Linear Time Runs Over
General Ordered Alphabets

Jonas Ellert =

Department of Computer Science, Technical University of Dortmund, Germany

Johannes Fischer &
Department of Computer Science, Technical University of Dortmund, Germany

—— Abstract

A run in a string is a maximal periodic substring. For example, the string bananatree contains
the runs anana = (an)s/2 and ee = e?. There are less than n runs in any length-n string, and
computing all runs for a string over a linearly-sortable alphabet takes O(n) time (Bannai et al.,
SIAM J. Comput. 2017). Kosolobov conjectured that there also exists a linear time runs algorithm
for general ordered alphabets (Inf. Process. Lett. 2016). The conjecture was almost proven by
Crochemore et al., who presented an O(na(n)) time algorithm (where a(n) is the extremely slowly
growing inverse Ackermann function). We show how to achieve O(n) time by exploiting combinatorial
properties of the Lyndon array, thus proving Kosolobov’s conjecture. This also positively answers
the at least 29-year-old question whether square-freeness can be tested in linear time over general

ordered alphabets (Breslauer, PhD thesis, Columbia University 1992).
2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases String algorithms, Lyndon array, runs, squares, longest common extension,
general ordered alphabets, combinatorics on words

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.63
Category Track A: Algorithms, Complexity and Games

Supplementary Material Software (Source Code): https://github.com/jonas-ellert/linear-
time-runs/; archived at swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7

1 Introduction and Related Work

A run in a string S is a maximal periodic substring. For example, the string S = bananatree
contains exactly the runs anana = (an)5/ 2 and ee = e2. Identifying such repetitive structures
in strings is of great importance for applications like text compression, text indexing and
computational biology (for a general overview see [8]). To name just one example, runs in
human genes (called maximal tandem repeats) are involved with a number of neurological
disorders [5]. In 1999, Kolpakov and Kucherov showed that the maximum number p(n) of runs
in a length-n string is bounded by O(n), and provided a word RAM algorithm that outputs
all runs in linear time [18]. The algorithm is based on the Lempel-Ziv factorization and
only achieves O(n) time for linearly-sortable alphabets, i.e. alphabets that are totally ordered
and for which a sequence of o alphabet symbols can be sorted in O(c) time. Since then,
it has been an open question whether there exists a linear time runs algorithm for general
ordered alphabets, i.e. totally ordered alphabets for which the order of any two symbols can be
determined in constant time. Any such algorithm must not use the Lempel-Ziv factorization,
since for general ordered alphabets of size o it cannot be constructed in o(nlgo) time [19].

Kolpakov and Kucherov also conjectured that the maximum number of runs is bounded
by p(n) < n, which started a 15 year-long search for tighter upper bounds of p(n). Rytter
was the first to give an explicit constant with p(n) < 5n [25]. After multiple incremental
improvements of this bound (e.g. [7,9,24]), Bannai et al. [2] finally proved the conjecture by
showing p(n) < n for arbitrary alphabets, which was subsequently even surpassed for binary
texts [12]. (The current best bound for binary alphabets is p(n) < 15on [17].)
? Jona(s1 Ellgrt aénd iohar(ljnes Fischeﬁ‘.; COBY 40

BY icensed under reative ommons icense .

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 63; pp.63:1-63:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany



mailto:jonas.ellert@tu-dortmund.de
https://orcid.org/0000-0003-3305-6185
mailto:johannes.fischer@cs.tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://github.com/jonas-ellert/linear-time-runs/
https://github.com/jonas-ellert/linear-time-runs/
https://archive.softwareheritage.org/swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;origin=https://github.com/jonas-ellert/linear-time-runs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2

Linear Time Runs over General Ordered Alphabets

On the algorithmic side, Bannai et al. also provided a new linear time algorithm that
computes all the runs [2]. While (just like the algorithm by Kolpakov and Kucherov) it only
achieves the time bound for linearly-sortable alphabets, it no longer relies on the Lempel-Ziv
factorization. Instead, the main effort of the algorithm lies in the computation of ©(n)
longest common extensions (LCEs); given two indices 4, j € [1,n], their LCE is the length of
the longest common prefix of the suffixes S[i..n] and S[j..n]. For linearly-sortable alphabets,
we can precompute a data structure in O(n) time that answers arbitrary LCE queries in
constant time (see e.g. [11]), thus yielding a linear time runs algorithm. Kosolobov showed
that for general ordered alphabets any batch of O(n) LCEs can be computed in O(nlg?/® n)
time, and conjectured the existence of a linear time runs algorithm for general ordered
alphabets [20]. Gawrychowski et al. improved this result to O(nlglgn) time [14]. Finally,
Crochemore et al. noted that the required LCEs satisfy a special non-crossing property. They
showed how to compute O(n) non-crossing LCEs in O(na(n)) time, resulting in an O(na(n))
time algorithm that computes all runs over general ordered alphabets [10] (where « is the
inverse Ackermann function).

This is also the asymptotically fastest known algorithm for testing whether a string is
square-free. A square is a substring aa for some non-empty word «. A string is square-
free if and only if it contains no runs (because every square is contained in a run, and
every run contains at least one square). The question whether square-freeness over general
ordered alphabets can be tested in linear time dates back at least to Breslauer’s PhD
dissertation [4, Section 4.4], which was published almost 30 years ago.! Testing for square-
freeness over general unordered alphabets (where only constant time equality testing of
symbols is permitted) takes at least Q(nlgn) symbol comparisons [22].

Our Contributions. We show how to compute the LCEs required by the algorithm by
Bannai et al. in O(n) time and space, resulting in the first linear time runs algorithm for
general ordered alphabets. Thus we prove Kosolobov’s conjecture, and provide the first
linear time algorithm to test for square-freeness over general ordered alphabets. Our solution
differs from all previous approaches in the sense that it cannot answer a sequence of arbitrary
non-crossing LCE queries. Instead, our algorithm is specifically designed ezactly for the LCEs
required by the runs algorithm. This allows us to utilize powerful combinatorial properties of
the Lyndon array (a definition follows in Section 2) that do not generally hold for arbitrary
non-crossing LCE sequences.

Even though the main contribution of our work is the improved asymptotic time bound,
it is worth mentioning that our algorithm is also very fast in practice. On modern hardware,
computing all runs for a text of length 107(= 10MB) takes only one second.

A Note on the Model. As mentioned earlier, our algorithm runs in linear time for general
ordered alphabets, whereas previous algorithms achieve this time bound only when the
alphabet is linearly-sortable. This is comparable with the distinction between comparison-
based and integer sorting: while in the comparison-model sorting n items requires Q(nlgn)
time, integer sorting is faster (O(ny/Iglgn) time [16] and sometimes even linear, e.g. when
the word width w satisfies w = O(lgn) and one can use radix sort, or when w > (Ig**¢n) [1]).
Whereas it is a major open problem whether integer sorting can always be done in linear
time, this paper settles a symmetric open problem for the computation of runs.

