
Finding an Optimal Alphabet Ordering for Lyndon
Factorization Is Hard
Daniel Gibney !Ï

Department of Computer Science, University of Central Florida, Orlando, FL, USA

Sharma V. Thankachan !Ï

Department of Computer Science, University of Central Florida, Orlando, FL, USA

Abstract
This work establishes several strong hardness results on the problem of finding an ordering on a
string’s alphabet that either minimizes or maximizes the number of factors in that string’s Lyndon
factorization. In doing so, we demonstrate that these ordering problems are sufficiently complex
to model a wide variety of ordering constraint satisfaction problems (OCSPs). Based on this, we
prove that (i) the decision versions of both the minimization and maximization problems are NP-
complete, (ii) for both the minimization and maximization problems there does not exist a constant
approximation algorithm running in polynomial time under the Unique Game Conjecture and (iii)
there does not exist an algorithm to solve the minimization problem in time poly(|T |) · 2o(σ log σ) for
a string T over an alphabet of size σ under the Exponential Time Hypothesis (essentially the brute
force approach of trying every alphabet order is hard to improve significantly).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Lyndon Factorization, String Algorithms, Burrows-Wheeler Transform

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.35

Funding Supported in part by the U.S. National Science Foundation (NSF) under CCF-1703489.

1 Introduction

A Lyndon word is a string that is lexicographically strictly smallest among all of its cyclic shifts.
Letting ◦ denote concatenation, the Lyndon factorization of a string T is the factorization
of T into Lyndon words T1, T2, . . ., Tf that are lexicographically non-increasing and T =
T1 ◦ T2 ◦ . . . ◦ Tf . For example, the Lyndon factorization of 0, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2 is
(0, 1), (0, 0, 2, 1, 1), (0, 0, 1, 0, 1, 1, 2), assuming the usual ordering, 0 < 1 < 2.

Lyndon words and Lyndon factorization are well-studied, and play an important role
in string algorithms [1, 2, 10, 24, 28, 30], algebra and combinatorics [7, 17, 25], and data
compression [12, 18, 20, 34, 35]. As an example, it was shown in [29] that local suffixes inside
each Lyndon factor can be sorted independently and then merged to construct a string’s
suffix array. As another example, Lyndon factorization is used in both the construction
of a string’s bijective Burrows-Wheeler transform (BBWT) [13] and in performing pattern
matching on indexes built from the string’s BBWT [3], where the number of steps used
to locate occurrences of a pattern P depends on the number of Lyndon factors within a
particular suffix of P . Because of such applications, it would be beneficial to be able to control
the number of factors in the Lyndon factorization of a string. Unfortunately, the Lyndon
factorization of a string is unique under a fixed ordering of its alphabet [26]. However, it
can vary under different alphabet orderings. For instance, if we change the alphabet ordering
to 2 < 0 < 1 in our example above, we obtain the Lyndon factorization (0, 1), (0), (0),
(2, 1, 1, 0, 0, 1, 0, 1, 1), (2). This leads to the following problems:

© Daniel Gibney and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.gibney@ucf.edu
https://www.cs.ucf.edu/~dgibney/
https://orcid.org/0000-0003-1493-5432
mailto:sharma.thankachan@ucf.edu
http://www.cs.ucf.edu/~sharma/
https://doi.org/10.4230/LIPIcs.STACS.2021.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

▶ Problem 1 (Lyndon Factor Minimization – Decision Version). Given an integer A and text
T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors
of T is at most A?

▶ Problem 2 (Lyndon Factor Maximization – Decision Version). Given an integer A and text
T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors
of T is at least A?

We will also consider the optimization variants of these problems. The objective cost
of a solution is the number of factors in its Lyndon factorization. In particular, for the
minimization problem, a λ-approximation for λ > 1, is a polynomial-time algorithm that
outputs an alphabet ordering where the number of factors is at most λ times the minimum
possible number of factors over all possible alphabet orderings. Similarly, for the maximization
problem, a λ-approximation for λ < 1, is a polynomial-time algorithm that outputs an
alphabet ordering where the number of factors is at least λ times the maximum number of
possible factors over all possible alphabet orderings.

These problems were first considered by Clare and Daykin, who proposed a polynomial-
time greedy algorithm that can be adjusted to provide either a small number of factors or
a large number of factors [8]. Through experiments, the authors showed that the number
of factors can be significantly affected by their algorithm. Another approach that uses
evolutionary algorithms to find alphabet orderings to optimize the number of Lyndon factors
was considered in [9] and in [27]. Again, it was shown that there is often a significant effect on
the number of factors, which can be controlled by the use of different fitness functions within
the evolutionary algorithms. These techniques, although appearing to have a significant
impact on the number of factors, do not provide any approximation guarantee.

Hardness results for the problem of ordering the alphabet of a string to minimize the
number of maximal unary substrings occurring in its Burrows-Wheeler Transform (BWT)
appeared in [4]. Although the Lyndon factors of a string and the structure of its BBWT are
closely related, we see no clear relation between the number of Lyndon factors of a string and
the number of maximal unary substrings occurring in its BWT. Moreover, the techniques
applied here seem quite different from those used in [4]. We present the following results.

▶ Theorem 3. The decision version of Lyndon Factor Minimization is NP-complete.

▶ Theorem 4. Under the Exponential Time Hypothesis, the optimization version of Lyndon
Factor Minimization cannot be solved in time poly(|T |) · 2o(|Σ| log |Σ|).

▶ Theorem 5. Under the Unique Games Conjecture, the optimization version of Lyndon
Factor Minimization does not admit a λ-approximation for any constant λ > 1.

▶ Theorem 6. The decision version of Lyndon Factor Maximization is NP-complete.

▶ Theorem 7. Under the Unique Games Conjecture, the optimization version of Lyndon
Factor Maximization does not admit a λ-approximation for any constant λ < 1.

