds for frequency
estimation of packet streams. In 10th Internaltional Colloquium on Structural Information
Complexity (SIROCCO), volume 17 of Proceedings in Informatics, pages 33–42. Carleton
Scientific, 2003.

10 Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in streams of data.
Commun. ACM, 52(10):97–105, 2009. doi:10.1145/1562764.1562789.

11 Peter Deutsch. DEFLATE compressed data format specification version 1.3. RFC, 1951:1–17,
1996. doi:10.17487/RFC1951.

12 Jonas Ellert. Sublinear time Lempel-Ziv (LZ77) factorization. In 30th International Symposium
on String Processing and Information Retrieval (SPIRE), volume 14240 of Lecture Notes in
Computer Science, pages 171–187. Springer, 2023. doi:10.1007/978-3-031-43980-3_14.

13 Johannes Fischer, Travis Gagie, Pawel Gawrychowski, and Tomasz Kociumaka. Approximating
LZ77 via small-space multiple-pattern matching. In 23rd European Symposium on Algorithms
(ESA), volume 9294, pages 533–544. Springer, 2015. doi:10.1007/978-3-662-48350-3_45.

14 Johannes Fischer, Volker Heun, and Stefan Kramer. Optimal string mining under frequency
constraints. In 10th European Conference on Principles and Practice of Knowledge Discovery
in Databases PKDD, volume 4213 of Lecture Notes in Computer Science, pages 139–150.
Springer, 2006. doi:10.1007/11871637_17.

15 Johannes Fischer, Tomohiro I, Dominik Köppl, and Kunihiko Sadakane. Lempel-ziv fac-
torization powered by space efficient suffix trees. Algorithmica, 80(7):2048–2081, 2018.
doi:10.1007/S00453-017-0333-1.

16 E. Fredkin. Trie memory. Commun. ACM, 3:490–499, 1960. doi:10.1145/367390.367400.
17 Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and Philip S.

Yu. A survey of parallel sequential pattern mining. ACM Trans. Knowl. Discov. Data,
13(3):25:1–25:34, 2019. doi:10.1145/3314107.

18 Torben Hagerup. Sorting and searching on the word RAM. In 15th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume 1373 of Lecture Notes in Computer
Science, pages 366–398. Springer, 1998. doi:10.1007/BFb0028575.

19 Aaron Hong, Massimiliano Rossi, and Christina Boucher. LZ77 via prefix-free parsing. In
25th Workshop on Algorithm Engineering and Experiments (ALENEX), pages 123–134. SIAM,
2023. doi:10.1137/1.9781611977561.CH11.

20 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time lempel-ziv factorization:
Simple, fast, small. In 24th Annual Symposium on Combinatorial Pattern Matching (CPM),
volume 7922 of Lecture Notes in Computer Science, pages 189–200. Springer, 2013. doi:
10.1007/978-3-642-38905-4_19.

SEA 2024

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1007/11889342_51
https://doi.org/10.1007/11889342_51
https://doi.org/10.1145/3481638
https://doi.org/10.1007/S00453-017-0348-7
https://doi.org/10.1145/3233547.3233587
https://doi.org/10.1145/1562764.1562789
https://doi.org/10.17487/RFC1951
https://doi.org/10.1007/978-3-031-43980-3_14
https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1007/11871637_17
https://doi.org/10.1007/S00453-017-0333-1
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/3314107
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1137/1.9781611977561.CH11
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19

9:16 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

21 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26-28 March,
2014, pages 153–162. IEEE, 2014. doi:10.1109/DCC.2014.78.

22 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

23 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In 50th Annual ACM Symposium on Theory of Computing (STOC), pages 827–840. ACM,
2018. doi:10.1145/3188745.3188814.

24 Dmitry Kosolobov, Daniel Valenzuela, Gonzalo Navarro, and Simon J. Puglisi. Lempel-
Ziv-like parsing in small space. Algorithmica, 82(11):3195–3215, 2020. doi:10.1007/
S00453-020-00722-6.

25 Shirou Maruyama and Yasuo Tabei. Fully online grammar compression in constant space. In
Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26-28 March, 2014, pages
173–182. IEEE, 2014. doi:10.1109/DCC.2014.69.