! 'We thank the reviewer who kindly pointed out to us that this was an open problem.



J. Ellert and J. Fischer

The remainder of the paper is structured as follows: First, we introduce the basic notation,
definitions, and auxiliary lemmas (Section 2). Then, we give a simplified description of the
runs algorithm by Bannai et al. and show how the required LCEs relate to the Lyndon array
(Section 3). Our linear time algorithm to compute the LCEs is described in Section 4. We
discuss additional practical aspects and experimental results in Section 5.

2 Preliminaries

Our analysis is performed in the word RAM model (see e.g. [15]), where we can perform
fundamental operations (logical shifts, basic arithmetic operations etc.) on words of size
w bits in constant time. For an input of size n we assume [logyn] < w. We write
[i,] =[5, +1) = (i —1,j] = (i — 1,7+ 1) with 4,5 € N to denote the set of integers
{r]zeNAi<z<j}

Strings. Let X be a finite and totally ordered set. A string S of length |S| = n over the
alphabet ¥ is a sequence S[1] ... S[n] of n symbols (also called characters) from X. The alphabet
is called a general ordered alphabet if order testing (i.e. evaluating o1 < oy for 01,09 € %) is
possible in constant time. For 4, j € [1,n], we use the interval notation S[i..j] = S[i..j + 1) =
S(i—1.4] = S(i —1..j +1) to denote the substring S[i]...S[j]. If however i > j, then
Si..j] denotes the empty string e. The substring S[i..j] is called proper if S[i..j] # S. A
prefiz of S is a substring S[1..5] (including S[1..0] = €), while the suffiz S; is the substring
Si..n] (including S,,+1 = €). Given two strings S and T of length n and m respectively, their
concatenation is defined as ST = S[1]...S[n]T[1]...T[m]. For any positive integer k, the k-
times concatenation of S is denoted by S*. Let £,.x = min(n,m). The longest common prefiz
(LCP) of S and T has length LCP(S,T) = max{{ | £ € [0, {max] A S[1..£4] = T[1..£]}, while the
longest common suffiz has length LC-SUFF(S,T) = max{{ | £ € [0, {max] A Sn—t+1 = Trn—r41}-
Let ¢/ = Lop(S,T). For a string S of length n and indices i, j € [1,n], we define the longest
common right-extension (R-LCE) and left-extension (L-LCE) as LCE,(i,j) = LCP(S;, S;)
and LCEg(4,j) = LC-SUFF(S[1..i],S[1..5]) respectively. The total order on ¥ induces a
lexicographical order < on the strings over ¥ in the usual way. Given three suffixes, we can
deduce properties of their R-LCEs from their lexicographical order:

» Lemma 1. Let S; < S; < Sy be suffives of a string, then it holds LCE, (i, k) < LCE, (1, j)
and LCE, (i, k) < LCE.(j, k).

Proof. Assume ¢ = LCE,(4,j) < LCE, (i, k), then S;[1..4] = S;[1..¢] = Si[1..4] and S;[¢ + 1] #
S;i[€ 4+ 1] = Sk[¢ +1]. This implies S; < S; & S < Sj, which contradicts S; < S; < Si. The
proof of LCE, (i, k) < LCE,(j, k) works analogously. <

Repetitions and Runs. Let S be a string and let S[i..j] be a non-empty substring. We say
that p € N* is a period of Sli..j] if and only if Vz € [i,5 — p| : S[z] = S|z + p]. If additionally
(j—i+1) > p, then S[i..i + p) is called string period of S[i..j]. Furthermore, p is called
shortest period of S[i..j] if there is no ¢ € [1, p) that is also a period of S[i..j]. Analogously,
a string period of S[i..j] is called shortest string period if there is no shorter string period of
Sli..j]. A run is a triple (i, j, p) such that p is the shortest period of S[i..j], (j —¢+1) > 2p
(i.e. there are at least two consecutive occurrences of the shortest string period S[i..i + p)),
and neither (i — 1,4, p) nor (i,j + 1, p) satisfies these properties (assuming ¢ > 1 and j < n,
respectively).

63:3

ICALP 2021



63:4

Linear Time Runs over General Ordered Alphabets

Lyndon Words and Nearest Smaller Suffixes. For a length-n string S and ¢ € [1,n], the
string S;S[1..7) is called cyclic shift of S, and non-trivial cyclic shift if i > 1. A Lyndon word
is a non-empty string that is lexicographically smaller than any of its non-trivial cyclic shifts,
ie Vie[2,n]:S < 5;5[1..i). The Lyndon array of S identifies the longest Lyndon word
starting at each position of S.

» Definition 2 (Lyndon Array). Given a string S of length n, its Lyndon array A[1,n] is
defined by Vi € [1,n] : A\[i] = max{j —i+1]|j € [i,n] A S[i..j] is a Lyndon word}.

An alternative representation of the Lyndon array is the next-smaller-suffix array.

» Definition 3 (Next Smaller Suffixes). Given a string S of length n, its next-smaller-suffix
(NSS) array is defined by Vi € [1,n] : nss[i] =min{j | j=n+1V (j € (i,n] AS; = S;)}. If
nss[i| < n, then Shs;) s called the next smaller suffix of Sj.

» Lemma 4 (Lemma 15 [13]). The longest Lyndon word starting at any position i € [1,n] of
a length-n string S is exactly the substring S[i..nss[i]), i.e. Vi € [1,n] : A[i] = nss[i] — .

An example of the Lyndon and NSS array is provided in Figure 1la. The NSS edges in
the example do not intersect. This property also holds in the general case:

» Lemma 5. Leti € [1,n] and i’ € [i,nss[i]). Then it holds nss[i'] < nss]i].

Proof. Due to i’ € [, nss[i]) and Definition 3 it holds Sy = Spep). Assume that the lemma
does not hold, then we have nss[i] € (i’,nss[i']) and Definition 3 implies Sy < Spes[i]- <

3 The Runs Algorithm Revisited

In this section, we recapitulate the main ideas of the algorithm by Bannai et al. [2], which is
the basis of our solution for general ordered alphabets. The key insight is that every run is
rooted in a longest Lyndon word, allowing us to compute all runs from the Lyndon array.

» Definition 6. Let (i, j,p) be a run in a string S. We say that (i, j,p) is (lexicographically)
decreasing if and only if S; = Si1p. Otherwise, (i,7,p) is (lexicographically) increasing.