We will prove these theorems in Section 3.1, Section 3.2, Section 3.3, Section 4.1, and
Section 4.2, respectively. We leave open whether it is possible to have a result similar to
Theorem 4 for Lyndon Factor Maximization.

Our main line of attack is to model ordering constraint satisfaction problems (OCSPs), a
subject of extensive research in its own right [5, 6, 15, 16, 31, 33]. In these problems, the
task is to find a linear ordering on a set of variables subject to some additional constraints.
Our work shows that a solver for these Lyndon factorization problems would be powerful
enough to solve difficult OCSP instances. Our results make use of strings that allow us to
model different constraint satisfaction problems and thus prove our hardness results.

D. Gibney and S. V. Thankachan 35:3

2 Preliminaries

We denote the concatenation of the strings u and v using the “◦” symbol, writing their
concatenation as u ◦ v. However, we omit “◦” where the concatenation is clear from context.
Throughout this paper, we will use “<” and “>” to refer to alphabet order between symbols,
the lexicographic order between strings, and the usual ordering between real numbers. Again,
context will make it clear which type of order is meant. A suffix of a string T is a string v

such that T = u ◦ v for some string u. The suffix array of a string T [1, n] is a length n array
where the ith element is equal to the starting index of the ith lexicographically smallest suffix
of T . The inverse suffix array is defined as the length n array such that ith element is the
position of T [i, n] in the suffix array, i.e., the lexicographic rank of T [i, n].

The Lyndon factorization (defined in Section 1) of a string can be computed in linear
time. This can be done using the well known Duval’s algorithm [11], or by using the inverse
suffix array, which can be constructed in linear time [22]. Lemma 8 makes it clear why the
latter technique works.

▶ Lemma 8 (Theorem 2.2 [29]). The starting index, i, of a suffix in T that is lexicographically
smaller than any suffix starting at index j < i is an index where a Lyndon factor begins.

In other words, as we scan the inverse suffix array from left-to-right, an index i where the
inverse suffix array value is smaller than any seen thus far marks the start of a Lyndon
factor. Moreover, if a Lyndon factor starts at index i in T , the next Lyndon word must be
this factor. We aim to use this to construct strings where the number of Lyndon factors
tells us something about the number of constraints satisfied within an ordering constraint
satisfaction problem (OCSP). The definition of an OCSP used here is less general than the
one given in [14], but still sufficient for our purposes.

▶ Definition 9. An OCSP of arity k is specified by a set Λ ⊆ Sk where Sk is the set of
permutations of {1, 2, ..., k}. An instance of such an OCSP consists of a set of variables,
V = {x1, . . . , xn}, and m constraints, C1, . . ., Cm, each of which is an ordered k-tuple of
V . The objective is to find a global ordering σ of V that maximizes

∑m
i=1 χΛ(σ|Ci

), where
σ|Ci

∈ Sk is the ordering of the k elements of Ci induced by the global ordering σ, and
χΛ(σ|Ci

) = 1 if σ|Ci
∈ Λ and 0 otherwise. If χΛ(σ|Ci

) = 1, we say that Ci is satisfied.

Note that m ≤ n!/(n − k)! ≤ nk. Additionally, we will only consider OCSP instances
where each variable appears in at least two constraints. Under this last assumption, we can
relate the number of variables, n, to the number of clauses, m.

▶ Lemma 10. For OCSPs with arity k constraints, n variables, and m constraints, where
every variable appears in at least two clauses, n ≤ k

2 m.

Proof. Since every variable appears in at least two constraints,

2n ≤
n∑

i=1
(the number of times variable xi appears in total) = km. ◀

One of the simplest OCSPs is the Maximum Acyclic Subgraph Problem (MAS), where
k = 2, making constraints of the form (xi, xj), and where Λ = {(1 2

1 2)} (using two-line
permutation notation). That is, Λ contains only the identity permutation that orders xi < xj .
For example, an instance of MAS could be V = {x1, x2, x3, x4, x5} and C1 = (x1, x3),
C2 = (x5, x2), C3 = (x3, x4), C4 = (x2, x1). An ordering σ that puts the variables in the order
x4 < x5 < x3 < x2 < x1 would yield χΛ(σ|C1) = χΛ ((1 2

2 1)) = 0, χΛ(σ|C2) = χΛ ((1 2
1 2)) = 1,

χΛ(σ|C3) = χΛ ((1 2
2 1)) = 0, χΛ(σ|C4) = χΛ ((1 2

1 2)) = 1, making its objective value 2.

STACS 2021

35:4 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

The dual minimization problem of MAS is known as Feedback Arc Set (FAS). In this
problem, the aim is to minimize the objective value of a solution, which is defined as the
number of constraints being violated, i.e., m −

∑m
i=1 χΛ(σ|Ci

). The problem is otherwise
identical. The following hardness result for FAS is used when proving Theorem 5.

▶ Lemma 11 ([14]). Conditioned on the Unique Games Conjecture, for every constant C > 1,
it is NP-hard to find a C-approximation for FAS.

The Unique Games Conjecture is described in [21]. We will use the term Unique-Games-hard
to refer to problems that, conditioned on the Unique Games conjecture, are NP-hard.

We can always assume that at least half of the constraints in an instance of MAS can
be satisfied. To see this, take an arbitrary ordering of the variables. Either this ordering
or its reversal must satisfy at least m/2 constraints. This is just a specific instance of a
more general result. We can always assume our optimal solution satisfies at least |Λ|m/k!
constraints. Since the expected number of constraints satisfied by a random ordering on the
variables is |Λ|m/k!, we know the maximum number of constraints satisfied by any ordering
is bounded below by this quantity. It turns out, however, that finding a solution that does
better than this expected value is computationally difficult. We give a simplified statement
of the main result in [14], maintaining only the pertinent details for our problem.

▶ Theorem 12 ([14]). For an OCSP with arity k, for every constant ε > 0, it is Unique-
Games-hard to find an ordering for the variables that achieves a ratio of satisfied constraints
over total constraints that is at least |Λ|/k! + ε.

