
Cubicity, Degeneracy, and Crossing Number
Abhijin Adiga, L. Sunil Chandran, and Rogers Mathew

Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore - 560012, India
{abhijin,sunil,rogers}@csa.iisc.ernet.in

Abstract
A k-box B = (R1, R2, . . . , Rk), where each Ri is a closed interval on the real line, is defined to
be the Cartesian product R1 × R2 × · · · × Rk. If each Ri is a unit length interval, we call B a
k-cube. Boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is an
intersection graph of k-boxes. Similarly, the cubicity of G, denoted as cub(G), is the minimum
integer k such that G is an intersection graph of k-cubes.

It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Repres-
enting graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Con-
ference, available at CoRR, abs/cs/0607092, 2006.] that, for a graph G with maximum de-
gree ∆, cub(G) ≤ d4(∆ + 1) lnne. In this paper we show that, for a k-degenerate graph G,
cub(G) ≤ (k+2)d2e logne. Since k is at most ∆ and can be much lower, this clearly is a stronger
result. We also give an efficient deterministic algorithm that runs in O(n2k) time to output a
8k(d2.42 logne+ 1) dimensional cube representation for G.

The crossing number of a graph G, denoted as CR(G), is the minimum number of crossing
pairs of edges, over all drawings of G in the plane. An important consequence of the above result
is that if the crossing number of a graph G is t, then box(G) is O(t1/4dlog te3/4) . This bound is
tight upto a factor of O((log t)3/4).

Let (P,≤) be a partially ordered set and let GP denote its underlying comparability graph.
Let dim(P) denote the poset dimension of P. Another interesting consequence of our result is
to show that dim(P) ≤ 2(k + 2)d2e logne, where k denotes the degeneracy of GP . Also, we get
a deterministic algorithm that runs in O(n2k) time to construct a 16k(d2.42 logne + 1) sized
realizer for P. As far as we know, though very good upper bounds exist for poset dimension in
terms of maximum degree of its underlying comparability graph, no upper bounds in terms of
the degeneracy of the underlying comparability graph is seen in the literature.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Degeneracy, Cubicity, Boxicity, Crossing Number, Interval Graph, In-
tersection Graph, Poset Dimension, Comparability Graph

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.176

1 Introduction

A graph G is an intersection graph of sets from a family of sets F , if there exists f : V (G)→
F such that (u, v) ∈ E(G)⇔ f(u)∩ f(v) 6= ∅. Representations of graphs as the intersection
graphs of various geometrical objects is a well studied topic in graph theory. Probably the
most well studied class of intersection graphs are the interval graphs. Interval graphs are the
intersection graphs of closed intervals on the real line. A restricted form of interval graphs,
that allow only intervals of unit length, are indifference graphs or unit interval graphs.

An interval on the real line can be generalized to a “k-box” in Rk. A k-box B =
(R1, R2, . . . , Rk), where each Ri is a closed interval on the real line, is defined to be the

© Abhijin Adiga, L. Sunil Chandran, and Rogers Mathew;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 176–190

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.176
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Adiga, L.S. Chandran, and R. Mathew 177

Cartesian product R1 × R2 × · · · × Rk. If each Ri is a unit length interval, we call B a
k-cube. Thus, 1-boxes are just closed intervals on the real line whereas 2-boxes are axis-
parallel rectangles in the plane. The parameter boxicity of a graph G, denoted as box(G),
is the minimum integer k such that G is an intersection graph of k-boxes. Similarly, the
cubicity of G, denoted as cub(G), is the minimum integer k such that G is an intersection
graph of k-cubes. Thus, interval graphs are the graphs with boxicity equal to 1 and unit
interval graphs are the graphs with cubicity equal to 1. A k-box representation or a k

dimensional box representation of a graph G is a mapping of the vertices of G to k-boxes
such that two vertices in G are adjacent if and only if their corresponding k-boxes have a
non-empty intersection. In a similar way, we define k-cube representation (or k dimensional
cube representation) of a graph G. Since k-cubes by definition are also k-boxes, boxicity of
a graph is at most its cubicity.

The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969 [15].
Roberts showed that for any graph G on n vertices box(G) ≤ bn2 c and cub(G) ≤ b 2n

3 c. Both
these bounds are tight since box(K2,2,...,2) = bn2 c and cub(K3,3,...,3) = b 2n

3 c where K2,2,...,2
denotes the complete n/2-partite graph with 2 vertices in each part and K3,3,...,3 denotes the
complete n/3-partite graph with 3 vertices in each part. It is easy to see that the boxicity
of any graph is at least the boxicity of any induced subgraph of it.

