
Streamability of Nested Word Transductions∗

Emmanuel Filiot1, Olivier Gauwin2, Pierre-Alain Reynier3, and
Frédéric Servais4

1 Université Libre de Bruxelles
2 Université de Mons
3 LIF, Aix-Marseille Univ & CNRS, France
4 Hasselt University and Transnational University of Limburg

Abstract
We consider the problem of evaluating in streaming (i.e. in a single left-to-right pass) a nested
word transduction with a limited amount of memory. A transduction T is said to be height
bounded memory (HBM) if it can be evaluated with a memory that depends only on the size
of T and on the height of the input word. We show that it is decidable in coNPTime for a
nested word transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In this
case, the required amount of memory may depend exponentially on the height of the word. We
exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that depends
quadratically on the height of the word. This condition defines a class of transductions that
strictly contains all determinizable VPTs.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases nested word, visibly pushdown transducer, streaming, XML

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.312

1 Introduction

Memory analysis is an important tool for ensuring system robustness. In this paper we
focus on the analysis of programs processing nested words [2], i.e., words with a recursive
structure, like program traces, XML documents, or more generally unranked trees. On huge
inputs, a streaming mode is often used, where the nested word is read only once, from left
to right. This corresponds to a depth-first left-to-right traversal when the nested word is
considered as a tree. For such programs, dynamic analysis problems have been addressed
in various contexts. For instance, runtime verification detects dynamically, and as early as
possible, whether a property is satisfied by a program trace [17, 6]. On XML streams, some
algorithms outputting nodes selected by an XPath expression at the earliest possible event
have also been proposed [7, 12]. These algorithms allow minimal buffering [3].

In this paper, we investigate static analysis of memory usage for a special kind of pro-
grams on nested words, namely programs defined by transducers. We assume that the
transducers are functional and non-deterministic. Non-determinism is required as input
words are read from left to right in a single pass and some actions may depend on the
future of the stream. For instance, the XML transformation language XSLT uses XPath
for selecting nodes where local transformations are applied, and XPath queries relies on

∗ Partially supported by the ESF project GASICS, by the FNRS, by the ANR project ECSPER (JC09-
472677), by the PAI program Moves funded by the Federal Belgian Government and by the FET project
FOX (FP7-ICT-233599).

© Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 312–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.312
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 313

non-deterministic moves along tree axes, such as a move to any descendant. We require our
transducers to be functional, as we are mainly interested by transformation languages like
XSLT, XQuery and XQuery Update Facility, for which any transformation maps each XML
input document to a unique output document.

Visibly pushdown transducers (VPTs) form a subclass of pushdown transducers adequate
for dealing with nested words and streaming evaluation, as the input nested word is pro-
cessed from left to right. They are visibly pushdown automata [2] extended with arbitrary
output words on transitions. VPTs capture interesting fragments of the aforementioned
XML transformation languages that are amenable to efficient streaming evaluation, such as
all editing operations (insertion, deletion, and relabeling of nodes, as used for instance in
XQuery Update Facility) under all regular tests. Like for visibly pushdown automata, the
stack behavior of VPTs is imposed by the type of symbols read by the transducer. Those
restrictions on stack operations allow to decide functionality and equivalence of functional
VPTs in PTime and ExpTime respectively [11].

Some transductions defined by (functional and non-deterministic) VPTs cannot be eval-
uated efficiently in streaming. For instance, swapping the first and last letter of a word can
be defined by a VPT as follows: guess the last letter and transform the first letter into the
guessed last letter, keep the value of the first letter in the state, and transform any value in
the middle into itself. Any deterministic machine implementing this transformation requires
to keep the entire word in memory until the last letter is read. It is not reasonable in practice
as for instance XML documents can be very huge.

Our aim is thus to identify decidable classes of transductions for various memory re-
quirements that are suitable to space-efficient streaming evaluation. We first consider the
requirement that a transducer can be implemented by a program using a bounded memory
(BM), i.e. computing the output word using a memory independent of the size of the input
word. However when dealing with nested words in a streaming setting, the bounded memory
requirement is quite restrictive. Indeed, even performing such a basic task as checking that
a word is well-nested or checking that a nested word belongs to a regular language of nested
words requires a memory dependent on the height (the level of nesting) of the input word
[19]. This observation leads us to the second question: decide, given a transducer, whether
the transduction can be evaluated with a memory that depends only on the size of the
transducer and the height of the word (but not on its length). In that case, we say that
the transduction is height bounded memory (HBM). This is particularly relevant to XML
transformations as XML documents can be very long but have usually a small depth [5].
HBM does not specify how memory depends on the height. A stronger requirement is thus
to consider HBM transductions whose evaluation can be done with a memory that depends
polynomially on the height of the input word.

Contributions First, we give a general space-efficient evaluation algorithm for functional
VPTs. After reading a prefix of an input word, the number of configurations of the (non-
deterministic) transducer as well as the number of output candidates to be kept in memory
may be exponential in the size of the transducer and the height of the input word (but not
in its length). Our algorithm produces as output the longest common prefix of all output
candidates, and relies on a compact representation of sets of configurations and remaining
output candidates (the original output word without the longest common prefix). We prove
that it uses a memory linear in the height of the input word, and linear in the maximal
length of a remaining output candidate.