Our results also make use of the OCSP known as the Betweenness Problem. In this
problem k = 3 and Λ = {(1 2 3

1 2 3) , (1 2 3
3 2 1)}. For a constraint (xi, xj , xk) to be satisfied either

xi < xj < xk or xk < xj < xi. For example, the ordering x4 < x5 < x3 < x2 < x1 satisfies
the constraint (x1, x2, x5), but not the constraint (x4, x2, x5). By applying Theorem 12 to
the Betweenness problem, we obtain that it is Unique-Games-hard to achieve a ratio of
satisfied constraints to total constraints better than 2/3! = 1/3.

For hardness under the Exponential Time Hypothesis (ETH) [19], we will use a result
by Kim and Gonçalves appearing in [23]. An Arity k Permutation CSP as defined in [23]
is a OCSP where Λ consists of the identity permutations, Λ = {(1

1) , (1 2
1 2) , . . . ,

(
1 2 ... k
1 2 ... k

)
},

and constraints up to arity k are allowed. This is different from our definition of OCSPs,
where all constraints are of exactly arity k. The differences between these two definitions are
accommodated for whenever Lemma 13 is used. In [23] the authors prove the following.

▶ Lemma 13 ([23]). Assuming ETH, there is no 2o(n log n)-algorithm for Arity 4 Permutation
CSP (and thus for Arity k Permutation CSP, k ≥ 4).

3 Hardness of Lyndon Factor Minimization

The first reduction is from the Betweenness problem to the Lyndon Factor Minimization
Problem. It is used to demonstrate NP-completeness. An alternative proof can be done with
a reduction from MAS. Our reasoning for choosing one over the other is we believe that the
Betweenness problem provides a good initial illustration of the power of a hypothetical solver
to these Lyndon factorization problems. It also provides a warm-up for the techniques used
in Section 3.2. Moreover, we will use a reduction from MAS as a short proof to illustrate
NP-completeness for the maximization problem, before introducing a more involved reduction
to prove an inapproximability result.

D. Gibney and S. V. Thankachan 35:5

3.1 NP-Completeness of Lyndon Factor Minimization
We are given as input an instance ϕ of the Betweenness problem consisting of n variables
x1, x2, . . ., xn and m constraints C1, C2, . . ., Cm. Let F (T) denote the number of Lyndon
factors of a string T under the alphabet ordering currently under consideration. We will use
FT (T1) to denote the number of Lyndon factors of T starting within the first occurrence
of the substring T1 of T . The subscript T is to remind us that the factors starting in T1
are sensitive to the other symbols in T . By a run of a symbol, we mean a maximal unary
substring containing that symbol.

▶ Lemma 14. Let T be any string of the form T = T1 ◦ (x0)α ◦ (xγ
1 xγ

2 . . . xγ
n)β where T1

is over the alphabet {x0, . . . , xn}, α is greater than the length of any run of x0 in T1, γ is
greater than the length of any run of any symbol other than x0 in T1, and β > 1. If x0 is the
smallest symbol in the ordering, then F (T) ≤ FT (T1) + 1.

Proof. If T1 does not end with an x0, then the first x0 in the (x0)α marks the start of a new
Lyndon factor in T since (x0)α is lexicographically smaller than any preceding suffix. Then
this factor includes the remaining suffix of T . In this case F (T) = FT (T1) + 1. If T1 contains
a suffix consisting of only x0’s, then a new Lyndon factor must start at the first of these x0’s,
and again this factor contains the remaining suffix of T . In this case, F (T) = FT (T1). ◀

▶ Lemma 15. Let T be defined as in Lemma 14. If x0 is not the smallest symbol in the
ordering, F (T) ≥ β − 1.

Proof. In this case, the smallest symbol must be one of x1, . . . , xn. Suppose the smallest is xi.
Then the first symbol in the first xγ

i marks the beginning of a Lyndon factor. This factor is of
the form xγ

i xγ
i+1 . . . xγ

n xγ
1 . . . xγ

i−1 and is repeated at least β − 1 times. In particular, the
suffix xγ

i+1 . . . xγ
n is preceded by β − 1 factors of the form xγ

i xγ
i+1 . . . xγ

n xγ
1 . . . xγ

i−1. ◀

Lemmas 14 and 15 will be useful in proving that x0 must be smallest in an optimal
ordering. We now introduce our constraint gadgets.

▶ Lemma 16. Let x0 be the smallest symbol in T . For i, j, k > 0, consider the first instance
of a substring S of T where

S = xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi xη

0 xj xη
0 xj xη

0 xj

and η is larger than the length of any run of x0 preceding S in T , and S is immediately followed
by the run xη+1

0 . The symbols in this first instance of S make up three complete Lyndon
factors if xj is ordered between xi and xk, and four complete Lyndon factors otherwise.

Proof. Since the number of times x0 is repeated is more than the length of any previous
run, it must be the case that a new factor begins at the start of S. The six possible cases
and their corresponding factorizations are:

x0 < xi < xj < xk : (xη
0 xj), (xη

0 xi xη
0 xj xη

0 xi xη
0 xk), (xη

0 xi xη
0 xi xη

0 xj xη
0 xj xη

0 xj)
x0 < xi < xk < xj : (xη

0 xj), (xη
0 xi xη

0 xj), (xη
0 xi xη

0 xk), (xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

x0 < xj < xi < xk : (xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi), (xη

0 xj), (xη
0 xj), (xη

0 xj)
x0 < xk < xi < xj : (xη

0 xj), (xη
0 xi xη

0 xj), (xη
0 xi), (xη

0 xk xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

x0 < xj < xk < xi : (xη
0 xj xη

0 xi xη
0 xj xη

0 xi xη
0 xk xη

0 xi xη
0 xi), (xη

0 xj), (xη
0 xj), (xη

0 xj)
x0 < xk < xj < xi : (xη

0 xj xη
0 xi), (xη

0 xj xη
0 xi), (xη

0 xk xη
0 xi xη

0 xi xη
0 xj xη

0 xj xη
0 xj)

Notice that only in the first and last orderings where the constraint is satisfied are there
three factors. The other cases have four. ◀

STACS 2021

35:6 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

For each constraint Ct = (xi, xj , xk) in the instance ϕ of the Betweenness problem, where
1 ≤ t ≤ m, we construct the gadget from Lemma 16,

S(Ct) := xt
0 xj xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xi xt

0 xj xt
0 xj xt

0 xj .

