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Abstract
Network games are widely used as a model for selfish resource-allocation problems. In the clas-
sical model, each player selects a path connecting her source and target vertex. The cost of
traversing an edge depends on the number of players that traverse it. Thus, it abstracts the fact
that different users may use a resource at different times and for different durations, which plays
an important role in defining the costs of the users in reality. For example, when transmitting
packets in a communication network, routing traffic in a road network, or processing a task in a
production system, the traversal of the network involves an inherent delay, and so sharing and
congestion of resources crucially depends on time.

We study timed network games, which add a time component to network games. Each vertex
v in the network is associated with a cost function, mapping the load on v to the price that a
player pays for staying in v for one time unit with this load. In addition, each edge has a guard,
describing time intervals in which the edge can be traversed, forcing the players to spend time
on vertices. Unlike earlier work that add a time component to network games, the time in our
model is continuous and cannot be discretized. In particular, players have uncountably many
strategies, and a game may have uncountably many pure Nash equilibria. We study properties of
timed network games with cost-sharing or congestion cost functions: their stability, equilibrium
inefficiency, and complexity. In particular, we show that the answer to the question whether we
can restrict attention to boundary strategies, namely ones in which edges are traversed only at
the boundaries of guards, is mixed.
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1 Introduction

Network games (NGs, for short) [9, 37, 38] constitute a well studied model of non-cooperative
games. The game is played among selfish players on a network, which is a directed graph.
Each player has a source and a target vertex, and a strategy is a choice of a path that connects
these two vertices. The cost of a player is the sum of costs of the edges her path traverses,
where a cost of an edge depends on the load on it, namely the number of players using the
edge. We distinguish between two types of costs. In cost-sharing games (a.k.a. network
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37:2 Timed Network Games

formation games), each edge has a cost and the players that use it split the cost among them,
thus the load has a positive effect on cost. For example, when the costs correspond to prices,
users that share a resource also share its price. Then, in congestion games, the load has a
negative effect on cost: each edge has a non-decreasing latency function that maps the load
on the edge to its cost given this load. For example, when the network models a road system
and costs correspond to the traversal time, an increased load on an edge corresponds to a
traffic jam, increasing the cost of the players that use it.

One limitation of NGs is that the cost of using a resource abstracts the fact that different
users may use the resource at different times and for different durations. This is a real
limitation, as time plays an important role in many real-life settings. For example, in a
road or communication systems, congestion only affects cars or messages that use a road
or a channel simultaneously. We are interested in settings in which congestion affects the
QoS or the way a price is shared (rather than the travel time). For example, discomfort
increases in a crowded train or price is shared by the passengers in a taxi without affecting
the travel time. Similarly, in mobile networks, the call quality depends on the number of
subscribers using the network simultaneously. As a third example, when processing a task in
a production system, jobs move from one station to another. The way the cost of running
the stations is shared by the jobs that use it depends on the time spent in the stations and
on the synchronization among the jobs.

We introduce and study timed network games (TNGs, for short) – a new model that
adds a time component on NGs. Similar to NGs, the game is played on a network and the
players need to find a path from their source to target vertices. Rather than paying for the
traversal of edges, in TNGs the players pay for spending time in vertices. Each edge in the
network has a guard, which is a disjunction of time intervals that specifies when an edge can
be traversed. Traversing an edge is done instantaneously. So, a strategy for a player is a
timed path: a sequence of pairs 〈v, t〉 of a vertex v and the time t spent on v. When the path
traverses an edge in the network, the guard of the edge must be satisfied. For an integer
k ∈ IN, let [k] = {1, . . . , k}. Each vertex v has a cost function rv : [k]→ IR≥0 that assigns
the cost of using v for one time unit, given the load in v. A profile in a TNG is then a vector
of timed paths, namely the strategies of all players. Given a profile P , the cost of each player
is induced by the cost functions of the vertices visited in her timed path, the time spent at
each vertex, and the load on the vertices during these visits.

I Example 1. Consider an automobile service center with three stations: (s) tuning engine,
(a) tire and air check, and (w) dry and wet wash. The costs for operating the stations
per one time unit are 8, 4 and 6 respectively, and they are independent of the number of
cars served. Accordingly, cost is shared by the users. There are two billing counters, u1
and u2, for dropped-in and registered cars. The setting is modeled by the TNG below. As
described in the TNG, after spending some time in s, the cars can alternate between stations
w and a. Assume that there are two players, and consider the profile P in which the first
player chooses the timed path (s, 3), (a, 7), u1 and the second player chooses the timed path
(s, 3), (a, 4), (w, 3), u2. Player 1’s cost in P is 8/2 · 3 + 4/2 · 4 + 4 · 3 = 32 and Player 2’s cost
is 8/2 · 3 + 4/2 · 4 + 6 · 3 = 38. Another possible profile in this game is P ′, in which the
strategies of the two players are (s, 3), (w, 4), (a, 3), u1 and (s, 3), (w, 7), u2. Now, the costs
are 36 and 42, respectively.
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There has been reference to time already in early work on flow networks [26]. Research
spans from pioneering and theoretical work on flow networks in which congestion leads to
queues (c.f., [41, 42]) to nowadays practical research on traffic engineering in software defined
networks [2]. These works, however, do not address the problem from a game-theoretic
perspective. To the best of our knowledge, the first works to consider network games with a
time component are [36] and [28]. In [36], the focus is still on flow networks, and it enriches
[41, 42] by viewing infinitesimal flow particles as selfish agents (see also [14]). Closer to our
work, network games with time components where studied in [28, 31, 35]. These models
differ from our model in two main aspects. First, the cost a player pays in these models is
the time it takes to reach its destination, and our cost represents the QoS. Second, time is
discrete in these models so the set of strategies the players choose is finite, whereas the source
of the difficulty of our model is the real-time and the fact that the players have uncountably
many strategies. The closest to our model is a model studied in [28], which studies a QoS
pricing but using discrete time.