We prove that BM is equivalent to subsequentiability for finite state transducers (FSTs),
which is known to be decidable in PTime. BM is however undecidable for arbitrary push-

FSTTCS 2011

314 Streamability of Nested Word Transductions

down transducers but we show that it is decidable for VPTs in coNPTime.
Like BM, HBM is undecidable for arbitrary pushdown transductions. We show, via a non-

trivial reduction to the emptiness of pushdown automata with bounded reversal counters,
that it is decidable in coNPTime for transductions defined by VPTs. In particular, we show
that the previously defined algorithm runs in HBM iff the VPT satisfies some property, which
is an extension of the so called twinning property for FSTs [9] to nested words. We call it the
horizontal twinning property, as it only cares about configurations of the transducers with
stack contents of identical height. This property only depends on the transduction, i.e. is
preserved by equivalent transducers.

When a VPT-transduction is height bounded memory, the memory needed may be expo-
nential in the height of the word. We introduce a refinement of the twinning property that
takes the height of the configurations into account, hence called matched twinning property.
A VPT satisfying this property is called twinned. We prove that the evaluation of twinned
transductions with our algorithm uses a memory quadratic in the height of the input word.
We show that it is decidable in coNPTime whether a VPT is twinned. Moreover, the most
challenging result of this paper is to show that being twinned depends only on the trans-
duction and not on the VPT that defines it. Thus, this property indeed defines a class of
transductions. As a consequence of this result, all subsequentializable VPTs are twinned,
because subsequential VPTs trivially satisfy the matched twinning property. The class of
twinned transductions captures a strictly larger class than subsequentializable VPTs while
staying in the same complexity class for evaluation, i.e. polynomial space in the height of
the input word when the transducer is fixed.

Related Work In the XML context, visibly pushdown automata based streaming pro-
cessing has been extensively studied for validating XML streams [16, 4, 19]. The validation
problem with bounded memory is studied in [4] when the input is assumed to be a well-
nested word and in [19] when it is assumed to be a well-formed XML document (this problem
is still open). Querying XML streams has been considered in [13]. It consists in selecting a
set of tuples of nodes in the tree representation of the XML document. For monadic queries
(selecting nodes instead of tuples), this can be achieved by a functional VPT returning the
input stream of tags, annotated with Booleans indicating selection by the query. However,
functional VPTs cannot encode queries of arbitrary arities. The setting for functional VPTs
is in fact different to query evaluation, because the output has to be produced on-the-fly
in the right order, while query evaluation algorithms can output nodes in any order: an
incoming input symbol can be immediately output, while another candidate is still to be
confirmed. This makes a difference with the notion of concurrency of queries, measuring
the minimal amount of candidates to be stored, and for which algorithms and lower bounds
have been proposed [3]. VPTs also relate to tree transducers [11], for which no comparable
work on memory requirements is known. However, the height of the input word is known to
be a lower bound for Core XPath filters [13]. As VPTs can express them, this lower bound
also applies when evaluating VPTs. When allowing two-way access on the input stream,
space-efficient algorithms for XML validation [15] and querying [18] have been proposed.

2 Visibly Pushdown Languages and Transductions

Words and nested words In this paper, we consider nested words accessed in streaming.
Their nesting structure is thus discovered on-the-fly, so we consider a finite alphabet Σ
partitioned into three disjoint sets Σc, Σr and Σι, denoting respectively the call, return and
internal alphabets. We denote by Σ∗ the set of (finite) words over Σ and by ε the empty

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 315

word. The length of a word u is denoted by |u|. For all words u, v ∈ Σ∗, we denote by
u∧ v the longest common prefix of u and v. More generally, for any non-empty finite set of
words V ⊆ Σ∗, the longest common prefix of V , denoted by lcp(V), is inductively defined
by lcp({u}) = u and lcp(V ∪ {u}) = lcp(V) ∧ u. The set of well-nested words Σ∗wn is the
smallest subset of Σ∗ such that Σ∗ι ⊆ Σ∗wn and for all c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗wn,
cur ∈ Σ∗wn and uv ∈ Σ∗wn. Let u = α1 . . . αn ∈ Σ∗ be a prefix of a well-nested word. A
position i ∈ {1, . . . , n} is a pending call if αi ∈ Σc and for all j ≥ i, αi . . . αj 6∈ Σ∗wn. The
height of u is the maximal number of pending calls on any prefix of u, i.e.

h(u) = max1≤i≤n|{k | 1 ≤ k ≤ i, αk is a pending call of α1 . . . αi}|
For instance, h(crcrcc) = h(ccrcrr) = 2. In particular, for well-nested words, the height
corresponds to the usual height of the nesting structure of the word.

Given two words u, v ∈ Σ∗, the delay of u and v, denoted by ∆(u, v), is the unique pair of
words (u′, v′) such that u = (u∧v)u′ and v = (u∧v)v′. For instance, ∆(abc, abde) = (c, de).
Informally, in a word transduction, if there are two output candidates u and v during the
evaluation, we are sure that we can output u ∧ v and ∆(u, v) is the remaining suffixes we
still keep in memory.
Visibly pushdown transducers (VPTs) As finite-state transducers extend finite-state
automata with outputs, visibly pushdown transducers extend visibly pushdown automata [2]
with outputs [11]. To simplify notations, we suppose that the output alphabet is Σ, but our
results still hold for an arbitrary output alphabet. Informally, the stack behavior of a VPT
is similar to the stack behavior of visibly pushdown automata (VPA). On a call symbol, the
VPT pushes a symbol on the stack and produces some output word (possibly empty), on
a return symbol, it must pop the top symbol of the stack and produce some output word
(possibly empty) and on an internal symbol, the stack remains unchanged and it produces
some output word. Formally:

I Definition 1. A visibly pushdown transducer (VPT) on finite words over Σ is a tuple
T = (Q, I, F,Γ, δ) where Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q

the set of final states, Γ is the stack alphabet, δ = δc] δr] δι the (finite) transition relation,
with δc ⊆ Q× Σc × Σ∗ × Γ×Q, δr ⊆ Q× Σr × Σ∗ × Γ×Q, and δι ⊆ Q× Σι × Σ∗ ×Q.