We next define S(ϕ) := S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x2

2 . . . x2
n)β where

β = 3m + 3.

▶ Lemma 17. The string S(ϕ) has an alphabet ordering yielding at most 3m + 1 Lyndon
factors iff there exists a variable ordering satisfying all constraints in ϕ.

Proof. Assuming there exists a constraint satisfying variable ordering for ϕ, make x0 the
smallest symbol and order the remaining symbols x1, . . . , xn according to the variable ordering.
By Lemma 16, each of the substrings S(Ct) for 1 ≤ t ≤ m contributes three factors, and by
the analysis in Lemma 14 the remaining suffix contributes one additional factor. This creates
3m + 1 factors in total.

Conversely, assume that no variable ordering exists that satisfies the constraints. If x0 is
the smallest symbol, then at least one S(Ct) gadget contributes four factors while the others
contribute at least three. The remaining suffix contributes one factor making the number of
factors at least 4 + 3(m − 1) + 1 = 3m + 2. If x0 is not the smallest symbol, then by Lemma
15, the number of factors is at least β − 1 = (3m + 3) − 1 = 3m + 2. ◀

Since determining if there exists a variable ordering satisfying all constraints in an instance
of the Betweenness problem is NP-hard [32], determining whether there exists an alphabet
order where there are at most 3m + 1 Lyndon factors is NP-hard as well. With a symbol
ordering as a polynomial sized certificate, the problem is clearly in NP, proving Theorem 3.

3.2 ETH Hardness of Lyndon Factor Minimization
Here we reduce Arity 4 Permutation CSP to Lyndon Factor Minimization. Assume for the
moment that x0 is the smallest symbol, and that each substring S(Ct) (yet to be defined) is
followed by a run of x0 longer than any run of x0 that precedes it.

For an arity 2 constraint Ct = (xi, xj), we construct a string using the symbols x0,
xi, and xj that has either 3 or 4 factors depending on the ordering on the variables. We
will demonstrate which orderings create which factorizations. The string we construct is
S(Ct) = xt

0 xi xt
0 xi xt

0 xi xt
0 xj xt

0 xi xt
0 xi, which has the factorizations for different

orderings,

Ordering Factorization # factors
xi < xj : (xt

0 xi xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi) 3

xj < xi : (xt
0 xi)(xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi) 4

Slightly more involved are the strings to model arity 3 constraints Ct = (xi, xj , xk),
S(Ct) = xt

0 xi xt
0 xi xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xi., where

Ordering Factorization # factors
xi < xj < xk : (xt

0 xi xt
0 xi xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi) 3

xi < xk < xj : (xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xi) 4
xj < xi < xk : (xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi) 4

xk < xi < xj : (xt
0 xi xt

0 xi xt
0 xj)(xt

0 xi)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xi) 4
xj < xk < xi : (xt

0 xi)(xt
0 xi)(xt

0 xj xt
0 xi xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi) 4

xk < xj < xi : (xt
0 xi)(xt

0 xi)(xt
0 xj xt

0 xi xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xi) 4

D. Gibney and S. V. Thankachan 35:7

The most involved is the gadget for an arity 4 constraint Ct = (xi, xj , xk, xh),
S(Ct) = xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xh xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi

which has the following factorizations depending on the ordering given to its symbols,

Ordering (‘<’ omitted) Factorization #
xi, xj , xk, xh : (xt

0 xi xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi xt
0 xh xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi) 3

xi, xj , xh, xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk)(xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xk, xj , xh : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj)(xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xh, xj , xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xk, xh, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj)(xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xi, xh, xk, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj)(xt

0 xi) 4

xj , xi, xk, xh : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xi, xh, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xi, xj , xh : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xi, xj , xk : (xt
0 xi xt

0 xj xt
0 xi xt

0 xk)(xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xi, xh, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xi, xk, xj : (xt
0 xi xt

0 xj)(xt
0 xi xt

0 xk xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xj , xk, xi, xh : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xh, xi, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xj , xi, xh : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xj , xi, xk : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xh, xi, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xk, xi, xj : (xt
0 xi xt

0 xj)(xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xj , xk, xh, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh)(xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xj , xh, xk, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi)(xt
0 xj xt

0 xi) 4

xk, xj , xh, xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xj , xk, xi : (xt
0 xi)(xt

0 xj xt
0 xi xt

0 xk xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xk, xh, xj , xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi xt

0 xh xt
0 xj xt

0 xi)(xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

xh, xk, xj , xi : (xt
0 xi)(xt

0 xj xt
0 xi)(xt

0 xk xt
0 xi xt

0 xj xt
0 xi)(xt

0 xh xt
0 xj xt

0 xi xt
0 xk xt

0 xi xt
0 xj xt

0 xi) 4

The string construction for the overall reduction is almost identical to the one for ϕ in
Section 3.1. We only need to select β to be slightly different. We let β = 4m + 3. This
is enough to ensure that in an optimal solution x0 must be the smallest symbol. If x0 is
smallest, in the worst-case, when all constraints are not satisfied, there are at most 4m + 1
Lyndon factors. If x0 is not smallest, as shown in Lemma 15, the number of factors is at
least β − 1 = 4m + 2. Then, with x0 as the minimum, each ordering on x1, . . ., xn gives us
3s + 4(m − s) + 1 = 4m + 1 − s factors, where s is the number of satisfied constraints when
using the corresponding variable ordering in ϕ. Therefore, an optimal ordering for the n

variables of ϕ is obtained by an order on the (n + 1) symbols which minimizes the number of
Lyndon factors in the string. This combined with Lemma 13 proves Theorem 4.