» Lemma 7. Let (i, j,p) be a decreasing run, then there is exactly one index iy € [i..i + p)
such that A[ig] = p.

Proof. Consider any ig € [¢,i+p). By the definition of runs, we have S[i..ig) = S[i+p..i0+D).
Since the run is decreasing it follows S; > S+, <= S[i..i0)Si, = S[i + p--io + 0)Sig+p =
Sio > Sig+p- This implies nss[ig] < i+ p, and due to Lemma 4 also A[ig] < p. Next, we show
that there is at least one index ig € [i..i + p) such that S[ig..ig + p) is a Lyndon word. Let
o = S[i..i+p). Assume that the described index ig does not exist, then from S[i..i+2p) = an
follows that no cyclic shift of « is a Lyndon word. Let 8 be a lexicographically minimal
cyclic shift of «, then this shift is not unique (otherwise § would be a Lyndon word), and
thus there must be a cyclic shift 8, 3[1..k) = B[1..k)Sk with k& > 1. This however implies that
(3 is of the form 3 = p* for some string y and an integer k > 1 (see Lemma 3 in [21]), which
contradicts the fact that « is the shortest string period of the run. Finally, let apa[l..k) with
k € [1, p] be the unique lexicographically smallest cyclic shift of o (and thus a Lyndon word),
then it is easy to see that only ig =7 + k — 1 satisfies A[ig] = p. <



J. Ellert and J. Fischer

run (5,31,7)
a o o «[l..6]
12345678 91011 . " .
S —=acbacbababc S = [aaaa abc abab abc abab abc abab abc aba aaaa[

=31131151321 Iq—8 |<—15 N

NnsS = 4 3 4 7 6 7129 121212 > o

www °- nss[8] = 1:5, A8l =7

m=p-| LCE((8,15) = 4 |€== L.CE,(8,15) = 17

>
|

(a) String S = acbacbababc, its Lyn- (b) Decreasing run (5,31,7) with S[5..31] = (abcabab)?7/7.

don array A, and its NSS array nss. The run has shortest string period o = abcabab, and is rooted
in position 8 (with longest Lyndon word f = S[8..15) =
aga1..3] = abababc).

Figure 1 An edge from text position a to text position b indicates nss[a] = b.

» Definition 8 (Root of a Run). Let (i,j,p) be a decreasing run, and let ig € [i..i + p) be the
unique index with \ig] = p (as described in Lemma 7). We say that (i, j,p) is rooted in ig.

An example of a decreasing run and its root is provided in Figure 1b. Note that our
notion of a root differs from the L-roots introduced by Crochemore et al. [6]. While an L-root
is any length-p Lyndon word contained in the run, our root is exactly the leftmost one.

Given a longest Lyndon word S[ig..nss[ig]) of length p = nss[ig] — ig = A[ig], it is easy
to determine whether iy is the root of a decreasing run. We simply try to extend the
periodicity as far as possible to both sides by using the LCE functions. For this purpose, we
only need to compute | = LCEy(ig, nss[ig]) and r = LCE, (g, nss[ig]). Let i =i — I+ 1 and
j = nss[ig] + 7 — 1, then clearly the substring S[i..j] has smallest period p, and we cannot
extend the substring to either side without breaking the periodicity. Thus, if j —¢+1 > 2p
then (i, j,p) is a run. Note that this run is only rooted in i if additionally i € [i..i + p) (or
equivalently ! < p) holds. For the index iy = 8 in Figure 1b, we have [ = LCE,(8, 15) = 4 and
r = LCE,(8,15) = 17. Therefore, the run starts at position ¢t =8 —4 + 1 =5 and ends at
position j =15+ 17 — 1 = 31. From [ = 4 < 7 = p follows that 8 is actually the root.

Since each decreasing run is rooted in exactly one index, we can find all decreasing runs
by checking for each index whether it is the root of a run. This procedure is outlined in
Algorithm 1. First, we compute the NSS array (line 2). Then, we investigate one index
i € [1,n] at a time (line 3), and consider it as the root of a run with period p = nss[ig] — io
(line 4). If the left-extension covers an entire period (i.e. LCEy(ig, nss[ig]) > p), then we have
already investigated the root of the run in an earlier iteration of the for-loop, and no further
action is required (line 5). Otherwise, we compute the left and right border of the potential
run as described earlier (lines 6-7). If the resulting interval has length at least 2p, then we
have discovered a run that is rooted in ¢y (lines 8-9).

Time and space complexity. The NSS array can be computed in O(n) time and space
for general ordered alphabets [3]. Assume for now that we can answer L-LCE and R-LCE
queries in constant time, then clearly the rest of the algorithm also requires O(n) time and
space. The correctness of the algorithm follows from Lemma 7 and the description. We have
shown:

63:5

ICALP 2021



63:6

Linear Time Runs over General Ordered Alphabets

Algorithm 1 Compute all decreasing runs.

Input: String S of length n.
Output: Set R of all decreasing runs in S.
c R«
compute array nss
: for iy € [1,n] with nss[ig] #n + 1 do
p < nss[ig] — 4o
if LCEy(ig, nss[ig]) < p then
i4  ip — LCOEg(ig, nss[ig]) + 1
J < nssig] + LCE,(ig, nss[ig]) — 1
if j—i+1>2pthen
| R RU{G50)

» Lemma 9. Let S be a string of length n over a general ordered alphabet, and let nss be its
NSS array. We can compute all decreasing runs of S in O(n) + t(n) time and O(n) + s(n)
space, where t(n) and s(n) are the time and space needed to compute LCE(i,nss[i]) and
LCE,(i,nss[i]) for all i € [1,n] with nss[i] # n + 1.

In order to also find all increasing runs, we only need to rerun the algorithm with reversed
alphabet order. This way, previously increasing runs become decreasing.

4 Algorithm for Computing the LCEs

In this section, we show how to precompute the LCEs required by Algorithm 1 in linear time
and space. Our approach is asymmetric in the sense that we require different algorithms for
L-LCEs and R-LCEs (whereas previous approaches usually compute L-LCEs by applying the
R-LCE algorithm to the reverse text). However, for both directions we use similar properties
of the Lyndon array that are shown in Lemmas 10 and 11 and visualized in Figure 2a.

» Lemma 10. Leti € [1,n] and j = nss[i] # n+ 1. If LCE.(i,j) > (j — i), then it holds
LCE,(j,j + (j — ) = LCE(i,7) — (j — ) and nss[j] = j + (j — ).