A configuration of a VPT is a pair (q, σ) ∈ Q×Γ∗. A run of T on a word u = a1 . . . al ∈ Σ∗
from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence ρ = {(qk, σk)}0≤k≤l
such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each 1 ≤ k ≤ l, there exist vk ∈ Σ∗ and
γk ∈ Γ such that either (qk−1, ak, vk, γk, qk) ∈ δc and σk = σk−1γk or (qk−1, ak, vk, γk, qk) ∈
δr and σk−1 = σkγk, or (qk−1, ak, vk, qk) ∈ δι and σk = σk−1. The word v = v1 . . . vl is
called an output of ρ. We write (q, σ) u/v−−→ (q′, σ′) when there exists a run on u from (q, σ)
to (q′, σ′) producing v as output. We denote by ⊥ the empty word on Γ. A configuration
(q, σ) is accessible (resp. is co-accessible) if there exist u, v ∈ Σ∗ and q0 ∈ I (resp. qf ∈ F)
such that (q0,⊥) u/v−−→ (q, σ) (resp. such that (q, σ) u/v−−→ (qf ,⊥)). A transducer T is reduced
if every accessible configuration is co-accessible. Given any VPT, computing an equivalent
reduced VPT can be performed in polynomial time [8]1. A transducer T defines the binary
word relation JT K = {(u, v) ∈ Σ∗ × Σ∗ | ∃q ∈ I, q′ ∈ F, (q,⊥) u/v−−→ (q′,⊥)}.

A transduction is a binary relation R ⊆ Σ∗ × Σ∗. We say that a transduction R is a
VPT-transduction if there exists a VPT T such that R = JT K. For any input word u ∈ Σ∗,
we denote by R(u) the set {v | (u, v) ∈ R}. Similarly, for a VPT T , we denote by T (u) the

1 The reduction of VPAs in [8] trivially extends to VPTs.

FSTTCS 2011

316 Streamability of Nested Word Transductions

ip3 p2 p1 q3q1 q2
c/a, γr/c, γr/c, γ c/b, γ r/c, γ r′/c, γ

c/a, γr/c, γ c/b, γ r/c, γ

c/b, γc/a, γ

Figure 1 A functional VPT with Σc = {c}, Σr = {r, r′} and Σι = {a, b}

set JT K(u). A transduction R is functional if for all u ∈ Σ∗, R(u) has size at most one. If R
is functional, we identify R(u) with the unique image of u if it exists. A VPT T is functional
if JT K is functional, and this can be decided in PTime [11]. The class of functional VPTs is
denoted by fVPT. The domain of T (denoted by Dom(T)) is the domain of JT K. The domain
of T contains only well-nested words, which is not necessarily the case of the codomain.

I Example 2. Consider the VPT T of Fig. 1 represented in plain arrows. The left and right
parts accept the same input words except for the last letter of the word. The domain of T is
Dom(T) = {cnrn | n ≥ 2} ∪ {ccnrnr′ | n ≥ 1}. Any word cnrn is translated into ancn, and
any word ccnrnr′ is translated into bn+1cn+1. Therefore the translation of the first sequence
of calls depends on the last letter r or r′. This transformation cannot be evaluated with
a bounded amount of memory, but with a memory which depends on the height n of the
input word.

Finite state transducers (FSTs) A finite state transducer (FST) on an alphabet Σ is a
tuple (Q, I, F, δ) where Q is a finite set, I, F ⊆ Q and δ ⊆ Q×Σ×Σ∗×Q with the standard
semantics. This definition corresponds to the usual definition of real-time FSTs, as there is
no ε-transitions. We always consider real-time FSTs in this paper, so we just call them FSTs.

A subsequential FST (resp. VPT) is a pair (T,Ψ) where T is an (input) deterministic FST
(resp. VPT) and Ψ : F → Σ∗. The outputs of u by (T,Ψ) are the words v.Ψ(q) whenever
there is a run of T on u producing v and ending up in some accepting state q.

Given an integer k ∈ N and a VPT T , one can define an FST, denoted by FST(T, k),
which is the restriction of T to input words of height less than k. The transducer is naturally
constructed by taking as states the configurations (q, σ) of T such that |σ| ≤ k.
Turing Transducers In order to formally define the complexity classes for evaluation
that we target, we introduce a deterministic computational model for word transductions
that we call Turing Transducers. Turing transducers have three tapes: one read-only left-to-
right input tape, one write-only left-to-right output tape, and one standard working tape.
Such a machine naturally defines a transduction: the input word is initially on the input
tape, and the result of the transduction is the word written on the output tape after the
machine terminates in an accepting state. We denote by JMK the transduction defined by
M . The space complexity is measured on the working tape only.

3 Online Evaluation Algorithm of VPT-Transductions

We present an online algorithm LcpIn to evaluate functional word transductions defined
by fVPTs. For clarity, we present this algorithm under some assumptions, without loss
of generality. First, input words of our algorithms are words u ∈ Σ∗ concatenated with
a special symbol $ /∈ Σ, denoting the end of the word. Second, we only consider input
words without internal symbols, as they can easily be encoded by successive call and return
symbols. Third, input words are supposed to be valid, in the sense that they produce an
output. It is indeed easy to extend our algorithms in order to raise an error message when
the input is not in the domain, i.e. when no run of the VPT applies on the input.