Our model of TNGs is the first to add real-time considerations to the strategies of the
players. Indeed, a strategy for a player is not just the path of edges she is going to traverse,
but also the time spent in vertices, which can be any number in IR≥0. Thus, even if we restrict
attention to simple paths, each player has uncountably many strategies. This continuous
time and the richness of strategies that it brings with it is also a key difference between
TNGs and NGs. Our model is inspired by timed automata [5]. There too, time is continuous,
transitions between states are guarded by time constraints, and so is the time spent in a state.
There are typically uncountably many runs of a timed automaton, corresponding to the
uncountably many strategies a player typically has in our TNGs. The fact timed automata
handle continuous time makes them the prominent formalism for specifying real-time on-going
behaviors, and they are way more useful than formalisms in which time has been discretized
(c.f., temporal logic with discrete clocks [23], or the fictitious-clock approach of [27]). We
note that our TNGs correspond to a restricted class of timed automata, as our guards refer
to the global time and cannot express, for example, a bound on the time spent in a vertex.
In Section 7 we discuss the extension of our model to a richer one.

Note that, as in the time-dependent cost model of [28], load does not affect travel time
and only affects the cost. Unlike [28], in TNGs time is continuous, which enables TNGs
to model richer settings in practice. Note also that the cost function may model various
applications. Consider, for example, a communication network with servers that encode or
decode messages. A typical cost function for a server is the inverse of the quality of the
signal, which is related to the number of bits needed to encode a message. Assuming that a
server can handle a certain amount of data per unit time, this cost is the reciprocal of the
number of bits used to encode a message. If the server allows a 16-bit encoding of a message
when it serves less than 128 users simultaneously, and allows an 8-bit encoding when it serves
between 128 and 256 users simultaneously, then the cost function maps x to 1

16 , for x ≤ 128,
and to 1

8 , for 129 ≤ x ≤ 256, reflecting a better quality of the received message when load
goes below 128 [33].

MFCS 2017
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The first question that arises in the context of games is the existence of stable outcomes
of the game. In the context of NGs, the most prominent stability concept is that of a (pure)
Nash equilibrium (NE, for short) – a profile such that no player can decrease her cost by
unilaterally deviating from her current strategy1. Decentralized decision-making may lead to
solutions that are sub-optimal from the point of view of society as a whole. The standard
measures to quantify the inefficiency incurred due to selfish behavior is the price of stability
(PoS) [9] and the price of anarchy (PoA) [30]. In both measures we compare against a social
optimum (SO, for short), namely a profile that minimizes the sum of costs of all players.
The PoS (PoA, respectively) is the best-case (worst-case) inefficiency of an NE; that is, the
ratio between the cost of a best (worst) NE and an SO. In Example 1, profile P is an SO,
and is also a (best) NE, while profile P ′ is a worst NE. Note that there can be uncountably
many NEs in the TNG in Example 1. Indeed, for all t ∈ [3, 4], the profile Pt with the
strategies (s, 3), (a, t), (w, 4 − t)(a, 3)u1 and (s, 3), (a, t), (w, 7 − t)u2, is an NE with costs
8/2 · 3 + 4/2 · t+ 6/2 · (4− t) + 4 · 3 = 36− t and 8/2 · 3 + 4/2 · t+ 6/2 · (4− t) + 6 · 3 = 42− t.

The picture of stability and equilibrium inefficiency for standard NGs is well understood.
Every NG has an NE, and in fact these games are potential games [37], thus every sequence
of best response moves, namely moves that the players perform in order to reduce their
costs, converges to an NE. For k-player cost-sharing NGs, the PoS and PoA are log k and k,
respectively [9]. For congestion games with affine cost functions, PoS ≈ 1.577 [21, 3] and
PoA = 5

2 [22].
The fact a TNG has uncountably many profiles makes the adoption of results known

for NGs questionable. Let us elaborate on this point. Consider a TNG T , and a finite set
T ⊆ IR≥0 of time points. Note that there are only finitely many T -profiles in T (that is,
profiles with T -strategies, in which all edges are taken at some time point in T ). We show
that once we restrict attention to T -profiles, we can construct an NG that is isomorphic
to T , in the sense that there is a cost-preserving bijection between profiles in the NG and
T -profiles in the TNG T . While this enables us to reduce questions about T -profiles in the
TNG to questions on NGs, it is not clear to which finite set T we can restrict attention.
In the setting of timed automata, much work has been done on obtaining decidability by
partitioning IR≥0 into finitely many regions. Essentially, all time points within a region are
bisimilar, in the sense that the actions the automaton may take inside all time points in a
region, coincide [5]. Our challenge here is similar: searching for a finite set of time points
that partitions IR≥0 to finitely many intervals.

Recall that the source for delays in TNGs are time guards on the edges, where each guard
is a disjunction of intervals [a, b], for a ≤ b ∈ Q≥0. We refer to the two end points of all
guards as boundaries. One can suspect that we can restrict attention to boundary strategies,
namely timed paths that traverse edges only at boundary time points, and boundary profiles
in which all the players choose boundary strategies. We show that the situation is mixed.
The good news follows from choosing T above to be the boundaries, thus we show that a
boundary NE and SO exist and an NE can be found by performing best-response moves
that use only boundary strategies. Unfortunately, however, one cannot restrict attention to
boundary profiles, as the best and worst NEs need not be boundary. We show a best and
worst NE is attained in TNGs, which is not a-priori guaranteed.