26 Páll Melsted and Bjarni V. Halldórsson. Kmerstream: streaming algorithms for k-mer
abundance estimation. Bioinform., 30(24):3541–3547, 2014. doi:10.1093/bioinformatics/
btu713.

27 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In 10th International Conference on Database Theory
(ICDT), volume 3363, pages 398–412. Springer, 2005. doi:10.1007/978-3-540-30570-5_27.

28 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program, 2(2):143–
152, 1982. doi:10.1016/0167-6423(82)90012-0.

29 Hamid Mohamadi, Hamza Khan, and Inanç Birol. ntcard: a streaming algorithm for car-
dinality estimation in genomics data. Bioinform., 33(9):1324–1330, 2017. doi:10.1093/
bioinformatics/btw832.

30 S. Muthukrishnan. Data streams: algorithms and applications. In 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 413–413. SIAM, 2003. URL: http:
//dl.acm.org/citation.cfm?id=644108.644174.

31 Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. Squeakr: an exact
and approximate k-mer counting system. Bioinform., 34(4):568–575, 2018. doi:10.1093/
bioinformatics/btx636.

32 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.
Algorithmica, 80(7):1986–2011, 2018. doi:10.1007/S00453-017-0327-Z.

33 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

34 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

35 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

A Additional Data

This appendix contains figures showing additional data from the experiments of section 6,
namely:

Figures 5 and 6 (impact of k on the number of phrases, compression ratio, running time
and required memory of topk-lz78 and topk-lz77

Table 3 (comparison of the number of phrases between exact, blockwise and top-k LZ77)

https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1007/S00453-020-00722-6
https://doi.org/10.1007/S00453-020-00722-6
https://doi.org/10.1109/DCC.2014.69
https://doi.org/10.1093/bioinformatics/btu713
https://doi.org/10.1093/bioinformatics/btu713
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1093/bioinformatics/btw832
https://doi.org/10.1093/bioinformatics/btw832
http://dl.acm.org/citation.cfm?id=644108.644174
http://dl.acm.org/citation.cfm?id=644108.644174
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1007/S00453-017-0327-Z
https://doi.org/10.1007/S00224-006-1198-X
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

P. Dinklage, J. Fischer, and N. Prezza 9:17

20 21 22 23 24 25 26 27 28 29
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·1010

#
of

ph
ra

se
s

CommonCrawl

20 21 22 23 24 25 26 27 28 29

·1010 DNA

20 21 22 23 24 25 26 27 28 29
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·1010Wikipedia

20 21 22 23 24 25 26 27 28 29
15

20

25

30

35

40

45

50

co
m

p.
ra

ti
o

[%
]

20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
15

20

25

30

35

40

45

50

20 21 22 23 24 25 26 27 28 29
0
1
2
3
4
5
6
7
8
9

10
11
12

ti
m

e
[h

]

20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
0
1
2
3
4
5
6
7
8
9
10
11
12

20 21 22 23 24 25 26 27 28 29
0

8

16

24

32

40

48

56

64

m
em

or
y

us
ag

e
[G

iB
]

topk-lz77 topk-lz78

20 21 22 23 24 25 26 27 28 29

log2 k

20 21 22 23 24 25 26 27 28 29
0

8

16

24

32

40

48

56

64

Figure 5 Impact of k on the number of emitted phrases, compression ratio, running time (average
of three iterations) and memory usage of our algorithms. Regarding the number of phrases, the
dotted line marks the number of phrases emitted by blockwise-lz77 (upper bound) and the dashed
lines mark the exact number of LZ77 or LZ78 phrases, respectively (lower bounds). Please refer to
figure 6 for a closer look at the number of phrases emitted by topk-lz77.

20 21 22 23 24 25 26 27 28 29 30
5.5

5.6

5.7

5.8

5.9
·109

#
of

ph
ra

se
s

CommonCrawl

20 21 22 23 24 25 26 27 28 29 30
5.35

5.36

5.37

5.38

5.39

5.4
·109

log2 k

DNA

20 21 22 23 24 25 26 27 28 29 30
4.55

4.6

4.65

4.7
·109 Wikipedia

Figure 6 Impact of k on the number of phrases emitted by topk-lz77. This shows the same data
as figure 5, but on a different scale for each input. The dotted lines mark the number of phrases
emitted by blockwise-lz77 (upper bound).