Proof. From LCE,(i,7) > (j — %) follows LCE,(i,5) = (j — ¢) + LCE.(4,j + (j — %)), which
is equivalent to LCE,(j,j + (j —4)) = LCE(4,5) — (j — ¢). It remains to be shown that
nss[j] = j + (j —¢). Due to nss[i] = j it holds S; > S;. Since S; > S; and LCE,(¢,j) > (j —1),
we have Sy (i) = Sj4(j—s), which implies nss[j] < j + (j —4). Note that nss[i] = j and
Lemma 4 imply that S[i..j) = S[j..j + (j —¢)) is a Lyndon word. Thus it holds A[j] > (j — i),
or equivalently nss[j] > j + (j — 7). <

» Lemma 11. Leti € [1,n] and j = nss[i] # n+ 1. If LCE(i,5) > (j — i), then it holds
LCE¢(i — (j —i),1) = LCE(4,7) — (j — ) and nss[i — (j — )] = i.

Proof. Analogous to Lemma 10. |

4.1 Computing the R-LCEs

First, we will briefly describe our general technique for computing LCEs, and our method
of showing the linear time bound. Assume for this purpose that we want to compute
¢ = LCE,(4,7) with ¢ < j. It is easy to see that we can determine ¢ by performing ¢ + 1
individual character comparisons (by simultaneously scanning the suffixes S; and S; from left



J. Ellert and J. Fischer

(a) Lemmas 10 and 11. The dotted edge follows  (b) Relative order of R-LCE computations from
from LCEr(Z,7) > (j —7) (Lemma 10). The dashed  first to last: LCEy (i1, j1), LCE,(i2,j1), LCEr (i3, j2),
edge follows from LCE.(%,7) > (j —4) (Lemma 11). LCEy (%4, j2), LCEr(i5, j2), LCEr(i6, j2).

Figure 2 As before, an edge from text position a to text position b indicates nss[a] = b.

to right until we find a mismatch). Whenever we use this naive way of computing an LCE,
we charge one character comparison to each of the indices from the interval [, j + ¢). This
way, we account for ¢ character comparisons. Since we want to compute O(n) R-LCE values
in O(n) time, we can afford a constant time overhead (i.e. a constant number of unaccounted
character comparisons) for each LCE computation. Thus, there is no need to charge the
(¢ 4+ 1)-th comparison to any index. At the time at which we want to compute ¢, we may
already know some lower bound k£ < ¢. In such cases, we simply skip the first k& character
comparisons and compute ¢ = k + LCE,(i + k,j + k). This requires £ — k + 1 character
comparisons, of which we charge ¢ — k to the interval [j + k..j + £).

Ultimately, we will show that all R-LCE values LCE,. (4, j) with ¢ € [1,n] and j = nss[i] #
n + 1 can be computed in a way such that each text position gets charged at most once,
which results in the desired linear time bound. From now on, we refer to ¢ as the left index
and j as the right indez of the R-LCE computation. Our algorithm computes the R-LCEs
in the following order (a visualization is provided in Figure 2b): We consider the possible
right indices j € [2,n] one at a time and in increasing order. For each right index j, we then
consider the corresponding left indices ¢ with nss[i] = j in decreasing order (we will see how
to efficiently deduce this order from the Lyndon array later).

Assume that we are computing the R-LCEs in the previously described order, and let
¢ = LCE,(4,7) with j = nss[i] # n + 1 be the next value that we want to compute. The
set of indices that we have already considered as left indices for LCE computations is
I ={z| (nss[z] < j)V ((nss[z] = j) A (i < x))}. For example, when we compute LCE, (i, j2)
in Figure 2b it holds {i1, 42,43} C I. At this point in time, the rightmost text position that we

have already inspected is ¢ = max,c;(nss[z] + LCE,(z, nss[z])) if T # , or ¢ = 1 otherwise.

Due to the nature of our charging method, we have not charged any indices from the interval
[¢,n] yet. Thus, in order to show that we can compute all LCEs without charging any index
twice, it suffices to show how to compute ¢ = LCE, (¢, j) without charging any index from the
interval [1, ¢). If j§ > ¢ then we naively compute ¢ and charge the character comparisons to
the interval [j, j + £), thus only charging previously uncharged indices. The new value of ¢
is j 4+ ¢. If however j < ¢, then the computation of ¢ depends on the previously computed
LCEs, which we describe in the following.

Let ¢ = LCE,(¢/, j') with j' = nss[i'] be the most recently computed R-LCE that satisfies

§' 4+ 0 = ¢. Our strategy for computing ¢ depends on the position of i relative to i’ and j'.

First, note that i ¢ [/, j') because otherwise Lemma 5 implies j < j’, which contradicts our
order of computation. This leaves us with three possible cases (as before, a directed edge
from text position a to text position b indicates nss[a] = b):

63:7

ICALP 2021



63:8

Linear Time Runs over General Ordered Alphabets

i i 4§ < i =i § ¢ i i i e
R oL Ll 4 L4l
S = | S =] | S =] |
) B U
Case R1: i < 7/ Case R2: i = j' Case R3: i > 5’

(possibly j" = j)

Now we explain the cases in detail. Each case is accompanied by a schematic drawing.
We strongly advise the reader to study the drawings alongside the description, since they are
essential for an easy understanding of the matter.

Case R1: i < 4’ (and j' < j < ¢). _ e, R
i i (' i=5) g Jj ¢

. ¥ + 4 + +od

lal=j—4,18l=7¢—3j S=[ I8y [alB] JalB]y] ]

' =lafl, £ =B ~

Due to i < (' + j — j') < j = nss[i| we have S; < S; < Sir4;j_;. From Lemma 1 follows
¢ —j=1CE(i' +7—j',7) <LCE.(i,j) = £, i.e. both S; and S; start with 3. Since now we
know a lower bound ¢ — j < £ of the desired LCE value, we can skip character comparisons
during its computation. Later, we will see that the same bound also holds for most of the
other cases. Generally, whenever we can show ¢ — j < £ we use the following strategy. We
compute £ = (¢ — j) + LCE,(i + (¢ — j), ¢) using £ — (¢ — j) + 1 character comparisons,
of which we charge ¢ — (¢ — j) to the interval [¢,j + £). Thus we only charge previously
uncharged positions. We continue with 7’ < i, j’ < j, ¢’ + ¢, and ¢ « j + ¢.

Case R2: ¢+ = j’. We divide this case into two subcases.