3.3 Inapproximability of Lyndon Factor Minimization
We will perform an approximation preserving reduction from FAS to Lyndon Factor Minim-
ization. Recall that for FAS the arity k of the constraints is 2, so that constraints are of the
form (xi, xj) and Λ consists of the identity permutation. In other words, the constraint is

STACS 2021

35:8 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

only satisfied if xi < xj . The cost of the solution will be the number of violated constraints,
which we wish to minimize. Our gadget for constraint Ct = (xi, xj) will be

S(Ct) = (xt
0 xi) ◦ (xt

0 xj)α−1

where α > 1 will be chosen later. The whole string for our reduction will be

T = S(ϕ) = S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x2

2 . . . x2
n)β

where β = αm + 3. By Lemma 15, if x0 is not smallest, then F (T) ≥ β − 1. We consider
next what happens in our constraint gadgets when x0 is smallest.

▶ Lemma 18. If x0 is smallest and xi < xj then FT (S(Ct)) = 1.

Proof. Since xt
0 is the longest run of x0 seen so far, the start of S(Ct) marks the smallest

suffix seen so far when traversing T from left to right. Then, since xj > xi, the start of all
substrings of the form xt

0 xj do not mark the start of the smallest suffix seen so far. ◀

▶ Lemma 19. If x0 is smallest and xj < xi then FT (S(Ct)) = α.

Proof. Again, since xt
0 is the longest run of x0 seen so far, the start of S(Ct) marks the

smallest suffix seen so far when traversing T from left to right. However, now the start of
each substring of the form xt

0 xj marks the start of the smallest suffix seen so far (recall after
the last xt

0 xj there will be a longer run of x0 than has been seen before). Hence, there are
α − 1 additional factors created. ◀

▶ Lemma 20. Any alphabet ordering where x0 is smallest has fewer factors than an alphabet
ordering where x0 is not the smallest.

Proof. If x0 is smallest, F (T) = s+α(m−s)+1 where s is the number of satisfied constraints
and the +1 arises from the last factor, (x0)m+1 ◦ (x2

1 x2
2 . . . x2

n)β . Because α > 1, this is
upper bounded by the case when s = 0 so that F (T) ≤ αm + 1. On the other hand, if x0 is
not smallest F (T) ≥ β − 1 = αm + 2. ◀

Henceforth, we only need to worry about the case when x0 is the smallest. Our aim is to
show that a constant approximation algorithm for Lyndon Factor Minimization allows us to
construct a constant approximation algorithm for FAS. If our hypothetical approximation
algorithm for Lyndon Factor Minimization ever returned a solution where x0 is not smallest,
we add the additional step of replacing that solution with any solution where x0 is smallest,
obtaining a solution that performs even better. Then our modified algorithm maintains being
an approximation algorithm for Lyndon Factor Minimization (perhaps with an even smaller
approximation factor).

Let s∗
F denote the number of constraints satisfied in an optimal solution of ϕ for FAS and

let s∗
L denote the number of constraints in ϕ satisfied by the variable ordering obtained from

our optimal, factor minimizing, alphabet order for the corresponding instance of Lyndon
Factor Minimization. Also, let s denote the actual number of constraints satisfied by the
variable ordering obtained from our approximate factor minimizing alphabet order for the
corresponding instance of Lyndon Factor Minimization. A λ-approximation for Lyndon
Factor Minimization with λ > 1 gives the following set of inequalities:

s∗
L + α(m − s∗

L) + 1 ≤ s + α(m − s) + 1 ≤ λ(s∗
L + α(m − s∗

L) + 1).

D. Gibney and S. V. Thankachan 35:9

Which can be equivalently written as

(m − s∗
L) + s∗

L + 1
α

≤ (m − s) + s + 1
α

≤ λ(m − s∗
L) + λ

s∗
L + 1

α
. (1)

We will show that by taking α large enough we can ensure s∗
L = s∗

F .

▶ Lemma 21. With α = 2(m + 1) + 1, we have that s∗
L = s∗

F .

Proof. The cost of an optimal solution of ϕ is m − s∗
F . The solution for ϕ we get from

mapping our solution for Lyndon factorization back to ϕ must have at least as many violated
constraints as the optimal solution for ϕ, i.e., m − s∗

L ≥ m − s∗
F , and so s∗

F ≥ s∗
L. Let us

suppose for the sake of contradiction that s∗
F ≥ s∗

L + 1. This implies m − s∗
L − (m − s∗

F) ≥ 1.
Then, using in addition that s∗

F +1
α ≤ m+1

α ≤ 1
2 , we obtain

s∗
F + 1

α
− s∗

L + 1
α

≤ 1
2 < 1 ≤ m − s∗

L − (m − s∗
F),

which implies that

m − s∗
F + s∗

F + 1
α

< m − s∗
L + s∗

L + 1
α

.

Or, written more naturally as the cost of a Lyndon Factor Minimization Problem’s solution,

s∗
F + α(m − s∗

F) + 1 < s∗
L + α(m − s∗

L) + 1.

But then this implies that the ordering on x1, . . . , xn that is used to obtain the optimal
solution for ϕ creates fewer Lyndon factors than our supposedly optimal solution for Lyndon
Factor Minimization, a contradiction. ◀

Let us now upper bound m − s (our approximate solution cost when the solution is
mapped back to FAS) in terms of λ(m − s∗

F). Combining the inequalities in (1) with Lemma
21, and the fact that s∗

F = s∗
L ≤ m when α = 2(m + 1) + 1, we get that

m − s ≤ m − s + s + 1
α

≤ λ(m − s∗
L) + λ

s∗
L + 1

α
≤ λ

(
m − s∗

F + 1
2

)
.

The case where m = s∗
F can easily be solved in polynomial time, so we can consider that

check added to our hypothetical solution as well. Hence, we assume m − s∗
F ≥ 1 > 1/2 and,

m − s∗
F ≤ m − s ≤ λ

(
m − s∗

F + 1
2

)
< λ(m − s∗

F + m − s∗
F) = 2λ(m − s∗

F).