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 317

q0 q1

c/a, γ1

c/b, γ2

r1/ε, γ1

r1/ε, γ1

r2/ε, γ2

(a) VPT T1.

#

(q0, ⊥, 0)

(q0, γ1, 1)(q0, γ2, 1)

a b

(b) After reading c.

#

(q0, ⊥, 0)

(q0, γ1, 1) (q0, γ2, 1)

(q0, γ1, 2) (q0, γ2, 2)

a b

a

b a

b

(c) After reading cc.

#

(q0, ⊥, 0)

(q1, γ1, 1)(q1, γ2, 1)

aa ba

(d) After reading ccr1.

Figure 2 Data structure used by LcpIn.

The core task of this algorithm is to maintain the configuration for each run of the fVPT
T on the input u, and produce its output on-the-fly. Therefore, the algorithm LcpIn only
applies on reduced fVPTs. Indeed, as T is reduced, functionality ensures that, for a given
input word u, and for every accessible configuration (q, σ) of T , there is at most one v such
that (qi,⊥) u/v−−→ (q, σ) with qi ∈ I. Hence, a configuration is a triple (q, σ, w) where q is the
current state of the run, σ its corresponding stack content, and w the part of the output
that has been read but not output yet. We call such a configuration d-configuration and
write Dconfs(T) = Q×Γ∗×Σ∗ for the set of d-configurations of T . Algorithm LcpIn relies
on two main features.
Compact representation First, the set of current d-configurations is stored in a compact
structure that shares common stack contents. Consider for instance the VPT T1 in Fig. 2a.
After reading cc, current d-configurations are {(q0, γ1γ1, aa), (q0, γ1γ2, ab), (q0, γ2γ1, ba),
(q0, γ2γ2, bb)}. Hence after reading cn, the number of current d-configurations is 2n. How-
ever, the transition used to update a d-configuration relates the stack symbol and the out-
put word. For instance, the previous set is the set of tuples (q0, η1η2, α1α2) where (ηi, αi)
is either (γ1, a) or (γ2, b). Based on this observation, we propose a data structure avoid-
ing this blowup. As illustrated in Fig. 2b to 2d, this structure is a directed acyclic graph
(DAG). Nodes of this DAG are tuples (q, γ, i) where q ∈ Q, γ ∈ Γ and i ∈ N is the depth
of the node in the DAG. Each edge of the DAG is labelled with a word, so that a branch
of this DAG, read from the root # to the leaf, represents a d-configuration (q, σ, v): q is
the state in the leaf, σ is the concatenation of stack symbols in traversed nodes, and v

is the concatenation of words on edges. For instance, in the DAG of Fig. 2c, the branch
−→ (q0,⊥, 0) b−→ (q0, γ2, 1) a−→ (q0, γ1, 2) encodes the d-configuration (q0, γ2γ1, ba) of the
VPT of Fig. 2.(a). However, this data structure cannot store any set of accessible d-
configurations of arbitrary functional VPTs: at most one delay w has to be assigned to
a d-configuration. This is why we need T to be reduced.
Computing outputs Second, after reading a prefix u′ of a word u, LcpIn will have
output the common prefix of all corresponding runs, i.e. lcpin(u′, T) = lcp(reach(u′)) where
reach(u′) = {v | ∃(q0, q, σ) ∈ I×Q×Γ∗, (q0,⊥) u′/v−−−→ (q, σ)}. When a new input symbol is
read, the DAG is first updated. Then, a bottom-up pass on this DAG computes lcpin(u′, T)
in the following way. For each node, let ` be the largest common prefix of labels of outgoing
edges. Then ` is removed from these outgoing edges, and concatenated at the end of labels
of incoming edges. At the end, the largest common prefix of all output words on branches
is the largest common prefix of words on edges outgoing from the root node #.

Let out6=(u′) be the maximal size of outputs of T on u′ where their common prefix is

FSTTCS 2011

318 Streamability of Nested Word Transductions

removed: out6=(u′) = maxv∈reach(u′) |v| − |lcpin(u′, T)| and outmax
6= (u) its maximal value over

prefixes of u: outmax
6= (u) = maxu′ prefix of u out6=(u′). To summarize, one can in polyno-

mial time reduce T if necessary, and then build the Turing transducer associated with the
algorithm LcpIn. We prove the following complexity result:

I Proposition 3. Given an fVPT T , one can build in PTime a Turing transducer, denoted
LcpInTT(T), which, on an input stream u ∈ Σ∗, runs in space complexity O((h(u) + 1) ·
outmax
6= (u)).

In addition, when T is reduced, we can detail how the constant depends on the size of T . The
space used by LcpInTT(T) for computing T (u) is in O(|Q|2 · |Γ|2 · (h(u) + 1) · outmax

6= (u)).

4 Bounded Memory Evaluation Problems

Bounded Memory Transductions

We first consider transductions that can be evaluated with a constant amount of memory if
we fix the machine that defines the transduction:

I Definition 4. A (functional) transduction R ⊆ Σ∗×Σ∗ is bounded memory (BM) if there
exists a Turing transducerM and K ∈ N such that JMK = R and on any input word u ∈ Σ∗,
M runs in space complexity at most K.