In terms of inefficiency, the reduction from TNGs to isomorphic NGs enables us to extend
upper bounds on the PoS and PoA from NGs to TNGs. The adoption of lower bounds

1 Throughout this paper, we consider pure strategies, as is the case for the vast literature on cost-sharing
games.
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requires a reduction in the other direction – from NGs to TNGs, which we can show only
for acyclic NGs. Consequently, we can apply only lower bounds known for acyclic NGs,
which forces us to either prove direct bounds or to tighten lower bounds known for NGs
to acyclic NGs. All in all, we are able to show that the PoS and PoA coincide for NGs
and TNGs, except for the lower bound on the PoS of congestion TNGs, which we leave
open. Finally, in terms of computational complexity, we prove that the problem of finding
an NE is PLS-complete [29] for TNGs, which coincides with the complexity bounds for NGs
[24, 40]. Proving membership in PLS follows easily from the reduction from TNGs to NGs.
Proving hardness is more complex. For congestion TNGs, we are able to rely on known
hardness results for congestion NGs, as they apply already for acyclic congestion NGs [1].
For cost-sharing TNGs we need a similar reduction from acyclic cost-sharing NGs, whose
precise complexity is an open problem. Accordingly, we first settle the latter problem and
prove that finding an NE in acyclic cost-sharing NG is PLS-hard, which allows us to prove
the hardness result for cost-sharing TNGs.

Due to lack of space, some proofs appear in the full version, which can be found in the
authors’ homepages.

2 Preliminaries

We describe a (closed) time interval by [m1,m2], for m1,m2 ∈ IR≥0. We refer to m1 and m2
as the start and the end interval boundaries, respectively. A guard is the constant true or a
disjunction of time intervals. A point in time t ∈ IR≥0 satisfies a guard g if g is true or g
includes a disjunct [m1,m2] such that m1 ≤ t ≤ m2.

A timed network (TN) is a tuple 〈V,E, {ge}e∈E〉, where V is a set of vertices, E ⊆
V × V is a set of directed edges, and for each edge e ∈ E, the guard ge specifies the
time intervals during which e may be traversed. A timed network game (TNG) is T =
〈k, V,E, {ge}e∈E , {rv}v∈V , 〈si, ui〉i∈[k]〉, where k is the number of players; 〈V,E, {ge}e∈E〉 is
a timed network; for v ∈ V , the cost function rv : [k] → IR≥0 maps the load on vertex v,
namely the number of players that simultaneously visit vertex v, to the cost each of them
pays for staying in v for one time unit with this load; and for i ∈ [k], the pair 〈si, ui〉 ∈ V ×V
describes the objective of Player i: choosing a timed path from si to ui. A timed network
game is symmetric if all the players have the same objective, i.e. the same source and target
pair. We use B(T ) to denote the set of interval boundaries appearing in the guards of T .

In order to satisfy her objective, Player i has to choose a path in T from si to ui as
well as the duration spent in each vertex in the path. Indeed, while edges are traversed
instantaneously, the guards on the edges force the players to spend time on vertices. Each
player then aims to minimize the cost of these stays. In order to formally define the strategies
of the players and their costs, we first need some definitions.

A timed path in the TNG T is a sequence π = 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn ∈ (V×IR≥0)∗·V ,
such that for all 0 ≤ i < n, we have that 〈vj , vj+1〉 ∈ E; that is, v0, . . . , vn is a path in
the graph 〈V,E〉. Intuitively, for all 0 ≤ i < n, we have that tj describes the time spent
in the vertex vj before the path continues to vj+1. Let τ0 = t0 and τj = τj−1 + tj , for
0 < j < n. Note that τj =

∑j
l=0 tl. Thus, τj is the time that has elapsed since the traversal

of π starts and until π leaves the vertex vj . We sometimes refer to π also as the sequence
〈τ0, e1〉, . . . , 〈τn−1, en〉 ∈ (IR≥0 × E)∗, where for all 1 ≤ j ≤ n, we have that ej = 〈vj−1, vj〉
is the j-th edge in π and is taken at time τj−1. We say that the timed path π is legal if for
all 0 ≤ j < n, we have that τj satisfies the guard gej+1 .

A strategy for a player with an objective 〈s, u〉 is a legal timed path
π = 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn such that v0 = s and vn = u. Consider a finite set T ⊆ IR≥0

MFCS 2017
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of time points. We say that the strategy π is a T -strategy if all edges in π are taken at times
in T . Formally, for all 0 ≤ j < n, we have that τj ∈ T . A profile is a tuple P = 〈π1, . . . , πk〉
of strategies for the players. That is, for 1 ≤ i ≤ k, we have that πi is a strategy for Player i.
A profile is a T -profile if all its strategies are T -strategies. Of special interest are boundary
strategies and profiles, namely T -strategies and T -profiles for T = B(T ). Note that each
profile P has a finite minimal set T ⊆ IR≥0 such that P is a T -profile. We denote this set by
TP .