SEA 2024

9:18 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

Table 3 Phrases emitted by blockwise-lz77, topk-lz77 (k = 640 · 220) and blockwise-lz77+
compared to the number z77 of LZ77 phrases. Values are given as billions. For topk-lz77, we
distinguish between the number of (block-local) LZ phrases as well as phrases from the top-k trie.

blockwise- topk-lz77 blockwise- z77

Input lz77 Total LZ phrases top-k phrases lz77+
CommonCrawl 5.840 5.554 1.502 4.052 5.333 2.596

DNA 5.388 5.351 3.178 2.173 5.251 4.415
Wikipedia 4.680 4.563 1.797 2.765 4.520 3.513

B Input Corpus

For the experiments in section 6, we use the 100 GiB prefixes of the following corpus.
CommonCrawl: Web crawls from the Common Crawl Project (https://commoncrawl.
org). We use the WET files 00000 to 00600 from the CC-MAIN-2019-09 crawl and
concatenate them in numerical order, removing all WARC meta information (one line
consisting of WARC/1.0 and the following eight lines).
DNA: Human genomic sequences from the European Nucleotide Archive (https://
www.ebi.ac.uk). We extract the raw sequences from the FASTQ datasets DRR00000
to DRR000426 (non-continuous) available at ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
DRR000, removing all characters other than A, C, G and T. These are concatenated in
numerical order (DRR<N>, where <N> is the file number).
Wikipedia: XML dumps of the German and English versions of Wikipedia (dumps.
wikimedia.org). We concatenate the dumps as of March 20, 2019 in the order de, en.
The contained articles are of that date with no version history.

C Computing LZ77 in Linear Time and Space

To compute a LZ77 parsing of a string S ∈ Σn of length n – as required by our blockwise LZ77
implementations (with and without the top-k trie) – we implement a well-known approach
that simulates the longest previous factor (LPF) array as shown in algorithm 2.

We first compute the suffix array A of S and its inverse A−1, which can be done in time
and space O (n) (see, e.g., [22]). With this, we parse S from left to right computing the next
LZ77 phrase in each step.

Let i < n be the current position in S. The next LZ77 phrase is the longest prefix of
S[i..n] that has an occurrence in S beginning at a position j < i. We can find j in i’s
neighbourhood in the suffix array. Let i′ = A−1[i] be the position of i in the suffix array.
Because of the lexicographic order of suffixes in A, the values nearest to i′ in A that are
< i are candidates for j. We call them the previous smaller value (PSV, lexicographically
smaller than S[i..n]) or the next smaller value j2 (NSV, lexicographically larger than S[i..n])
and denote them by j1 or j2, respectively. By computing the longest common extension
(LCE) between S[i..n] and S[j1..n] or S[j2..n], respectively, we find the lengths ℓ1 and ℓ2 of
the candidate LZ77 phrases. Because LZ77 phrases are defined greedily, whichever candidate
is longer is the next LZ77 phrase. Ties are broken arbitrarily. The special case where
ℓ1 = ℓ2 = 0 occurs if S[i] is the first occurrence of the corresponding character in S, then
the next LZ77 phrase is a literal phrase. The algorithm requires time and space O (n) (the
LCE computations can be done using the LCP array, which can be computed in O (n) extra
time and space, or naïvely comparing character by character, contributing to at most two
additional scans of S in total). For a more detailed elaboration of this algorithm, we refer
the reader to [20].

https://commoncrawl.org
https://commoncrawl.org
https://www.ebi.ac.uk
https://www.ebi.ac.uk
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR000
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR000
dumps.wikimedia.org
dumps.wikimedia.org

P. Dinklage, J. Fischer, and N. Prezza 9:19

Algorithm 2 Computing a LZ77 parsing for an input S by simulating the LPF array.
For clarity, we omitted the handling of some border cases in the LCE computations. The
operator ◦ concatenates two strings.