Case R2a: ¢/ < j' — 4. P , -
& @i—i)  §=i § 2
4 4 4+

(Te 17T T a17]]
s

la|=j—4, |18l =¢—j s

Fromj< ¢ = j—i< ¢ —i=1/{ and ¢ <j —i follows i +j —i < j' =i. Therefore,
nss[i’] = ¢ and Definition 3 imply S; < Si4,;—1. Due to nss[i] = j we also have S; < S;,
such that it holds S; < S; < Sir4j_1. It is easy to see that Sy ;_; and S; share a prefix 3
of length LCE, (i + j —i,7) = ¢ — j. In fact, also S; has prefix 3 because Lemma 1 implies
that LCE,.(i' + j —i,j) < LCE,(i,j) = £. Thus it holds ¢ — j < ¢, which allows us to use
the strategy from Case R1.

Case R2b: ¢/ > 5/ — ¢’

1Bl =" =i, £ =t~ §=| | 68 | B [ ]

Due to ¢/ > j' — 4, Lemma 10 implies j =i + (j' —¢') and £ = ¢/ — (' — ¢'). Since 7', j/,
and ¢ are known, we can compute ¢ in constant time without performing any character
comparisons. We continue with i’ < i, j' < j, and ¢ « ¢ (leaving ¢ unchanged).



J. Ellert and J. Fischer

Case R3: ¢ > j’. This is the most complicated case, and it is best explained by dividing
it into three subcases. Let d = j' — 4/, i =i —d, 7/ = j — d, and ¢’ = LcE.(i", j").

(In this situation it is implied that j” < j/ because otherwise ¢’ = LCE, (¢, j’) would not be
the most recently computed R-LCE that satisfies j + ¢/ = ¢. However, since our proof

does not rely on this property, we will not explain it in more detail.)

Case R3a: nss[i”’] # 3": - G oo
i d 37 GE ) g j c
. 4 o 4 ol
la| =2, 1Bl =|v[=7¢c—j S=[] o ] | o []
¢ > 1B, £> |B] (3]
~ 4 N

First, note that S[i’..i' + ') = S[j’..¢) implies S[i..j) = S[i"’..j”). From nss[i] = j follows
that S[i..j) = S[¢"..5”) is a Lyndon word. Thus, due to Lemma 4 and nss[i”’] # j” it holds
nss[i”] > j”, which implies S;» < Sj». Let 8 = S[i"..i" + ¢ — j) = S[i..i + ¢ — j) and let
v = S[j".i" + ') = S[j..¢). From S;» < S;j» follows 8 < v, while S; = S; implies 3 = 7.
Thus it holds # =+, and therefore LCE,.(i,) > |y| = ¢ — 4. This means that we can use
the strategy from Case R1.

Case R3b: nss[i”] = 5 and S ey
G+ £7) < (& + £): Ly
s=L] | I

a a  ]]
lal =, 18] =" =1 EIgEl

Due to ¢ = LCE,(¢", "), there is a shared prefix 8 = S[i”..i" +£") = S[j”..5” + ") between
Sy and Sj», and the first mismatch between the two suffixes is S[i" + "] # S[5" + £].
Because of (j” 4+ ¢") < (i’ + '), both the shared prefix and the mismatch are contained
in S[¢’..i" + ¢') (i.e. in the first occurrence of ). If we consider the substring S[j’..5" + ¢')

N

R
7 c
J

instead (i.e. the second occurrence of «), then S; and S; clearly also share the prefix
B =Si.i+")=S[j..j+ "), with the first mismatch occurring at S[i + "] # S[j + ¢"].
Thus it holds £ = ¢”. Due to nss[i”] = j” and our order of R-LCE computations, we
have already computed ¢”. Therefore, we can simply assign £ < £ and continue without
changing ', j/, ¢, and ¢.

Case R3c: nss[i”’] = j” and

. , ./ , i, 1:// " (ll+2/) /i ?
(3" +2") > @+ 2): v 11 Ll
. S=[1 o ] [ o 1]
la| =0, 18] =7¢ —j, |8y =" 121 2]
> |5 ) N

This situation is similar to Case R3b. There is a shared prefix g8 = S[i"”..i"” + ¢ — j) =
S[3"..i +¢') between the suffixes S;» and S;». They may share an even longer prefix 5, but
only the first |3| = ¢ — j symbols of their LCP are contained in S[i’..i’ 4+ #') (i.e. in the first
occurrence of «). If we consider the substring S[j’..j'+¢') instead (i.e. the second occurrence
of @), then S; and S; clearly also share at least the prefix 8 = S[i..i + ¢ — j) = S[j..¢).
Thus it holds ¢ — j < ¢, and we can use the strategy from Case R1.

63:9

ICALP 2021



63:10

Linear Time Runs over General Ordered Alphabets

We have shown how to compute £ without charging any index twice. It follows that the
total number of character comparisons for all R-LCEs is O(n).

A Simple Algorithm for R-LCEs. While the detailed differentiation between the six subcases
helps to show the correctness of our approach, it can be implemented in a significantly simpler
way (see Algorithm 2). At all times, we keep track of j/, ¢ and the distance d = j' — 7’
(line 1). We consider the indices j € [2,n] in increasing order (line 2). For each index j, we
then consider the indices ¢ with nss[i] = j in decreasing order (line 3). Each time we want to
compute an R-LCE value ¢ = LCE, (3, j), we first check whether Case R3b applies (line 4). If
it does, then we simply copy the previously computed R-LCE value LCE,.(i —d, j — d) (line 5).
Otherwise, we either compute the LCE naively (if 7 > ¢), or we have to apply the strategy
from Case R1 (since all other cases except for Case R2b use this strategy; in Case R2b it
holds ¢ — j = £, which means that it can also be solved with the strategy from Case R1). If
j > ¢ then in lines 7-8 we have k = 0, and thus we naively compute LCE, (7, 7) by scanning.
If however j < ¢, then we have k = ¢ — j, and we skip k character comparisons. In any
case, we update the values 5/, ¢, and d accordingly (line 9).

Algorithm 2 Compute all R-LCEs.

Input: String S of length n and its NSS array nss.
Output: R-LCE value LCE, (i, nss[i]) for each index i € [1,n] with nss[i] # n + 1.

1:j«0; ¢+ 1; d«0

2: for j € [2,n] in increasing order do

3: for ¢ with nss[i] = j # n + 1 in decreasing order do

j e,
4: if Anssi—dl=j—d then

ANJH+HLCE(i —d,j—d) < ¢

5: LCE,(i,]) = LCE.(i — d,j — d) > retrieve LCE in constant time
6: else
7: k + max(¢,j) —j
8: LCE,(i,j) < k + NAIVE-SCAN-LCE, (i + k,j + k)
9: § 4y € j+LCE(i,f); d <« j—i

The correctness of the algorithm follows from the description of Cases 1-3. Since for
each left index ¢ we have to store at most one R-LCE, we can simply maintain the LCEs
in a length-n array, where the i-th entry is LCE,(¢, nss[i]). This way, we use linear space
and can access the R-LCE that is required in line 5 in constant time. Apart from the
at most n character comparisons that we charge to the indices, we only need a constant
number of additional primitive operations per computed R-LCE. The order of iteration can
be realized by first generating all (4, nss[i])-pairs, and then using a linear time radix sorter to
sort the pairs in increasing order of their second component and decreasing order of their
first component. We have shown:

» Lemma 12. Given a string of length n and its NSS array nss, we can compute LCE, (i, nss[i])
for all indices i € [1,n] with nss[i] # n+ 1 in O(n) time and space.