Given T ⊆ IR≥0, let tmax = max(T ). Also, for t ∈ T such that t 6= tmax, let nextT (t) be
the time point t′ ∈ T such that t < t′ and there is no t′′ ∈ T such that t < t′′ < t′. That is,
nextT (t) is the time point successor to t in T . We can partition the interval [0, tmax] to a set
Υ of sub-intervals [m1,m2] such that m1 and m2 are in T ∪ {0}, and m2 = nextT (m1). We
refer to the sub-intervals in Υ as periods. When T is TP for some profile P , then the set Υ
is the coarsest partition of [0, tmax] into periods such that no player crosses an edge within
each period. We denote this partition by ΥP .

Consider a T -profile P . For a player i ∈ [k] and a period γ ∈ ΥP , let visitsP (i, γ) be the
vertex that Player i visits during period γ. That is, if πi = 〈vi0, ti0〉, . . . , 〈vini−1, t

i
ni−1〉, vini

is
the legal timed path that is the strategy for Player i and γ = [m1,m2], then visitsP (i, γ)
is the vertex vij for the index 1 ≤ j < ni such that τ ij−1 ≤ m1 ≤ m2 ≤ τ ij . Note that
since P is a T -profile, then for each period γ = [m1,m2] ∈ ΥP , the number of players
that stay in each vertex v during γ is fixed. Let loadP (v, γ) denote this number. Formally
loadP (v, γ) = |{i : visitsP (i, γ) = v}|. Finally, for a period γ = [m1,m2], let |γ| = m2 −m1
be the duration of γ.

Recall that the cost function rv : [k] −→ IR≥0 maps the load of v to the cost of v per
time unit. Accordingly, if visitsP (i, γ) = v, then the cost of Player i in P over the period γ
is costγ,i(P ) = rv(loadP (v, γ)) · |γ|. We distinguish between two types of cost functions. We
say that in uniform cost-sharing games (CS-TNGs, for short), the players that visit a vertex
share its cost equally. Formally, each vertex v is associated with a rate bv ∈ IR≥0, and for
all l ≥ 1, we have rv(l) = bv

l . Note that increasing the load in uniform cost-sharing games
decreases the cost of the players. On the other hand, in congestion games (CON-TNGs, for
short), the cost functions are non-decreasing, thus increasing the load also increases the cost
for each player. The total cost of Player i in profile P is then costi(P ) =

∑
γ∈ΥP

costγ,i(P ).
The cost of the profile P , denoted cost(P ), is the total cost incurred by all the players, i.e.,
cost(P ) =

∑k
i=1 costi(P ).

Consider a TNG T . For a profile P and a strategy π of player i ∈ [k], let P [i← π] denote
the profile obtained from P by replacing the strategy for Player i by π. A profile P is said to
be a (pure) Nash equilibrium (NE) if none of the players in [k] can benefit from a unilateral
deviation from her strategy in P to another strategy. In other words, for every player i and
every strategy π that Player i can deviate to from her current strategy in P , it holds that
costi(P [i← π]) ≥ costi(P ). The set of NEs of the game T is denoted by NE(T ).

A social optimum (SO) of a game T is a profile that attains the infimum cost over all
profiles. We denote by SO(T ) the cost of an SO profile; i.e., SO(T ) = infP cost(P ). Note
that since a TNG may have infinitely many profiles, we should indeed take the infimum
(rather than minimum) over all profiles, and thus, an SO profile may not exist. As we
shall show, however, all TNGs have boundary SO profiles. An SO profile may be achieved
by a centralized authority and need not be an NE. The following parameters measure the
inefficiency caused as a result of the selfish interests of the players. First, the price of stability
(PoS) [8] of a timed network game T is the ratio between the infimum cost of an NE and the
cost of a social optimum of T . That is, PoS(T ) = inf P∈NE(T )cost(P )/SO(T ). Then, the
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price of anarchy (PoA) [34] of T is the ratio between the supremum cost of an NE and the
cost of a social optimum of T . That is, PoA(T ) = supP∈NE(T )cost(P )/SO(T ). Note that
here too, we have to use infimum and supremum rather than minimum and maximum, yet
we are going to show that best and worst NEs are always attained. For a family F of games,
we say that the PoA of F is at most x if for all games F in F , we have PoA(F ) ≤ x and is
at least x, if there exists a game F in F such that PoA(F ) = x, and similarly for PoS.

3 Reduction to and from Network Games

A network game (NG) is N = 〈k, V,E, {le}e∈E , 〈si, ui〉i∈[k]〉, and has a similar structure to a
TNG. A strategy of a player i ∈ [k] is a path from si to ui. The cost function le : [k]→ IR≥0
maps the load on edge e to the cost each player pays for using e. As is the case with TNGs,
one can consider both cost-sharing (CS-NGs) and congestion (CON-NGs) network games.
Consider a profile P = 〈σ1, σ2, . . . , σk〉 in the game. Since all the costs are positive, we can
restrict attention to strategies in which the paths chosen by the players are simple. Then, we
can also ignore the order between the edges in the paths and assume that for all i ∈ [k], we
have that σi ⊆ E is a set of edges that composes a path from si to ui.2 For an edge e ∈ E,
we denote by loadP (e), the number of players that use the edge e in P . Each player that
uses e then pays le(loadP (e)), and the cost of Player i in P is

∑
e∈σi

le(loadP (e)).
Given an NG N , a TNG T and a finite set T ⊂ IR≥0, we say that N and T are isomorphic

with respect to T if N and T have the same number of players and there exists a 1-to-1
cost-preserving correspondence between the profiles in N and the T -profiles in T . Formally,
there exists a bijection f from the set of T -profiles in T and the profiles in N such that for
every T -profile P in T and i ∈ [k], the costs of Player i in P and f(P ) coincide.