It is not difficult (see [10]) to verify that for FST-transductions, bounded memory is
characterized by subsequentializability, which is decidable in PTime [20]. Moreover, BM is
undecidable for pushdown transducers, since it is as difficult as deciding whether a pushdown
automaton defines a regular language. For VPTs, BM is quite restrictive as it imposes to
verify whether a word is well-nested by using a bounded amount of memory. This can be
done only if the height of the words of the domain is bounded by some constant which
depends on the transducer only:

I Proposition 5. Let T be a functional VPT with n states.

1. JT K is BM iff (i) for all u ∈ Dom(T), h(u) ≤ n2, and (ii) FST(T, n2) is BM;
2. It is decidable in coNPTime whether JT K is BM.

Sketch. The first assertion is obvious by using simple pumping techniques to show that
bounded memory implies bounded height. In the sequel, we define the class of height
bounded memory transductions, and show it is decidable in coNPTime. On words of
bounded height, this class collapses with bounded memory transductions. J

Height Bounded Memory Transductions

As we have seen, bounded memory is too restrictive to still benefit from the extra express-
iveness of VPT compared to FST, namely the ability to recognize nested words of unbounded
height. In this section, we define a notion of bounded memory which is well-suited to VPTs.

I Definition 6. A (functional) transduction R ⊆ Σ∗×Σ∗ is height bounded memory (HBM)
if there exists a Turing transducer M and a function f : N→ N such that JMK = R and on
any input word u ∈ Σ∗, M runs in space at most f(h(u)).

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 319

Note that this definition ensures that the machine cannot store all the input words on the
working tape in general. The VPT in Fig. 2a is not in BM, but is in HBM: the stack content
suffices (and is necessary) to determine the output. When the structured alphabet contains
only internal letters, HBM and BM coincide, thus it is undecidable whether a pushdown
transducer is HBM. The remainder of this section is devoted to the proof that HBM is
decidable for fVPTs.

BM functional FST-transductions (or equivalently subsequentializable FSTs) are charac-
terized by the so called twinning property [9], which is decidable in PTime [20]. We introduce
a similar characterization of HBM fVPTs-transductions, called the horizontal twinning prop-
erty (HTP). The restriction of the horizontal twinning property to FSTs is equivalent to the
usual twinning property for FSTs (see [10]). Intuitively, the HTP requires that two runs on
the same input cannot accumulate increasing output delay on loops.

I Definition 7. Let T be an fVPT. T satisfies the horizontal twinning property (HTP) if for
all u1, u2, v1, v2, w1, w2 ∈ Σ∗ such that u2 is well-nested, for all q0, q

′
0 ∈ I, for all q, q′ ∈ Q,

and for all σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′) are co-accessible,

if

 (q0,⊥) u1/v1−−−−→ (q, σ) u2/v2−−−−→ (q, σ)
(q′0,⊥) u1/w1−−−−→ (q′, σ′) u2/w2−−−−→ (q′, σ′)

(1) then ∆(v1, w1) = ∆(v1v2, w1w2).

I Example 8. Consider the VPT of Fig. 1 (including dashed arrows). It does not satisfy
the HTP, as the delays increase when looping on crcr... Without the dashed transitions, the
HTP is satisfied.

I Lemma 9. The HTP is decidable in coNPTime for fVPTs.

Proof. First, let us show that an fVPT T does not satisfy the HTP if and only if there exist
u1, u2, v1, v2, w1, w2 ∈ Σ∗, q0, q

′
0 ∈ I, q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′)

are co-accessible, satisfy (1), and such that either we have (i) |v2| 6= |w2|, or (ii) |v2| = |w2|,
|v1| ≤ |w1| and not v1v2 � w1w2. Indeed, one can easily check that it is a necessary
condition. To prove that it is a sufficient condition, suppose we have elements that satisfy
(1) with ∆(v1, w1) 6= ∆(v1v2, w1w2) but conditions (i) and (ii) do not hold. Wlog, we
can assume that |v1| ≤ |w1|, therefore we have |v2| = |w2|, |v1| ≤ |w1|, v1v2 � w1w2 and
∆(v1, w1) 6= ∆(v1v2, w1w2). One can verify (see [10]) that there exists k ∈ N such that
replacing u2 with u′2 = u2

k yields a system that satisfies (ii).
Second, let T be an fVPT, we define a pushdown automaton with bounded reversal

counters [14], A, such that the language of A is empty if and only if T satisfies the HTP. More
precisely, A accepts the words u = u1u2u3 ∈ Dom(T) such that there exist v1, v2, w1, w2 ∈
Σ∗, q0, q

′
0 ∈ I, q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ that satisfy (1) and either (i) or (ii). A simulates

in parallel any two runs of T on the input word (product automaton). It guesses the end of
u1 and stores the states q and q′ of the first and second run (in order to be able to check
that the simulated runs of T are in state q, resp. q′ after reading u2). Non-deterministically,
it checks whether (i) or (ii) holds. To check (i), it uses two counters, one for each run. It
does so by, after reading u1, increasing the counters by the length of the output word of
each transition of the corresponding run. Then, when reaching the end of u2 it checks that
both counters are different (by decreasing in parallel both counters and checking they do
not reach 0). Similarly, using two other counters, A checks that (ii) holds as follows. Note
that condition (ii) implies that there is a position p such that the p-th letter a1 of v1v2 and
the p-th letter a2 of w1w2 are different. The automaton A guesses the position p ∈ N of
the mismatch, and initializes both counters to the value p. Then, while reading u1u2, it
decreases each counter by the length of the output words of the corresponding run. When

FSTTCS 2011

320 Streamability of Nested Word Transductions

a counter reaches 0, A stores the output letter of the corresponding run. Finally, A checks
that a1 6= a2, and that both configurations are co-accessible. T satisfies the HTP iff the
language of A is empty. The latter is decidable in coNPTime [11]. J

We now show that HTP characterizes HBM fVPTs-transductions and therefore by Lemma 9
we get:

I Theorem 10. Let T be an fVPT. Then JT K is HBM iff the HTP holds for T , which
is decidable in coNPTime. In this case, the Turing transducer LcpInTT(T) runs, on an
input stream u, in space complexity exponential in the height of u.