J. Ellert and J. Fischer

Ci i =) 5 R A N € e ) W I R N U

4 4 4 4+ 4 ol o4 Jd 4l bl
5= [ 8 lrﬂ [*] S:Hvlﬂwl | S=[[ o | [ o I
(a) A e e g

Figure 3 Tllustration of the proofs of the three properties in Section 4.2.

4.2 Computing the L-LCEs

Our solution for the L-LCEs is similar to the one for R-LCEs, but differs in subtle details. We
generally compute ¢ = LCE(4, j) by simultaneously scanning the prefixes S[1..7] and S[1..j]
from right to left until we find the first mismatch. This takes ¢ + 1 character comparisons,
of which we charge ¢ comparisons to the interval (i — £,i]. As before, if some lower bound
k </ is known then we skip k character comparisons. In this case, we compute the L-LCE
as { = k+ LCE((i — k,j — k), and charge £ — k comparisons to the interval (i — £,7 — k].
Again, we will show how to compute all values LCE,(i, nss[i]) with ¢ € [1,n] and nss[i] #
n 4+ 1 such that each index gets charged at most once. In contrast to the more complex

R-LCE iteration order, we can simply compute the L-LCE values in decreasing order of i.

Thus, when we want to compute ¢ = LCE(4,j) with j = nss[i] # n + 1, we have already
considered the indices I = {z | * € (i,n] A nss[z] # n + 1} as left indices of L-LCE
computations. The leftmost text position that we have already inspected so far at this point
is ¢ = mingcs(z — LCEy(x, nss[x])) if T # 0, or ¢ = n otherwise. Due to our charging method,
we have not charged any index from the interval [1, %] yet. Thus, we only have to show how
to compute ¢ without charging indices from (¢,n]. Let £ = LCE¢(i’,5’) be the most recently
computed L-LCE that satisfies i — ¢ = ¢. If i < ¢ then we compute £ naively and charge
the character comparisons to the interval (i — ¢, 4] (thus only charging previously uncharged
indices). If however i > ¢, then our strategy is more complicated. Before explaining it in
detail, we show three important properties that hold in the present situation.

First, we show that ¢ > i’ — (j7 —4’). Assume the opposite (as visualized in Figure 3a),
then from ¢ =4’ — ¢’ < i follows ¢ > j' —i'. Thus, Lemma 11 implies nss[i’ — (' — i')] = 4’
(dashed edge) and LCE.(i' — (' —4'),7') = ¢ — (7 —i’). Due to our order of computation
and i < i’ — (j' — i) we must have already computed this L-LCE. However, it holds
i’ — (' — ') — LCEy (i’ — (5" —4'),4') = ¢, which contradicts the fact that ¢/ = LCE,(4', j') is
the most recently computed L-LCE with i/ — ¢ = ¢.

Next, we show that j < i’. First, note that j ¢ (i’,j’), since due to i < i’ we would
otherwise contradict Lemma 5. Thus we only have to show j < 7/. Assume for this purpose
that j > j’ (as visualized in Figure 3b). From j’' — ¢’ + 4 € (¢, nss[é]) and Definition 3 follows
S; < Sjr_ir4i. Because of LCE,(7', j') > (¢/ —4) it holds S[i..i'] = S[j’ — ¢’ +i..5'](= ). Thus
S; < Sjr_ir4; implies Sy < Sj/, which contradicts the fact that nss[i’] = j'.

Lastly, let d = j' — 4/, i =i+ d, and 77/ = j + d (as visualized in Figure 3c). Now we
show that nss[i”’] = j” (dashed edge in the figure). Because of a = S('c..i'] = S(j’ — ¢'..5'] it
holds S[i..j) = S[i”..;"”). From nss[i] = j and Lemma 4 follows that S[i”..j"’) is a Lyndon
word, and thus nss[i”] > j”. We have already shown that ¢ > i’ — (j' — ¢'), which implies
i’ > 4'. Due to nss[i'] = 7 and i € [, j') it follows from Lemma 5 that nss[i”] < j'. Now
assume nss[i”] € (5", 7], then S[i"..nss[i"]) = S[i..j + (nss[i”’] — ")) is a Lyndon word, which
contradicts the fact that S[i..j) is the longest Lyndon word starting at position i. Thus, we
have ruled out all possible values of nss[i”] except for j”.

Now we show how to compute £. We keep using the definition of i’ and j” from the
previous paragraph. Furthermore, let ¢ = LCE¢(i”, j''). There are two possible cases.

63:11

ICALP 2021



63:12

Linear Time Runs over General Ordered Alphabets

Case L]. ('I:” — K”) > (], —_ ,6/), ? i j i (j/—él) i j// j/
1 1 L1 1 1 L1
S=[1_a | [ o ]
U =lal, £=1t"=B| (5] [8]
N 4

Due to ¢ = LCE((i",j"), the prefixes S[1..i"] and S[1..7”] share the suffix 8 = S(i" —
030" = S(3" — ¢"..7"], and the first (from the right) mismatch between these prefixes
is S[¢"” — 0] # S[j”" — ¢"]. Both the shared suffix and the mismatch are contained in
S(j" — ¢'..j"] (i.e. in the right occurrence of a). If we consider the substring S(c..i']
instead (i.e. the left occurrence of «), then S[1..i] and S[1..j] clearly also share the suffix
B=58(—10".d=S(—¢".j], with the first mismatch occurring at S[i — "] # S[j" — £].
Thus it holds ¢ = ¢”. Due to nss[i”] = j” and our order of L-LCE computations, we
have already computed ¢”. Therefore, we can simply assign ¢ < £ and continue without
changing ¢/, j/, ¢, and ¢.

(Note that possibly i/ # i’ A j” = j'. We provide a sketch in Figure 4a.)