We have shown that a λ approximation for Lyndon Factor Minimization allows us to obtain,
at worst, a 2λ approximation for FAS. Moreover, the α value we need to do this is polynomial
in m so that the whole reduction is done in polynomial time. This polynomial time constant
approximation algorithm is better then what is allowed by Lemma 11 under the Unique
Games Conjecture. This completes the proof of Theorem 5.

4 Hardness of Lyndon Factor Maximization

Our approach will be similar to the one taken for minimization. First, we introduce
some gadgetry for the NP-completeness proof that is later expanded upon to create an
inapproximability result. As of now, the authors have not yet found gadgets to establish the
same ETH hardness for the maximization problem.

STACS 2021

35:10 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

4.1 NP-Completeness of Lyndon Factor Maximization
We perform a reduction from the dual of FAS, the Maximum Acyclic Subgraph Problem
(MAS). Recall MAS is identical to FAS except for the cost of a solution now being the number
of constraints satisfied, which we wish to maximize. For constraint Ct = (xi, xj), we define
our constraint gadget as S(Ct) = xt+1

0 xj xt+1
0 xi (note the reversal of i and j). The entire

string formed by our instance ϕ of FAS is

T = S(ϕ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m.

▶ Lemma 22. If x0 is not the smallest symbol in the ordering, then F (T) ≤ n + m.

Proof. Suppose xi ̸= x0 is the smallest symbol. Then the first Lyndon factor starting with
xi occurs in the prefix (x0 x1 . . . xn). Subsequent Lyndon factors must begin with xi. The
prefix contributes at most n factors and there are at most m remaining occurrences of xi. ◀

▶ Lemma 23. In an ordering where x0 is smallest, F (T) = 2s + (m − s) + 1 + m, where s

is the number of constraints satisfied in MAS by the ordering given to x1, . . ., xn.

Proof. For a substring S(Ct), if Ct = (xi, xj) is not satisfied (i.e., xi > xj) then FT (S(Ct)) =
1. If it is satisfied (i.e., xi < xj) then FT (S(Ct)) = 2. The prefix x0 x1 x2 . . . xn contributes
exactly one additional factor. The suffix (x0)m contributes m factors. ◀

▶ Lemma 24. Any ordering where x0 is the smallest has more factors than an ordering
where x0 is not the smallest.

Proof. By Lemma 10, we can assume that n ≤ m. Then by Lemma 22, we have that if
x0 is not smallest, F (T) ≤ n + m ≤ 2m. By Lemma 23, if x0 is smallest then F (T) =
2s + (m − s) + 1 + m = s + 2m + 1 > 2m. ◀

The value F (T) is maximized by an alphabet order which has the largest possible number
of satisfied constraints, say s∗. This gives (s∗ + 2m + 1) Lyndon factors. Clearly, this solution
also provides an ordering satisfying the maximum number of constraints in our MAS instance.
Since MAS is NP-hard, we have shown Lyndon Factor Maximization is NP-hard as well. The
decision problem is in NP using the ordering on x1 . . . xn as a polynomial sized certificate,
and this remains NP-hard as it could be used to solve the optimization problem. This
completes the proof of Theorem 6.

4.2 Inapproximability of Lyndon Factor Maximization
First, let us describe the OCSP from which we are reducing. Let k > 1 be the arity of the
constraints, which we will specify later. Each constraint will be satisfied iff the variables
in that constraint have one of the (k − 1)! orderings where the last variable is ordered
first, i.e., for constraint (xi1 , xi2 , . . . , xik−1 , xik

), the ordering over those variables will have
xik

< xij
for j ∈ [1, k − 1]. More formally, Λ = {

(
1 2 ... k−1 k
z1 z2 ... zk−1 1

)
| ∪k−1

i=1 {zi} = {2, . . . , k}}.
According to Theorem 12, it is Unique-Games-Hard to find an approximation which beats
|Λ|m/k! = (k − 1)!m/k! = m/k constraints being satisfied.

Our constraint gadget is of the form

S(Ct) = (xt+1
0 xi1) ◦ (xt+1

0 xi2) ◦ . . . ◦ (xt+1
0 xik−1) ◦ (xt+1

0 xik
)α

and our overall string constructed from our instance ϕ of OCSP is

T := S(ϕ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0), where α = mn.

D. Gibney and S. V. Thankachan 35:11

▶ Lemma 25. If x0 is not smallest then F (T) ≤ n + m.

Proof. Let xi ̸= x0 be the smallest symbol instead. Then the prefix (x0 x1 x2 . . . xn)
contributes at most n factors, and each remaining factor must begin with xi. We will show
that there is at most 1 factor starting in each constraint gadget. For a given constraint
containing xi, if xi ̸= xik

this is immediate. On the other hand, if xi = xik
then only its

first occurrence can form a smaller suffix of T than those preceding it. In more detail, since
x0 > xi = xik

, we have xik
(xt

0 xik
)α−1x0 < xik

(xt
0 xik

)α−2x0 < xik
(xt

0 xik
)α−3x0 <

Note that this is the reason for the final x0 appended to T . ◀

▶ Lemma 26. If x0 is smallest, and in constraint Ct = (xi1 , . . . , xik
) the symbol xik

is
smallest among xi1 . . . xik

, then FT (S(Ct)) ≥ α.

Proof. Since xt+1
0 xik

< xt+1
0 xij

for j ∈ [1, k − 1], and the substring following S(Ct) is either
xt+2

0 (or the final x0 of T), the start of each run of x0 in the substring (xt+1
0 xik

)α marks
the start of a suffix smaller than any of those preceding it. ◀

▶ Lemma 27. If x0 is the smallest in the ordering, then F (T) ≥ αs + 1 where s is the
number of clauses in ϕ satisfied by the ordering given to x1, . . ., xn. This is larger than the
number of factors from any ordering where x0 is not the smallest.