We can state more precisely the space complexity of LcpInTT(T) when T is reduced. In
this case, it is in O(|Q|4 · |Γ|2h(u)+2 ·(h(u)+1) ·M), whereM = max{|v| | (q, a, v, γ, q′) ∈ δ}.

Sketch. We prove that JT K is HBM iff the HTP holds for T . To prove that the HTP is a
necessary condition to be in HBM, we proceed by contradiction. We find a counter-example
for the HTP and we let K be the height of the input word of this counter-example. It implies
that the twinning property for FSTs does not hold for FST(T,K), and therefore FST(T,K)
is not BM by Proposition 5. In particular, T is not HBM.
For the converse, it can easily be shown that when T satisfies the HTP, the procedure of [8]
that reduces T preserves the HTP satisfiability. In particular, there is a one-to-one mapping
between the runs of T and the runs of its reduction that preserves the output words. We
then show that for any input word u ∈ Σ∗, the maximal delay outmax

6= (u) between the outputs
of u is bounded by (|Q| · |Γ|h(u))2M . This is done by a pumping technique “by width” that
relies on the property ∆(vv′, ww′) = ∆(∆(v, w) · (v′, w′)) for any words v, v′, w, w′. Thus for
an input word for which there are two runs that pass by the same configurations twice at
the same respective positions, the delay of the output is equal to the delay when removing
the part in between the identical configurations. Finally we apply Proposition 3. J

HBM is tight Theorem 10 shows that the space complexity of a VPT in HBM is at most
exponential. We give here an example illustrating the tightness of this bound. The idea is
to encode the tree transduction f(t, a) 7→ f(t, a) ∪ f(t, b) 7→ f(t, b) by a VPT, where t is a
binary tree over {0, 1} and t is the mirror of t, obtained by replacing the 0 by 1 and the 1
by 0 in t. Thus taking the identity or the mirror depends on the second child of the root f .
To evaluate this transformation in a streaming manner, one has to store the whole subtree
t in memory before deciding to transform it into t or t. The evaluation of this transduction
cannot be done in polynomial space as there are a doubly exponential number of trees of
height n, for all n ≥ 0.
HBM vs Subsequentializable fVPTs We have seen that a functional transduction
defined by an FST T is BM iff T is subsequentializable. We give an example illustrating
that for VPTs, being subsequentializable is too strong to characterize HBM. Consider the
VPT of Fig. 1 defined by the plain arrows. The transduction it defines is in HBM by
Proposition 3, as at any time the delay between two outputs is bounded by the height of
the input: outmax

6= (u)≤2h(u). However it is not subsequentializable, as the transformation
of c into a or b depends on the last return.

5 Quadratic Height Bounded Memory Evaluation

In the previous section, we have shown that a VPT-transduction is in HBM iff the horizontal
twinning property holds, and if it is in HBM, the algorithm of Section 3 uses a memory

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 321

at most exponential in the height of the word, and this bound is tight. To avoid this
exponential cost, we identify in this section a subclass of HBM containing transductions for
which the evaluation algorithm of Section 3 uses a memory quadratic in the height of the
word. Therefore, we strengthen the horizontal twinning property by adding some properties
for well-matched loops. Some of our main and challenging results are to show the decidability
of this property and that it depends only on the transduction, i.e. is preserved by equivalent
transducers. We show that subsequential VPTs satisfy this condition and therefore our class
subsumes the class of subsequentializable transducers.

The property is a strengthening of the horizontal twinning property that we call the
matched twinning property (MTP). Intuitively, the MTP requires that two runs on the
same input cannot accumulate increasing output delay on well-matched loops. They can
accumulate delay on loops with increasing stack but this delay has to be caught up on the
matching loops with descending stack.

I Definition 11. Let T = (Q, I, F,Γ, δ) be an fVPT. T satisfies the matched twinning
property (MTP) if for all ui, vi, wi ∈ Σ∗ (i ∈ {1, . . . , 4}) such that u3 is well-nested, and
u2u4 is well-nested, for all i, i′ ∈ I, for all p, q, p′, q′ ∈ Q, and for all σ1, σ2 ∈ ⊥.Γ∗, for all
σ′1, σ

′
2 ∈ Γ∗, such that (q, σ1) and (q′, σ2) are co-accessible:

if

 (i,⊥) u1/v1−−−−→ (p, σ1) u2/v2−−−−→ (p, σ1σ
′
1) u3/v3−−−−→ (q, σ1σ

′
1) u4/v4−−−−→ (q, σ1)

(i′,⊥) u1/w1−−−−→ (p′, σ2) u2/w2−−−−→ (p′, σ2σ
′
2) u3/w3−−−−→ (q′, σ2σ

′
2) u4/w4−−−−→ (q′, σ2)

then ∆(v1v3, w1w3) = ∆(v1v2v3v4, w1w2w3w4). We say that a VPT T is twinned whenever
it satisfies the MTP.