Case L2: (’i” _ E") S (JI _ 2/)- E . S (jlifl) iu i

N
I
Q
Q

U =lal, 0" =|By], £ > |B| M B]

This situation is similar to Case L1. There is a shared suffix g = S(j/ — ¢..i"] =
S(j" — (i — ¢)..j"] between the prefixes S[1..i"] and S[1..j”]. They may share an even
longer suffix 73, but only the rightmost |3| = i’ — ¢ symbols of this suffix are contained
in S(j' — ¢..5'] (i.e. in the right occurrence of a). If we consider the substring S(c..7']
instead (i.e. the left occurrence of «), then S[1..i] and S[1..j] clearly also share the suffix
B =S8(c.i]=8( — (i —¢)..j]. Thus it holds i — ¢ < ¢, and we can skip the first i — ¢
character comparisons by computing the LCE as ¢ = (i — <E) +LeEg('c,j + c— i). We
charge ¢ — (i — <E) character comparisons to the previously uncharged interval (i — ¢, ?],
and continue with i/ <4, j' < j, ¢/ < ¢, and ¢ i — .

(Note that possibly i # i/ A j” = j' or even i/ = i' N j" = j§'.
drawings in Figures 4b and 4c.)

We provide schematic

We have shown how to compute ¢ without charging any index twice. It follows that the
total number of character comparisons for all LCEs is O(n). For completeness, we outline a
simple implementation of our approach in Algorithm 3. Lines 4-5 correspond to Case L1. If
i < ¢, then lines 7-9 compute the LCE naively. Otherwise, they correspond to Case L2.

» Lemma 13. Given a string of length n and its NSS array nss, we can compute LCEy(i, nss[i])
for all indices i € [1,n] with nss[i] #n+ 1 in O(n) time and space.

» Corollary 14. Given a string of length n over a general ordered alphabet, we can find all
runs in the string in O(n) time and space.

Proof. Computing the increasing runs takes O(n) time and space due to Lemmas 9, 12,
and 13. For decreasing runs, we only have to reverse the order of the alphabet and rerun the
algorithm. <



J. Ellert and J. Fischer

=
—~
<
|
X
N
S
<.
|
<
+— ot
<
-
—~
<
|
X
N
-
<
I
~

I

<]
<]
<]

Q
= |
H ¢

— =

E
R |«
=
EQ
=

é
(?

(a) Case L1 with i # 4’ and j” = 7' (b) Case L2 with i # i’ and j” = j'.
j/_[/ . j:i//:i/ j/:j//
1
S =| ! | |
] ]
‘ ‘] right occurrence
I Q |
i i | S(4 = 0..4"] of a: prefixes
v ] B |

S[1..i"] and S[1..;"] share

1 the suffix v5(= «)

.

left occurrence

3 :'[ S(c..i'] of a

3 :J prefixes S[1..i] and S[1..j]
\_J share the suffix

(c) Case L2 with i =4 and j” = j'.

13 i

{ { 4 {
T T T
| | |
[ [ [
| | |
|

|

|

!

!

|

|

l

|

Figure 4 Additional drawings for Cases L1 and L2.

Algorithm 3 Compute all L-LCEs.

Input: String S of length n and its NSS array nss.
Output: L-LCE value LCE,(7, nss[¢]) for each index ¢ € [1,n] with nss[i] # n + 1.

Li 4«0, Cn d<0
2: for i € [1,n] with nss[i] # n + 1 in decreasing order do
3: J « nssli]

4: | ifie (c,i')Ni—LCE(i+d,j+d) > ¢ then

5: LCEy(i,7) < LCE¢(i + d,j + d) > retrieve LCE in constant time
6: else

7: k + i —min(c,q)

8: LCE¢(i,7) < k + NAIVE-SCAN-LCE;(i — k,j — k)

9: i’ iy € i—LCB(i,]); d —j—i

63:13

ICALP 2021



63:14

Linear Time Runs over General Ordered Alphabets

Table 1 Throughput achieved by our runs algorithm using an AMD EPYC 7452 processor. We
repeated each experiment five times and use the median throughput as the final result (the minimum
and maximum throughputs were almost identical to the median). All numbers are truncated to one

decimal place.

o B gy &, A2 o .
g8 0 g 070 354 v ue ge w g
S| FE E5 df £ %5 58 Ty 98 5 W5 45 %
runs/100n | 94.4 4.7 11.7 7.0 25.3 2.4 3.4 24.4 23.6 | 76.3 92.7 83.3
MiB/s 150 | 114 11.0 109 8.8 10.5 12.8 9.0 9.2 154 15.1 15.6

5 Practical Implementation

We implemented our algorithm for the runs computation in C++17 and evaluated it by
computing all runs on texts from the natural, real repetitive, and artificial repetitive text
collections of the Pizza-Chili corpus?. Additionally, we used the binary run-rich strings
proposed by Matsubara et al. [23] as input. Table 1 shows the throughput that we achieve,
i.e. the number of input bytes (or equivalently input symbols) that we process per second.
On the string tm29 we achieve the highest throughput of 15.6 MiB/s. The lowest throughput
of 8.8 MiB/s occurs on the text dna. Generally, we perform better for run-rich strings.

Lastly, it is noteworthy that our new method of LCE computation leads to a remarkably
simple implementation of the runs algorithm. In fact, the entire implementation including the
computation of the NSS array needs only 250 lines of code. We achieve this by interleaving
the computation of the R-LCEs with the computation of the NSS array, which also improves
the practical performance. For technical details we refer to the source code, which is publicly
available on GitHub?.

6 Conclusion and Open Questions

We have shown the first linear time algorithm for computing all runs over a general ordered
alphabet. The algorithm is also very fast in practice and remarkably easy to implement. It
is an open question whether our techniques could be used for the computation of runs on
tries, where the best known algorithms require super-linear time even for linearly-sortable
alphabets (see e.g. [26]).

—— References

1  Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
Journal of Computer and System Sciences, 57(1):74-93, 1998. doi:10.1006/jcss.1998.1580.

2  Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501-1514, 2017.
doi:10.1137/15M1011032

3 Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Ggrtz, Florian Kurpicz, J. Ian Munro, and
Eva Rotenberg. Space efficient construction of Lyndon arrays in linear time. In Proceedings of
the 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
pages 14:1-14:18, Saarbriicken, Germany, July 2020. doi:10.4230/LIPIcs.ICALP.2020.14.

2 http://pizzachili.dcc.uchile.cl/texts.html,

http://pizzachili.dcc.uchile.cl/repcorpus.html
3 https://github.com/jonas-ellert/linear-time-runs/


https://doi.org/10.1006/jcss.1998.1580
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.ICALP.2020.14
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
https://github.com/jonas-ellert/linear-time-runs/

J. Ellert and J. Fischer

10

11

12

13

14

15

16

17

18

19

Dany Breslauer. Efficient String Algorithmics. PhD thesis, Columbia University, New York,
USA, 1992. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9146.
Helen Budworth and Cynthia T. McMurray. A Brief History of Triplet Repeat Diseases,
volume 1010 of Methods in Molecular Biology, pages 3—17. Springer, 2013. doi:10.1007/
978-1-62703-411-1_1.