Box representation of graphs finds application in niche overlap (competition) in ecology
and to problems of fleet maintenance in operations research (see [9]). Given a low dimen-
sional box representation, some well known NP-hard problems become polynomial time
solvable. For instance, the max-clique problem is polynomial time solvable for graphs with
boxicity k because the number of maximal cliques in such graphs is only O((2n)k).

1.1 Previous Results on Boxicity and Cubicity
It was shown by Cozzens [8] that computing the boxicity of a graph is NP-hard. Kratochvíl
[11] showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete.
It has been shown by Yannakakis [19] that deciding whether the cubicity of a given graph
is at least 3 is NP-hard.

Researchers have tried to bound the boxicity and cubicity of graph classes with special
structure. Scheinerman [16] showed that the boxicity of outerplanar graphs is at most 2.
Thomassen [17] proved that the boxicity of planar graphs is bounded from above by 3.
Upper bounds for the boxicity of many other graph classes such as chordal graphs, AT-
free graphs, permutation graphs etc. were shown in [7] by relating the boxicity of a graph
with its treewidth. The cube representation of special classes of graphs like hypercubes and
complete multipartite graphs were investigated in [15, 12, 13].

Various other upper bounds on boxicity and cubicity in terms of graph parameters such
as maximum degree, treewidth etc. can be seen in [4, 2, 3, 10, 7]. The ratio of cubicity to
boxicity of any graph on n vertices was shown to be at most dlog2 ne in [5].

1.2 Equivalent Definitions for Boxicity and Cubicity
Let G,G1, G2, . . . , Gb be a collection of graphs with V (G) = V (Gi), for every i ≤ b. We say
G =

⋂b
i=1 Gi when E(G) =

⋂b
i=1 E(Gi). Below, we state two very useful lemmas due to

Roberts [15].

I Lemma 1. For any graph G, box(G) ≤ k if and only if there exist k interval graphs
I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

FSTTCS 2011

178 Cubicity, Degeneracy, and Crossing Number

I Lemma 2. For any graph G, cub(G) ≤ k if and only if there exist k indifference graphs
(unit interval graphs) I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

1.3 Our Results

A graph G is k-degenerate if the vertices of G can be enumerated in such a way that
every vertex is succeeded by at most k of its neighbors. The least number k such that G
is k-degenerate is called the degeneracy of G and any such enumeration is referred to as a
degeneracy order of V (G). For example, trees and forests are 1-degenerate and planar graphs
are 5-degenerate. Series-parallel graphs, outerplanar graphs, non-regular cubic graphs, circle
graphs of girth at least 5 etc. are subclasses of 2-degenerate graphs.

Main Result: It was shown in [2] that, for a graph G with maximum degree ∆,
cub(G) ≤ d4(∆+1) lnne. In this paper, we show that, for a k-degenerate graph G, cub(G) ≤
(k+2)d2e logne. Since k is at most ∆ and can be much lower, this clearly is a stronger result.
Moreover, we give an efficient deterministic algorithm that outputs a 8k(d2.42 logne + 1)
dimensional cube representation for G in O(n2k) time.

Consequence 1: The crossing number of a graph G, denoted as CR(G), is the minimum
number of crossing pairs of edges, over all drawings of G in the plane. We prove that, if
CR(G) = t, then box(G) ≤ 66t 1

4 dlog 4te
3
4 +6. This bound is tight upto a factor ofO((log t) 3

4).
See Section 5 for details.

Consequence 2: Let (P,≤) be a poset (partially ordered set) and let GP be the
underlying comparability graph of P. A linear extension L of P is a total order which
satisfies (x ≤ y ∈ P) =⇒ (x ≤ y ∈ L). A realizer of P is a set of linear extensions of P,
say R, which satisfy the following condition: for any two distinct elements x and y, x ≤ y

in P if and only if x ≤ y in L, ∀L ∈ R. The poset dimension of P, denoted by dim(P), is
the minimum integer k such that there exists a realizer of P of cardinality k. Yannakakis
[19] showed that it is NP-complete to decide whether the dimension of a poset is at most 3.
The poset dimension is an extensively studied parameter in the theory of partial order (See
[18] for a comprehensive treatment).