NGs have been extensively studied. In this section, we show that once we fix a set
T ⊆ IR≥0 of time points, we can reduce a TNG T with edges taken only at time points in T
to an NG. Formally, we have the following.

I Theorem 2. Given a TNG T and a finite set T ⊆ IR≥0, we can construct an NG N such
that N and T are isomorphic with respect to T . The size of N is polynomial in the size of T
and T , and it is constructed in polynomial time.

Proof. In TNGs, cost is associated with vertices and the time is spent in them, whereas
in NGs, cost is associated with the edges and there is no reference to time. Thus, the
construction translates the cost of staying in vertices during time intervals induced by T to
the cost of traversing edges.

Consider a TNG T = 〈k, V,E, {rv}v∈V , {ge}e∈E , (si, ui)i∈[k]〉 and the given set T . We
assume that 0 ∈ T . We construct an NG N = 〈k, V ′, E′, {le}e∈E′ , (〈si, 0〉, ui)i∈[k]〉, where
V ′ ⊆ (V × T ) ∪ {ui}i∈[k] and E′ ⊆ V ′ × V ′ is defined as follows (See an example in the full
version. For every vertex v ∈ V , we have the following edges in E′. Let τmax = max(T ).
1. For every τ 6= τmax ∈ T , let τ ′ = nextT (τ). Then, the edge e = ((v, τ), (v, τ ′)) is in E′,

corresponding to players staying in vertex v during the interval [τ, τ ′]. Accordingly, the
cost of e is such that for every m ∈ [k], we have le(m) = rv(m)(τ ′ − τ).

2. For every v′ 6= v with (v, v′) ∈ E and τ ∈ T such that τ satisfies g〈v,v′〉, we have an edge
e = ((v, τ), (v′, τ)) in E′. This edge corresponds to the edge (v, v′) in E. Recall that the

2 Note that the assumptions on each edge being visited at most once in strategies in NGs does not apply
to TNGs. Indeed, there, a player may benefit from visiting a vertex multiple times (see Example 1).

MFCS 2017
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cost of crossing an edge in a TNG is 0. Accordingly, the cost of e is such that for every
m ∈ [k], we have le(m) = 0.

3. If v = ui for some i ∈ [k], then for all τ ∈ T , we have an edge e = ((v, τ), v) in E′, with
le′(m) = 0 for every m ≥ 1. In N , the target vertex for Player i is ui.

It is easy to see that the size of N is polynomial in T and T . In the full version, we prove
that N and T are indeed isomorphic with respect to T . That is, we show a bijection f from
the set of T -profiles in T and the profiles in N such that for every T -profile P in T and
i ∈ [k], the costs of Player i in P and f(P ) coincide. J

A reduction in the other direction, namely of NGs to TNGs, is not obvious, as the
dynamic of TNGs requires a synchronization among all the traversals in each of the edges.
We illustrate this in the full version of the paper. When, however, the NG is acyclic, we
can use a topological ordering on the edges and synchronize the traversals. Intuitively, each
edge in the NG induces a vertex in the TNG, and the guards are defined so that the vertex
associated with the j-th edge in the topological order is visited during the period [j − 1, j].
This can be easily forced by guarding the edges entering the vertex by [j − 1, j − 1] and
guarding these that leave it by [j, j]. See the full version for the proof.

I Theorem 3. Given an acyclic NG N , we can construct in polynomial time a TNG T that
is isomorphic to N with respect to B(T ) ∪ {0}. The size of T is polynomial in the size of N .

4 On Boundary Strategies and Profiles

Since a strategy for a player in a TNG is a timed path with time points in IR≥0, then each
player has uncountably many possible strategies, and hence it is possible to have uncountably
many profiles. In NGs, a strategy is a non-timed path from the source to the target. Even
there, in the non-timed setting, there may be infinitely many paths from the source to the
target. It is easy to see, however, that every strategy that is a non-simple path is dominated
by the strategy obtained by removing cycles, and thus one can restrict attention to the
finitely many profiles that consist of strategies that are simple paths. Our goal in this section
is to examine whether some similar restriction can be made in TNGs. Indeed, being able to
restrict attention to finitely many profiles would simplify our understanding of TNGs and
their analysis. A natural candidate is a restriction to boundary strategies, namely these in
which all edges are taken at interval boundaries. We show that while a boundary NE exists
in all TNGs, and that all TNGs have a boundary SO, there may be uncountably many NEs
that are not boundary. Moreover, there are TNGs in which the best and worst NEs are not
boundary.

We first need the following lemma.

I Lemma 4. Consider a TNG T and a finite set T ⊂ IR≥0 such that B(T ) ⊆ T . Let
π1, . . . , πk−1 be T -strategies of players 1, . . . , k − 1 respectively. There exists a T -strategy
πk of Player k such that for every strategy π′k of Player k that is not a T -strategy, we have
costk(〈π1, . . . , πk−1, πk〉) ≤ costk(〈π1, . . . , πk−1, π

′
k〉).

Intuitively, Lemma 4 states that if all players but one use boundary strategies, then a
best strategy for the k-th player can also be a boundary one. It implies that when we want
to prove that a certain boundary profile is an NE, we can restrict attention to deviations
that use boundary strategies.
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I Theorem 5. All TNGs have a boundary NE. Moreover, from every profile P , there is a
sequence of best-response moves that converges to an NE. When P is boundary, so is the
obtained NE.