M. Crochemore, C.S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen.
Extracting powers and periods in a word from its runs structure. Theoretical Computer
Science, 521:29-41, 2014. doi:10.1016/j.tcs.2013.11.018.

Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and System Sciences, 74(5):796-807, 2008. doi:10.1016/j.jcss.2007.09.003.

Maxime Crochemore, Lucian Ilie, and Wojciech Rytter. Repetitions in strings: Algorithms
and combinatorics. Theoretical Computer Science, 410(50):5227-5235, 2009. doi:10.1016/j.
tcs.2009.08.024.

Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The “runs” conjecture. Theoretical
Computer Science, 412(27):2931-2941, 2011. doi:10.1016/j.tcs.2010.06.019.

Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Ritu Kundu, Solon P. Pissis,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Near-optimal computation of runs
over general alphabet via non-crossing lce queries. In Proceedings of the 23rd International
Symposium on String Processing and Information Retrieval (SPIRE 2016), pages 22-34, Beppu,
Japan, October 2016. doi:10.1007/978-3-319-46049-9_3.

Johannes Fischer and Volker Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In Proceedings of the 17th Annual Symposium
on Combinatorial Pattern Matching (CPM 2006), pages 36-48, Barcelona, Spain, 2006.
doi:10.1007/11780441_5.

Johannes Fischer, Stepan Holub, Tomohiro I, and Moshe Lewenstein. Beyond the runs theorem.
In Costas S. Iliopoulos, Simon J. Puglisi, and Emine Yilmaz, editors, String Processing and
Information Retrieval - 22nd International Symposium, SPIRE 2015, London, UK, September
1-4, 2015, Proceedings, volume 9309 of Lecture Notes in Computer Science, pages 277—286.
Springer, 2015. doi:10.1007/978-3-319-23826-5_27.

Frantisek Franek, A. S. M. Sohidull Islam, Mohammad Sohel Rahman, and William F.
Smyth. Algorithms to compute the Lyndon array. In Proceedings of the Prague Stringology
Conference 2016 (PSC 2016), pages 172-184, Prague, Czech Republic, 2016. URL: http:
//www.stringology.org/event/2016/p15.html.

Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster longest
common extension queries in strings over general alphabets. In Proceedings of the 27th Annual
Symposium on Combinatorial Pattern Matching (CPM 2016), pages 5:1-5:13, Tel Aviv, Israel,
2016. doi:10.4230/LIPIcs.CPM.2016.5.

Torben Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 98), pages 366-398, Paris,
France, February 1998. doi:10.1007/BFb0028575.

Yijie Han and M. Thorup. Integer sorting in O(n+/loglogn) expected time and linear space.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2002), pages 135-144, Vancouver, Canada, 2002. doi:10.1109/SFCS.2002.1181890.
Stepan Holub. Prefix frequency of lost positions. Theor. Comput. Sci., 684:43-52, 2017.
doi:10.1016/j.tcs.2017.01.026.

R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS 1999),
pages 596-604, New York, NY, USA, 1999. doi:10.1109/SFFCS.1999.814634.

Dmitry Kosolobov. Lempel-Ziv factorization may be harder than computing all runs. In
Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2015), pages 582-593, Munich, Germany, 2015. doi:10.4230/LIPIcs.STACS.2015.
582.

63:15

ICALP 2021


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9146
https://doi.org/10.1007/978-1-62703-411-1_1
https://doi.org/10.1007/978-1-62703-411-1_1
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1016/j.tcs.2009.08.024
https://doi.org/10.1016/j.tcs.2009.08.024
https://doi.org/10.1016/j.tcs.2010.06.019
https://doi.org/10.1007/978-3-319-46049-9_3
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/978-3-319-23826-5_27
http://www.stringology.org/event/2016/p15.html
http://www.stringology.org/event/2016/p15.html
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1109/SFCS.2002.1181890
https://doi.org/10.1016/j.tcs.2017.01.026
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.4230/LIPIcs.STACS.2015.582
https://doi.org/10.4230/LIPIcs.STACS.2015.582

63:16

Linear Time Runs over General Ordered Alphabets

20

21

22

23

24

25

26

Dmitry Kosolobov. Computing runs on a general alphabet. Information Processing Letters,
116(3):241-244, 2016. doi:10.1016/3.1ipl.2015.11.016.

R. C. Lyndon and M. P. Schiitzenberger. The equation @™ = b"c? in a free group. Michigan
Mathematical Journal, 9(4):289-298, 1962. doi:10.1307/mmj/1028998766.

Michael G Main and Richard J Lorentz. An o(n log n) algorithm for finding all repetitions in
a string. Journal of Algorithms, 5(3):422-432, 1984. doi:10.1016/0196-6774(84)90021-X.
Wataru Matsubara, Kazuhiko Kusano, Hideo Bannai, and Ayumi Shinohara. A series
of run-rich strings. In Adrian Horia Dediu, Armand Mihai Tonescu, and Carlos Martin-
Vide, editors, Proceedings of the 3rd International Conference on Language and Auto-
mata Theory and Applications (LATA 2009), pages 578-587, Tarragona, Spain, 2009.
doi:10.1007/978-3-642-00982-2_49.

Simon J. Puglisi, Jamie Simpson, and W.F. Smyth. How many runs can a string contain?
Theoretical Computer Science, 401(1):165-171, 2008. doi:10.1016/j.tcs.2008.04.020.
Wojciech Rytter. The number of runs in a string: Improved analysis of the linear upper bound.
In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2006), pages 184-195, Marseille, France, 2006. doi:10.1007/11672142_14.

Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing runs on a trie. In Proceedings of the 30th Annual Symposium on Combinatorial
Pattern Matching (CPM 2019), volume 128, pages 23:1-23:11, Pisa, Italy, June 2019. doi:
10.4230/LIPIcs.CPM.2019.23.


https://doi.org/10.1016/j.ipl.2015.11.016
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1016/0196-6774(84)90021-X
https://doi.org/10.1007/978-3-642-00982-2_49
https://doi.org/10.1016/j.tcs.2008.04.020
https://doi.org/10.1007/11672142_14
https://doi.org/10.4230/LIPIcs.CPM.2019.23
https://doi.org/10.4230/LIPIcs.CPM.2019.23

	1 Introduction and Related Work
	2 Preliminaries
	3 The Runs Algorithm Revisited
	4 Algorithm for Computing the LCEs
	4.1 Computing the R-LCEs
	4.2 Computing the L-LCEs

	5 Practical Implementation
	6 Conclusion and Open Questions