Input : String S ∈ Σn of length n

Output : LZ77 parsing S′ of S

1 S′ ← ε

2 A← suffix array of S, A−1 ← inverse suffix array of S

3 i← 1
4 while i < n do
5 i′ ← A−1[i] // suffix array neighbourhood of i in A

6 j1 ← A[max{j′ | j′ < i′ ∧ A[j′] < i}] // PSV in A w.r.t. i′

7 ℓ1 ← max{ℓ | S[i .. i + ℓ] = S[j1 .. j1 + ℓ] ∧ S[i + ℓ + 1] ̸= S[j1 + ℓ + 1]} // LCE
8 j2 ← A[min{j′ | j′ > i′ ∧ A[j′] < i}] // NSV in A w.r.t. i′

9 ℓ2 ← max{ℓ | S[i .. i + ℓ] = S[j2 .. j2 + ℓ] ∧ S[i + ℓ + 1] ̸= S[j2 + ℓ + 1]} // LCE

10 ℓ← max{ℓ1, ℓ2, 1}
11 if ℓ > 1 then

12 δ ←

{
i− j1 if ℓ1 > ℓ2

i− j2 otherwise
13 S′ ← S′ ◦ (ℓ, δ) // referencing phrase
14 else
15 S′ ← S′ ◦ (0, S[i]) // literal phrase
16 i← i + ℓ

In our implementation (algorithm 2), we implicitly convert referencing phrases of length
one to literal phrases (line 10), which is more beneficial towards the encoding. We do not
use the LCP array but compute LCEs naïvely by scanning. This requires significantly less
working memory and is, in practice, less time-consuming than computing the LCP array
and accessing it randomly. We use libsais for computing the suffix array and inverse it
trivially in n steps (A−1[A[i]] := i for all i). Thus, if n < 231, we can use 32-bit integers and
the practical space requirement, including the input S, becomes 9n bytes (libsais requires
the 32nd bit to temporarily store auxiliary information). For larger n, we use 64-bit integers,
such that the requirement becomes 17n bytes. (It would be possible to implement custom
integer types such as 40-bit integers, but we did not consider that for this work.)

C.1 Fast Semi-External Memory Implementation

For computing the number z = |S′| of LZ77 phrases of the 100 GiB inputs of section 6, we
faced a practical problem: the machine with the largest RAM available to us has 1 TB, which
is slightly less than 10n bytes. The algorithm described above, however, requires 17n bytes
(since n ≥ 231, we require 64-bit integers).

We considered using succinct representations of the suffix array (e.g., [33] as provided by
the SDSL), however, the working space required for their construction exceed our limitations.
We furthermore considered using the external-memory algorithms by Kärkkäinen et al. [21],
however, these would have required several weeks of running time per input file.

To tackle this, we implemented a semi-external memory algorithm that requires 9n bytes
of RAM for 64-bit integers and 8n bytes of external memory (16n during construction) and
is included in our public source code (lpfs). It is an adaptation of algorithm 2 that works
as follows:

SEA 2024

9:20 Top-k Frequent Patterns in Streams and Parameterized-Space LZ Compression

1. Load S and compute A as usual using 9n bytes of RAM.
2. Write A to file sa.
3. Compute A−1 in the space allocated for A by streaming the file sa. Let x be the i-th

value read from the file, then we set A−1[x] := i.
4. Write A−1 to file isa.
5. Load file sa back into A and delete file sa.
6. To parse S, stream the values A−1[i] from file isa and skip entries as needed.
7. When done parsing S, delete file isa.

The external memory portions of the algorithm are optimal in the external memory model
in the sense that they require only O (n/B) I/O operations.

Since n < 240 in our case, we encoded the entries of files sa and isa using 40 bits each.
Thus, the external memory requirement dropped to 5n bytes (10n bytes during construction).
We used this algorithm to successfully compute the LZ77 parsings for the stated inputs
within approximately 24 hours each.

	1 Introduction
	2 Preliminaries
	2.1 The Misra-Gries algorithm for top-k frequent item estimation
	2.2 The Space-Saving Data Structure
	2.3 Tries
	2.4 Lempel-Ziv 78
	2.5 Lempel-Ziv 77

	3 The Top-k Trie for Frequent Pattern Estimation
	4 Online Approximation of LZ78 in Parameterized Space
	5 Online Approximation of LZ77 in Parameterized Space
	6 Experiments
	6.1 Implementation
	6.2 Experimental Setup
	6.3 Results

	7 Conclusions and Outlook
	A Additional Data
	B Input Corpus
	C Computing LZ77 in Linear Time and Space
	C.1 Fast Semi-External Memory Implementation