Proof. Given a TNG T , let N be an NG that is isomorphic to T with respect to B(T ). Let
f be the bijection from the set of profiles in N to the set of B(T )-profiles in T such that for
every profile P in N and i ∈ [k], the costs of Player i in P and f(P ) coincide. By Theorem 2,
such an NG and bijection f exist. By [8, 24, 37], all NGs have an NE. Consider an NE PN
in N . In the full version we prove that f(PN ) is an NE in T .

For the second claim, the above considerations also imply that starting from a profile
P , we can restrict attention to best-response moves in which edges are taken in time points in
TP ∪B(T ), and reach the desired NE. In particular, when P is boundary, so is the obtained
NE. J

Recall that an SO profile attains the infimum cost over all profiles. We now show that
an SO profile always exists, and in fact there always exists a boundary SO. We show that
a boundary SO profile always exists. The idea is that if, in a profile P , an edge e is taken
at a non-boundary time τ , then it is possible to obtain a profile P ′ in which e is taken at a
boundary time and cost(P ′) ≤ cost(P ). We formalize this intuition in the full version.

I Theorem 6. All TNGs have a boundary SO.

We proceed to show that there are non-trivial TNGs that have uncountably many NEs,
which implies they also have uncountably many non-boundary NEs.

I Theorem 7. There exist CS-TNGs and CON-TNGs that have uncountably many NEs.

Proof. The CS-TNG from Example 1 has uncountably many NEs. In the full version, we
present and analyze in detail a different CS-TNG with uncountably many NEs.

We continue to CON-TNGs. Consider the TNG appearing in Figure 1. The objectives of
Players 1 and 2 is 〈a, d〉 and the objectives of Players 3 and 4 is 〈b, d〉. The cost functions
are written in the vertices. For y ∈ [0, 0.5], let Py be the profile in which Players 1 and 2
traverse the edge (a, b), and Players 3 and 4 traverse the edge (b, c), all at time y. In the full
version, we prove that for every y ∈ [0, 0.5], the profile Py is an NE. Since y can have any
value in [0, 0.5], we are done. J

Theorem 7 suggests that the values of a best and worst NEs should be defined by means
of infimum and supremum, and may not be attained. In the full version we prove that best
and worst NEs do exist. Essentially, it follows from the fact that our guards are closed
intervals, implying that the time points in an NE should satisfy a system of inequalities with
no strict inequalities. As bad news, we now show that while a boundary NE alway exists,
the best and worst NEs need not be boundary.

I Theorem 8. There exists a CS-TNG in which the best NE is not a boundary profile.

Proof. Consider the two-player TNG N that is played on the network depicted in Figure 2.
The objective of Player i is 〈s, ui〉. Player 1 has two boundary strategies: A, in which
she traverses the edge 〈s, a〉 at time 0, and B, in which she takes it at time 2. Note that
the suffixes of the strategies are fixed, as Player 1 must traverse the edge 〈a, u1〉 at time
3. Player 2 has three boundary strategies: Strategies A and B, in which she traverses
edge 〈s, a〉 at time 0 and 2, respectively, and Strategy C, in which she traverses the edge
〈s, b〉 at time 2. Again, the suffixes of the strategies A and B are fixed. In the full version,
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Figure 1 A CON-TNG in which the worst NE is not boundary.
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Figure 2 A CS-TNG in which the best NE is not boundary.

we prove that 〈A,A〉 and 〈B,C〉 are the only boundary NEs with cost(〈A,A〉) = 30 and
cost(〈B,C〉) = 31− ε.

For x ∈ (0, 2), let Px be the profile in which both players traverse the edge 〈s, a〉 at time
2 − x. In the full version, we show that we can define ε and x so that Px is an NE with
cost(Px) < min{cost(〈A,A〉), cost(〈B,C〉)}. For example, by taking x = 0.25 and ε = 0.5 we
get an NE with cost(Px) = 26.5 J

I Theorem 9. There exists a CS-TNG in which the worst NE is not a boundary profile.

Proof. Consider the two-player TNG N that is played on the network depicted in Figure 3.
The objective of Player i is 〈s, ui〉. Player 1 has three boundary strategies: A, in which she
traverses the edge (v1, v2) at time 0; B, in which she takes it at time 2; and D, in which she
traverses the edge (v1, v5) at time 2.

Player 2 has four boundary strategies: A, in which she traverses edge (v1, v2) at time 0;
B, where she takes (v1, v2) at time 2; C, where she traverses the edge (v1, v4) at time 2; and
E, where she traverses the edge (s, v3). Note that strategy E has a fixed cost of 13.2.

In the full version, we prove that the only boundary profile that is an NE is the profile
〈D,C〉, whose cost is 26.3, and that the non-boundary profile P0.2 in which Players 1 and 2
traverse the edge (v1, v2) together at time 1.8 is an NE with cost 26.4, which is higher than
cost(〈D,C〉). J

I Theorem 10. There exists a CON-TNG in which the worst NE is not a boundary profile.

Proof. Recall the CON-TNG presented in Figure 1. In the proof of Theorem 7, we proved
that for all 0 ≤ y ≤ 0.5, the profile Py, in which Players 1 and 2 traverse the edge (a, b)
and Players 3 and 4 traverse the edge (b, c), all at time y, is an NE. We have cost1(Py) =
cost2(Py) = 13y+10·(1−y) = 3y+10, whereas cost3(Py) = cost4(Py) = 10y+10·(1−y) = 10.
Thus cost(Py) = 6y + 40.