Proof. By Lemma 26, when x0 is the smallest each of the satisfied constraint gadgets
contributes at least α factors. In addition, the lone x0 symbol at the end of T forms its own
factor. For the second statement, we can always assume our approximate solution satisfies at
least 1 constraint, hence s ≥ 1 and αs + 1 ≥ mn + 1 > m + n, which by Lemma 25 is an
upper bound on the number of factors when x0 is not smallest. ◀

From here we only need to consider when x0 is smallest, for the same reasoning as given
in Section 3.3. Now, suppose we have a λ-approximation with λ < 1 for Lyndon Factor
Maximization. Let s∗

L be the number of constraint gadgets satisfied from our optimal solution
of Lyndon factor maximization, and s the number from the approximate solution. Then,

λ(αs∗
L + 1 + y∗

L) ≤ αs + 1 + y ≤ αs∗
L + 1 + y∗

L

where y∗
L represents the number of additional factors contributed beyond αs∗

L + 1 and y

represents the number of factors beyond αs + 1 for our approximate solution. We can
equivalently write the above expression as

λs∗
L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ s∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
. (2)

▶ Lemma 28. For all s ∈ [1, m], and for the corresponding y value as described above,

1 ≤
(

1 + 1
αs

+ y

αs

)
≤ 3.

Proof. We first bound y from above. Any factor in a constraint gadget begins at the start of
a run x0. In a satisfied constraint gadget, there are k − 1 such runs outside of the (xt+1

0 xik
)α

substring. Hence, each satisfied constraint gadget contributes at most k − 1 additional factors
beyond α. A constraint gadget that is not satisfied, i.e., has xij

< xik
for some j ̸= k, has

the gadget’s last factor beginning at the start of the substring (xt+1
0 xij). This implies the

STACS 2021

35:12 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

substring (xt+1
0 xik

)α does not split into different factors. Therefore, an unsatisfied constraint
gadget again contributes at most k − 1 factors. Because of this, the m constraint gadgets
contribute at most k − 1 additional factors in total and y ≤ m(k − 1). Finally, α = mn, hence

y

αs
≤ y

α
≤ m(k − 1)

α
≤ mn

α
= 1 and 1

αs
≤ 1

α
= 1

nm
≤ 1. ◀

Let s∗
C be the number of constraints satisfied in an optimal solution to ϕ. Like in

Section 3.3, we know that s ≤ s∗
C and s∗

L ≤ s∗
C , Using Lemma 28 we can easily make them

differ by at most a constant factor.

▶ Lemma 29. Using the definitions above, it holds that s∗
C ≤ 3s∗

L.

Proof. For the sake of contradiction, assume instead that s∗
C > 3s∗

L. Applying the ordering
given by the optimal solution of ϕ to the symbols x1, . . . , xn, and letting y∗

C be defined as
above but for s∗

C , we have

s∗
C

(
1 + 1

αs∗
C

+ y∗
C

αs∗
C

)
> s∗

C > 3s∗
L ≥ s∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
.

However, this implies αs∗
C + 1 + y∗

C > αs∗
L + 1 + y∗

L. Thus, s∗
L couldn’t have been the number

of constraints satisfied in an optimal solution to our Lyndon Factor Maximization instance,
since using whichever ordering was used for the solution to ϕ would have given us more
factors, a contradiction. ◀

By Lemma 29, we have 1
3 s∗

C ≤ s∗
L. Multiplying both sides by λ/3, we obtain λ

9 s∗
C ≤ λ

3 s∗
L.

By Lemma 28 and our starting inequality in (2) we also have that

λs∗
L ≤ λs∗

L

(
1 + 1

αs∗
L

+ y∗
L

αs∗
L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ 3s.

From which we obtain λ
3 s∗

L ≤ s. Combining these inequalities with the fact that s ≤ s∗
C , we

get λ
9 s∗

C ≤ s ≤ s∗
C . That is, a λ-approximation algorithm for Lyndon Factor Maximization

provides at least a λ/9 -approximation algorithm for this set of OCSP problems.
To finish the proof of Theorem 7, suppose for the sake of contradiction there exists

a λ-approximation algorithm for Lyndon factor maximization for some constant λ < 1.
Consider the set of OCSPs problems described in beginning of Section 4.2 with arity k such
that 1/k < λ/9. With our reduction, we obtain a polynomial-time algorithm that can find
a solution with approximation ratio better than |Λ|/k! = 1/k, proving the Unique Games
Conjecture false by Theorem 12.

5 Open Problems

We leave open the problem of establishing similar ETH hardness results for the maximization
problem. We also leave open the problem of finding a (non-constant factor) approximation
algorithm for either the minimization or maximization problem.

References
1 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and

Kazuya Tsuruta. The “runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017. doi:
10.1137/15M1011032.

2 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing the
bijective BWT. CoRR, abs/1911.06985, 2019. arXiv:1911.06985.

https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
http://arxiv.org/abs/1911.06985

D. Gibney and S. V. Thankachan 35:13

3 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Indexing the
bijective BWT. In 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019,
June 18-20, 2019, Pisa, Italy, pages 17:1–17:14, 2019. doi:10.4230/LIPIcs.CPM.2019.17.

4 Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of bwt-runs
minimization via alphabet reordering. In 28th Annual European Symposium on Algorithms,
ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages 15:1–15:13, 2020.
doi:10.4230/LIPIcs.ESA.2020.15.

5 Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation CSP
of arity 3 is approximation resistant. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 62–73, 2009.
doi:10.1109/CCC.2009.29.

6 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advantage over
random for maximum acyclic subgraph. In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings,
pages 625–633, 2007. doi:10.1109/FOCS.2007.47.

7 Kuo Tsai Chen, Ralph H Fox, and Roger C Lyndon. Free differential calculus, iv. the quotient
groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.