Note that any twinned VPT also satisfies the HTP (with u3 = u4 = ε).

I Example 12. The VPT of Fig. 1 with plain arrows does not satisfy the MTP, as the
delay between the two branches increases when iterating the loops. Consider now the VPT
obtained by replacing r by r′ in the transition (q1, r, c, γ, q2). It is obviously twinned, as
we cannot construct two runs on the same input which have the form given in the premises
of the MTP. However this transducer is not subsequentializable, as the output on the call
symbols cannot be delayed to the matching return symbols.

As for the HTP, we can decide the MTP using a reduction to the emptiness of a pushdown
automaton with bounded reversal counters. A complete proof can be found in [10].

I Lemma 13. The matched twinning property is decidable in coNPTime for fVPTs.

The most challenging result of this paper is to show that the MTP only depends on the
transduction and not on the transducer that defines it. The proof relies on fundamental
properties of word combinatorics that allow us to give a general form of the output words
v1, v2, v3, v4, w1, w2, w3, w4 involved in the MTP, that relates them by means of conjugacy
of their primitive roots. The proof gives a deep insight into the expressive power of VPTs
which is also interesting on its own. As many results of word combinatorics, the proof is a
long case study, so that we give it in [10] only.

I Theorem 14. Let T1, T2 be fVPTs such that JT1K = JT2K. T1 is twinned iff T2 is twinned.

Sketch. We assume that T1 is not twinned and show that T2 is not twinned either. By
definition of the MTP there are two runs of the form (i1,⊥) u1/v1−−−−→ (p1, σ1) u2/v2−−−−→ (p1, σ1β1) u3/v3−−−−→ (q1, σ1β1) u4/v4−−−−→ (q1, σ1)

(i′1,⊥) u1/v
′
1−−−−→ (p′1, σ′1) u2/v

′
2−−−−→ (p′1, σ′1β′1) u3/v

′
3−−−−→ (q′1, σ′1β′1) u4/v

′
4−−−−→ (q′1, σ′1)

FSTTCS 2011

322 Streamability of Nested Word Transductions

such that (q1, σ1) and (q′1, σ′1) are co-accessible and ∆(v1v3, v
′
1v
′
3) 6= ∆(v1v2v3v4, v

′
1v
′
2v
′
3v
′
4).

We will prove that by pumping the loops on u2 and u4 sufficiently many times we will get
a similar situation in T2, proving that T2 is not twinned. It is easy to show that there exist
k2 > 0, k1, k3 ≥ 0, wi, w′i ∈ Σ∗, i ∈ {1, . . . , 4}, some states i2, p2, q2, i

′
2, p
′
2, q
′
2 of T2 and some

stack contents σ2, β2, σ
′
2, γ
′
2 of T2 such that we have the following runs in T2:(i2,⊥)

u1u
k1
2 /w1−−−−−−→ (p2, σ2)

u
k2
2 /w2−−−−−→ (p2, σ2β2)

u
k3
2 u3u

k3
4 /w3−−−−−−−−−→ (q2, σ2β2)

u
k2
4 /w4−−−−−→ (q2, σ2)

(i′2,⊥)
u1u

k1
2 /w′

1−−−−−−→ (p′
2, σ

′
2)

u
k2
2 /w′

2−−−−−→ (p′
2, σ

′
2β

′
2)

u
k3
2 u3u

k3
4 /w′

3−−−−−−−−−→ (q′
2, σ

′
2β

′
2)

u
k2
4 /w′

4−−−−−→ (q′
2, σ

′
2)

such that (q1, σ1) and (q2, σ2) are co-accessible with the same input word u5, and (q′1, σ′1)
and (q′2, σ′2) are co-accessible with the same input word u′5. Now for all i ≥ 0, we let

V (i) = v1(v2)k1+ik2+k3v3(v4)k1+ik2+k3 W (i) = w1(w2)iw3(w4)i
V ′(i) = v′1(v′2)k1+ik2+k3v′3(v′4)k1+ik2+k3 W ′(i) = w′1(w′2)iw′3(w′4)i
D1(i) = ∆(V (i), V ′(i)) D2(i) = ∆(W (i),W ′(i))

In other words, D1(i) (resp. D2(i)) is the delay in T1 (resp. T2) accumulated on the input
word u1(u2)k1+ik2+k3u3(u4)k1+ik2+k3 by the two runs of T1 (resp. T2). There is a relation
between the words V (i) and W (i). Indeed, since T1 and T2 are equivalent and (q1, σ1) and
(q2, σ2) are both co-accessible by the same input word, for all i ≥ 1, either V (i) is a prefix
of W (i) or W (i) is a prefix of V (i). We have a similar relation between V ′(i) and W ′(i).

We prove in [10] the following intermediate results: (i) there exists i0 ≥ 0 such that for all
i, j ≥ i0 such that i 6= j, D1(i) 6= D1(j); (ii) for all i, j ≥ 1, if D1(i) 6= D1(j), then D2(i) 6=
D2(j). The proofs of those results rely on fundamental properties of word combinatorics
and a non-trivial case study that depends on how the words v1(v2)k1+ik2+k3v3(v4)k1+ik2+k3

and w1(w2)iw3(w4)i are overlapping. Thanks to (i) and (ii), we clearly get that D2(i0) 6=
D2(i0 + 1), which provides a counter-example for the matched twinning property. J

Subsequential transducers have at most one run per input word, so we get the following:

I Corollary 15. Subsequentializable VPTs are twinned.