Players 1 and 2 have three boundary strategies: A, in which they traverse the edge (a, b)
at time 0; B, in which they traverse the edge (a, b) at time 1; and C, in which they traverse
the edge (a, g) at time 0. Players 3 and 4 have three boundary strategies: D, in which they
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traverse the edge (b, c) at time 0, and E, in which they traverse the edge (b, c) at time 1,
and F , in which they traverse the edge (b, d) at time 1.

In the full version, we show that the boundary NEs with the highest cost are 〈C,B,E,E〉
and 〈C,B, F, F 〉 having a cost of 42.5. The cost of the profile P0.5 is 6 · 0.5 + 40 = 43. This
implies that the worst NE in the CON-TNG in Figure 1 is a non-boundary profile. J

We note that it might appear that whenever there exists a non-boundary NE in a TNG
T , there exist uncountably many NEs in T . This, however, is not the case as can be seen
in the TNG in Figure 3. As argued in the proof of Theorem 9, this TNG has only one
non-boundary NE. We also note that while we showed that the best and worst NEs in a
CS-TNG need not be boundary, for congestion games we only showed that the worst NE
need not be boundary. Thus, the problem of whether there is a CON-TNG in which the best
NE is not boundary is left open.

5 Equilibrium Inefficiency

As discussed in Section 1, decentralized decision-making often leads to solutions that are
sub-optimal from the point of view of the society as a whole. Recall that the measures PoS
and PoA measure the inefficiency caused by the selfish behavior of the players. It refers
to the ratio between the best (PoS) and worst (PoA) NEs and the SO. In this section we
discuss these measures for TNGs. For NGs, the PoS and PoA are well understood. In order
to use Theorem 2 and apply the results known for NGs to TNGs, we need to find a set of
time points with respect to which the models are isomorphic. As discussed in Section 4, the
natural candidate for this is the set of interval boundaries. While, however, we can restrict
attention to boundary strategies when we consider the SO, such a restriction is not sound
when we consider the infimum and supremum values of NEs. We show that our results in
Theorem 2 and Section 4 do imply the required upper bounds, and that the lower bounds
known for NGs can be extended to TNGs by carefully revising the examples known there.

I Theorem 11. The PoS and PoA for TNGs are upper-bounded by these for NGs. Thus, for
CS-TNGs with k players, the PoS is at most log k and the PoA is at most k. For CON-TNGs
with affine cost functions, the PoS is at most 1.577 and the PoA is at most 5

2 .

Proof. Consider a TNG T . Let P be an NE in T and let NP be the NG isomorphic to T
with respect to B(T )∪TP . Let f be a cost preserving bijection from the (B(T )∪TP )-profiles
of T and these of NP . As argued in the proof of Theorem 5, the profile f(P ) is an NE in
NP . It follows that the cost of an NE in T is upper and lower bounded by the cost of an
NE in an NG. Also, by Theorem 6, there exists a boundary SO in T , which, by Theorem 2,
corresponds to an SO in N . Thus, the ratio between an NE in T and the cost of its SO is
upper and lower bounded by this ratio in an NG. Since the above holds for all TNGs, we are
done. J

Adopting the lower bounds on PoS and PoA from NGs to TNGs is more difficult, as the
reduction from NGs to TNGs can be applied only to acyclic NGs. Fortunately, for CS-NGs,
matching lower bounds have been proven for acyclic networks. Hence, using considerations
that are similar to these in the proof of Theorem 11 (in fact, simpler ones, as there is no
need to refer to TP ), we can use the reduction described in Theorem 3 in order to conclude
the following.

I Theorem 12. The PoS and PoA for TNGs are lower-bounded by these for acyclic NGs.
Thus, for CS-TNGs with k players, the PoS is at least log k and the PoA is at least k.
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Figure 4 A lower bound of PoA = 5·k
2(k−2)+3+5 for CON-TNGs.

For CON-TNG, the adoption of results from CON-NGs is more challenging, as known
lower bounds use cyclic network. We are still able to prove a lower bound for the PoA. A
bound for CON-NGs with linear cost function has been shown in [21]. In our case, we show
that the upper bound is matched asymptotically

I Theorem 13. There are CON-TNGs with linear cost functions such that for k=3 or more
players, the PoA is 5·k

2(k−2)+3+5 . Hence as k →∞, the PoA approaches 5
2 .

Proof. Consider the three-player CON-TNG appearing in Figure 4. The sources and targets
of the three players are s1, s2, s3 and u1, u2, u3, respectively. The cost of staying in the source
vertices is 0. For the rest of the vertices, the cost functions are as follows: rv1(x) = rv4(x) = 2x,
rv2(x) = rv3(x) = x, rv5(x) = 3x, rv′

1
(x) = rv′

2
(x) = rv′

3
(x) = x, and rv′

4
(x) = 2x.

Consider the profile P in which Player i, for all i ∈ {1, 2, 3}, visits the vertices vi, vi+1, v
′
i.

The profile P is an NE in which each player pays 5, so cost(P ) = 15. However, an SO is
obtained when each Player i moves from her source to target through vertices vi+2, v

′
i+1. In

this profile, the costs of the players are 2, 3, and 5. Thus PoA = 15
2+3+5 = 3

2 .
If there are k players, we consider the game with vertices v1, . . . , vk+2 and vertices

v′1, . . . , v
′
k+1. The cost functions are rv1(x) = rvk+1(x) = rv′

k+1
(x) = 2x, rvk+2(x) = 3x, while

for the remaining vertices v apart from the source and the target vertices, rv(x) = x. The
PoA is 5·k

2(k−2)+3+5 . Hence, PoA asymptotically reaches its upper bound as k tends to ∞. J

6 The Complexity of Finding an NE

The complexity class PLS contains local search problems with polynomial time searchable
neighborhoods [29]. Essentially, a problem is in PLS if there is a set of feasible solutions for
it such that it is possible to find, in polynomial time, an initial feasible solution and then
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iteratively improve it, with each improvement being performed in polynomial time, until a
local optimum is reached. See the full version for the formal definition.