8 Amanda Clare and Jacqueline W. Daykin. Enhanced string factoring from alphabet orderings.
Inf. Process. Lett., 143:4–7, 2019. doi:10.1016/j.ipl.2018.10.011.

9 Amanda Clare, Jacqueline W. Daykin, Thomas Mills, and Christine Zarges. Evolutionary
search techniques for the lyndon factorization of biosequences. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019, pages 1543–1550, 2019. doi:10.1145/3319619.3326872.

10 Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM, 38(3):651–675,
1991. doi:10.1145/116825.116845.

11 Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des mots de lyn-
don de longueur bornée. Theor. Comput. Sci., 60:255–283, 1988. doi:10.1016/0304-3975(88)
90113-2.

12 Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Lyndon factorization of grammar compressed texts revisited. In Gonzalo Navarro,
David Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2018, July 2-4, 2018 - Qingdao, China, volume 105 of LIPIcs, pages 24:1–24:10.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CPM.2018.24.

13 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012. arXiv:1201.3077.

14 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses
Charikar. Beating the random ordering is hard: Every ordering CSP is approximation resistant.
SIAM J. Comput., 40(3):878–914, 2011. doi:10.1137/090756144.

15 Venkatesan Guruswami and Yuan Zhou. Approximating bounded occurrence ordering csps. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
- 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM
2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 158–169, 2012. doi:
10.1007/978-3-642-32512-0_14.

16 Johan Håstad. Some optimal inapproximability results. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997,
pages 1–10, 1997. doi:10.1145/258533.258536.

17 Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and trees.
Theor. Comput. Sci., 307(1):173–178, 2003. doi:10.1016/S0304-3975(03)00099-9.

18 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,
656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.

STACS 2021

https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.1109/CCC.2009.29
https://doi.org/10.1109/FOCS.2007.47
https://doi.org/10.1016/j.ipl.2018.10.011
https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1145/116825.116845
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.4230/LIPIcs.CPM.2018.24
http://arxiv.org/abs/1201.3077
https://doi.org/10.1137/090756144
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1145/258533.258536
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/j.tcs.2016.03.005

35:14 Finding an Optimal Alphabet Ordering for Lyndon Factorization Is Hard

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M. Shur.
On the size of lempel-ziv and lyndon factorizations. In Heribert Vollmer and Brigitte Vallée,
editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March
8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 45:1–45:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.45.

21 Subhash Khot. On the unique games conjecture. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, page 3, 2005. doi:10.1109/SFCS.2005.61.

22 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003,
Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, pages 186–199, 2003. doi:10.
1007/3-540-44888-8_14.

23 Eun Jung Kim and Daniel Gonçalves. On exact algorithms for the permutation CSP. Theor.
Comput. Sci., 511:109–116, 2013. doi:10.1016/j.tcs.2012.10.035.

24 Manfred Kufleitner. On bijective variants of the burrows-wheeler transform. In Proceedings of
the Prague Stringology Conference 2009, Prague, Czech Republic, August 31 - September 2,
2009, pages 65–79, 2009. URL: http://www.stringology.org/event/2009/p07.html.

25 Pierre Lalonde and Arun Ram. Standard lyndon bases of lie algebras and enveloping algebras.
Transactions of the American Mathematical Society, 347(5):1821–1830, 1995.

26 M. Lothaire. Combinatorics on words, volume 17. Cambridge university press, 1997.
27 Lily Major, Amanda Clare, Jacqueline W. Daykin, Benjamin Mora, Leonel Jose Peña Gamboa,

and Christine Zarges. Evaluation of a permutation-based evolutionary framework for lyndon
factorizations. In Parallel Problem Solving from Nature - PPSN XVI - 16th International
Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I,
pages 390–403, 2020. doi:10.1007/978-3-030-58112-1_27.

28 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Sorting suffixes
of a text via its lyndon factorization. In Jan Holub and Jan Zdárek, editors, Proceedings of
the Prague Stringology Conference 2013, Prague, Czech Republic, September 2-4, 2013, pages
119–127. Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, 2013. URL: http://www.stringology.org/event/
2013/p11.html.

29 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array
and lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014. doi:10.1016/j.jda.
2014.06.001.

30 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 958–972, 2013. doi:10.1137/1.9781611973105.69.

31 Alantha Newman. Cuts and orderings: On semidefinite relaxations for the linear ordering
problem. In Approximation, Randomization, and Combinatorial Optimization, Algorithms
and Techniques, 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop on Randomization
and Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings,
pages 195–206, 2004. doi:10.1007/978-3-540-27821-4_18.

32 Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979. doi:
10.1137/0208008.

33 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/1374376.1374414.

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.1109/SFCS.2005.61
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1016/j.tcs.2012.10.035
http://www.stringology.org/event/2009/p07.html
https://doi.org/10.1007/978-3-030-58112-1_27
http://www.stringology.org/event/2013/p11.html
http://www.stringology.org/event/2013/p11.html
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1007/978-3-540-27821-4_18
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008
https://doi.org/10.1145/1374376.1374414

D. Gibney and S. V. Thankachan 35:15

34 Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Grammar-compressed self-index with lyndon words. CoRR, abs/2004.05309,
2020. arXiv:2004.05309.

35 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. On the
size of overlapping lempel-ziv and lyndon factorizations. In Nadia Pisanti and Solon P. Pissis,
editors, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,
2019, Pisa, Italy, volume 128 of LIPIcs, pages 29:1–29:11. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.29.

STACS 2021

http://arxiv.org/abs/2004.05309
https://doi.org/10.4230/LIPIcs.CPM.2019.29

	1 Introduction
	2 Preliminaries
	3 Hardness of Lyndon Factor Minimization
	3.1 NP-Completeness of Lyndon Factor Minimization
	3.2 ETH Hardness of Lyndon Factor Minimization
	3.3 Inapproximability of Lyndon Factor Minimization

	4 Hardness of Lyndon Factor Maximization
	4.1 NP-Completeness of Lyndon Factor Maximization
	4.2 Inapproximability of Lyndon Factor Maximization

	5 Open Problems