The MTP is not a sufficient condition to be subsequentializable, as shown for instance
by Example 12. Therefore the class of transductions defined by transducers which satisfy
the MTP is strictly larger than the class of transductions defined by subsequentializable
transducers. However, these transductions are in the same complexity class for evaluation,
i.e. polynomial space in the height of the input word for a fixed transducer:

I Theorem 16. Let T be an fVPT. If T is twinned, then the Turing transducer LcpInTT(T)
runs, on an input stream u, in space complexity quadratic in the height of u.

We can state more precisely the space complexity of LcpInTT(T) when T is reduced. In this
case, it is in O

(
|Q|4 · |Γ|2|Q|4+2 · (h(u) + 1)2 ·M

)
, where M = max{|v| : (q, a, v, γ, q′) ∈ δ}.

Sketch. Like for the HTP, when T satisfies the MTP, also does the reduced VPT returned
by the reduction procedure of [8]. We use a pumping technique to show that for any word
u ∈ Σ∗ on which there is a run of T , we have outmax

6= (u) ≤ (h(u) + 1)q(T) for some function
q, whenever the MTP holds for T . This is done as follows: any such word can be uniquely
decomposed as u = u0c1u1c2 . . . cnun with n ≤ h(u), each ui is well-nested and each ci is a
call. Then if the ui are long enough, we can pump them vertically and horizontally without
affecting the global delay, by using the property ∆(vv′, ww′) = ∆(∆(v, w).(v′, w′)). Then
we can apply Proposition 3. J

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 323

6 Conclusion and Remarks

This work investigates the streaming evaluation of nested word transductions, and in partic-
ular identifies an interesting class of VPT-transductions which subsumes subsequentializable
transductions and can still be efficiently evaluated. The following inclusions summarize the
relations between the different classes of transductions we have studied:

BM fVPTs (Subsequentializable VPTs(twinned fVPTs (HBM fVPTs(fVPTs

Moreover, we have shown that BM, twinned and HBM fVPTs are decidable in coNPTime.
Further Directions An important asset of the class of twinned fVPTs w.r.t. the class of
subsequentializable VPTs is that it is decidable. It would thus be interesting to determine
whether or not the class of subsequentializable VPTs is decidable. In addition, we also plan
to extend our techniques to more expressive transducers, such as those recently introduced
in [1], which extend VPTs with global variables and are as expressive as MSO-transductions,
and can therefore swap or reverse sub-trees. Another line of work concerns the extension of
our evaluation procedure, which holds for functional transductions, to finite valued trans-
ductions.
Acknowledgements The authors would like to thank Jean-François Raskin and Stijn
Vansummeren for their comments on a preliminary version of this work.

References
1 R. Alur and L. D’Antoni. Streaming tree transducers. CoRR, abs/1104.2599, 2011.
2 R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3):16:1–16:43,

2009.
3 Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query evaluation over XML

streams. In PODS, pages 216–227. ACM-Press, 2005.
4 V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages.

In STACS, pages 420–431, 2006.
5 D. Barbosa, L. Mignet, and P. Veltri. Studying the XML web: Gathering statistics from

an xml sample. World Wide Web, 8:413–438, 2005.
6 A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL. ACM

TOSEM, 20, 2011.
7 M. Benedikt and A. Jeffrey. Efficient and expressive tree filters. In FSTTCS, volume 4855

of LNCS, pages 461–472. Springer Verlag, 2007.
8 M. Caralp, P.-A. Reynier, and J.-M. Talbot. A polynomial procedure for trimming visibly

pushdown automata. Technical Report hal-00606778, HAL, CNRS, France, 2011.
9 C. Choffrut. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-

Séquentielles en tant que Relations Rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977.
10 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Trans-

ductions. Technical Report inria-00566409, HAL, CNRS, France, 2011.
11 E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of visibly

pushdown transducers. In MFCS, volume 6281 of LNCS, pages 355–367. Springer, 2010.
12 O. Gauwin, J. Niehren, and S. Tison. Earliest query answering for deterministic nested

word automata. In FCT, volume 5699 of LNCS, pages 121–132. Springer, 2009.
13 M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing on

streaming and external memory data. Theor. Comput. Sci., 380:199–217, July 2007.
14 T. Harju, O. H. Ibarra, J. Karhumaki, and A. Salomaa. Some decision problems concerning

semilinearity and commutation. JCSS, 65, 2002.

FSTTCS 2011

324 Streamability of Nested Word Transductions

15 C. Konrad and F. Magniez. Validating XML documents in the streaming model with
external memory. Technical Report 1012.3311, arXiv, 2010.

16 V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for stream-
ing XML. In WWW, pages 1053–1062. ACM-Press, 2007.

17 O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

18 P. Madhusudan and M. Viswanathan. Query automata for nested words. In MFCS, volume
5734 of LNCS, pages 561–573. Springer Berlin / Heidelberg, 2009.

19 L. Segoufin and C. Sirangelo. Constant-memory validation of streaming XML documents
against DTDs. In ICDT, pages 299–313, 2007.

20 A. Weber and R. Klemm. Economy of description for single-valued transducers. Inf.
Comput., 118(2):327–340, 1995.

	Introduction
	Visibly Pushdown Languages and Transductions
	Online Evaluation Algorithm of VPT-Transductions
	Bounded Memory Evaluation Problems
	Quadratic Height Bounded Memory Evaluation
	Conclusion and Remarks