In this section we prove that the problem of finding an NE is PLS-complete for TNGs,
which coincides with the complexity bounds for NGs [24, 40]. Proving membership in PLS
would follow easily from the reduction to NGs. Proving hardness is more involved: While
for CON-TNGs we are able to rely on previous results, corresponding to CS-TNGs, we first
solve the problem for acyclic CS-NGs. We start with the upper bound.

I Theorem 14. The problem of finding an NE in CS-TNGs and CON-TNGs is in PLS. For
symmetric TNGs, the problem can be solved in polynomial time.

Proof. For membership in PLS, we describe an algorithm to find an NE. Consider a TNG
T , and let N be the isomorphic NG with respect to B(T ). Recall that the size of N is
polynomial in the size of T . We run the PLS algorithm for finding an NE P in N . As in
Theorem 5, the profile f−1(P ) is an NE in T , thus we are done. When T is symmetric, so is
N . Since finding an NE in a symmetric NG can be done in polynomial time [24], the claim
follows. J

For PLS-hardness, we describe a reduction from the problem of finding a local MAX CUT
in a weighted network (LMC, for short) which is known to be PLS-complete [39]. In [1], a
polynomial-time reduction is shown from the LMC problem to the problem of finding an NE
in CON-NGs. The reduction involves two steps: from the LMC problem to the problem of
finding an NE in a class of games called quadratic threshold games, which in turn is reduced
to the problem of finding an NE in a CON-NG. The reduction in [1] always produces an
acyclic CON-NG. By Theorem 3, the latter can be reduced to an isomorphic CON-TNG. In
order to use a similar technique for CS-TNGs, we first establish PLS-hardness for acyclic
CS-NGs, which is an open problem. The proof uses a non-trivial reduction from the LMC
problem and can be found in the full version.

I Theorem 15. The problem of finding an NE in acyclic CS-NGs is PLS-hard.

We thus have a matching lower bound also for CS-TNGs leading to the following theorem.

I Theorem 16. The problems of finding an NE in CS-TNGs and CON-TNGs are PLS-
complete.

7 Discussion and Directions for Future Research

We introduced and studied timed network games, which are an extension of network games
with real-time considerations. TNGs are inspired by timed automata [5], which are automata
extended by a finite set of clocks. A clock is a variable that takes values in IR≥0 and whose
values increase as time passes. In the full version we study TNGs with clocks, in which, as
in timed automata, transitions are labeled by constraints on the clocks and clocks may be
reset when traversing a transition. For example, if we reset a clock x when we enter a vertex
v, then a guard x ≤ 5 in a transition that leaves v, bounds the time spent in v to be at
most 5 time units. The TNGs we study here are equivalent to a model with clocks that are
never reset. Indeed, then, all clocks maintain the time that has passed since the start of the
game, and guards impose bounds on this time. TNGs with clocks are already interesting in
the degenerate case when there is only one player, a.k.a. priced timed automata (PTA, for
short) [7, 13].
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We describe here briefly our results for TNGs with clocks. Clearly, the negative results
we obtain here for TNGs without clocks follow to the general setting. Recall that a main
tool for obtaining positive results is a reduction between TNGs and NGs. The key to such a
reduction is a partition of IR≥0 into finitely many intervals, which involves two questions:
about the granularity to which we have to partition IR≥0, and about the maximal point in
time that is of interest. While the answer to the first question is not difficult also for TNGs
with clocks, the answer to the second question is difficult and interesting in its own right.
Our positive results are not obtained using such a reduction. In order to prove the existence
of an NE in every TNG with clocks, we show that such games are potential games and we
also find a lower bound on the decrease in potential in a best response. Note that only
showing that TNGs with clocks are potential games does not suffice to prove existence of an
NE as there are infinitely many profiles. We then turn to study computational-complexity
problems and show that the best-response problem is PSPACE-complete, which matches the
complexity of cost optimal reachability in PTAs [15]. Finally, we address the question above;
namely, we find bounds on the minimal time at which the players reach their destinations in
an NE and an SO.

This work belongs to a line of works that transfer concepts and ideas between the areas
of formal verification and algorithmic game theory: logics for specifying multi-agent systems
[6, 19], studies of equilibria in games related to synthesis and repair problems [18, 17, 25, 4],
and of non-zero-sum games in formal verification [20, 16]. This line of work also includes
an extension of NGs to objectives that are richer than reachability [12], NGs in which the
players select their paths dynamically [11], and efficient reasoning about NGs with huge
networks [32, 10].

Additional extensions of TNGs that we plan to study are the following: (1) Richer
objectives, where the vertices of the TNG are labeled by letters from an alphabet, allowing
objectives that describe on-going behaviors [12]. For example, an objective may require each
visit to vertex labeled send to be preceded by a vertex labeled encode. (2) A dynamic choice
of paths, where strategies do not specify the full path but rather map prefixes of paths of all
players to the next move [11]. For example, when the network models a network of roads
and the players are drivers, it makes sense to allow drivers to observe the congestion in the
network when reaching a junction (vertex) before choosing the next road (edge) in their
path. (3) A global-cost mechanism, in which the load on a resource refers to the total time
for which it is used, rather than to particular time instants.
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