There are several research papers in the partial order literature which study the dimen-
sion of posets whose underlying comparability graph has some special structure – interval
order, semi order and crown posets are some examples. While very good upper bounds (for
example c∆(log ∆)2 in [20], where c is a constant) are known for poset dimension in terms
of maximum degree ∆ of its underlying comparability graph, as far as we know there are no
upper bounds in terms of the degeneracy of the underlying comparability graph. Connecting
our main result with a result in [1], we can get an upper bound for poset dimension in terms
of the degeneracy of the underlying comparability graph as follows. It was shown in [1] that
dim(P) < 2box(GP). Therefore, if the degeneracy of the underlying comparability graph
GP is k, then our result says that dim(P) ≤ 2(k+ 2)d2e logne. Also, we get a deterministic
algorithm that runs in O(n2k) time to construct a 16k(d2.42 logne+ 1) sized realizer for P.

2 Preliminaries

For any finite positive integer n, let [n] denote the set {1, 2, . . . n}. Unless mentioned ex-
plicitly, all logarithms are to the base e in this paper. All the graphs that we consider are
simple, finite and undirected. For a graph G, we denote the vertex set of G by V (G) and
the edge set of G by E(G). For any vertex u ∈ V (G), NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)}.
We define degG(u) := |NG(u)|. The average degree of G is denoted by dav(G).

A. Adiga, L.S. Chandran, and R. Mathew 179

Since an interval graph is the intersection graph of closed intervals on the real line, for
every interval graph Ia, there exists a function fa : V (Ia)→ {X ⊆ R |X is a closed interval},
such that for u, v ∈ V (Ia), (u, v) ∈ E(Ia)⇔ fa(u) ∩ fa(v) 6= ∅. The function fa is called an
interval representation of the interval graph Ia. Note that the interval representation of an
interval graph need not be unique. Given a closed interval X = [y, z], we define L(X) := y

and R(X) := z. In a similar way, we call a function fb a unit interval representation of unit
interval graph Ib if fb : V (Ib) → {X ′ ⊆ R | X ′ is a unit length closed interval}, such that
∀u, v ∈ V (Ib), (u, v) ∈ E(Ib)⇔ fb(u) ∩ fb(v) 6= ∅.

Given a graph G, let C be a coloring of V (G) using colors χ1, χ2, . . . , χa. Then, for each
u ∈ V (G), C(u) denotes the color of u in C.

2.1 Definitions, Notations and Assumptions used in Sections 3 and 4:

Recall that the degeneracy of a graph is the least number k such that it has a vertex
enumeration in which each vertex is succeeded by at most k of its neighbors. Such an
enumeration is called the degeneracy order. The graph G that we consider in these sections
is a k-degenerate graph having V (G) = {v1, v2, . . . , vn}, |E(G)| = m and m (=

(
n
2
)
− m)

denotes the number of non-edges in G. The enumeration v1, v2, . . . , vn is a degeneracy
order of V (G) and is denoted by D. For every vi, vj ∈ V (G), we say vi <D vj if vi comes
before vj in D i.e., vi <D vj if and only if i < j. Suppose vi <D vj . If (vi, vj) ∈ E(G),
then we call vj a forward neighbor of vi and vi is referred to as a backward neighbor of vj .
Observe that since G is k-degenerate, a vertex can have at most k forward neighbors. If
(vi, vj) /∈ E(G), then vj a forward non-neighbor of vi and vi is a backward non-neighbor of
vj . For any u ∈ V (G), Nf

G(u) = {w ∈ V (G) | w is a forward neighbor of u} and N b
G(u) =

{w ∈ V (G) | w is a backward neighbor of u}.
Support sets of a non-edge: For each (vx, vy) /∈ E(G), where vx <D vy, let Sxy = {vz ∈
Nf
G(vx) | vy <D vz} ∪ {vy}. We call Sxy the weak support set of the non-edge (vx, vy).

Define Txy = Sxy ∪ {vx}. We call Txy the strong support set of the non-edge (vx, vy). Let
C be a coloring (need not be proper) of V (G). We say Sxy is favorably colored in C, if
C(vy) 6= C(vw), ∀vw ∈ Sxy \ {vy}. We say Txy is favorably colored in C, if C(vy) 6= C(vw),
∀vw ∈ Txy \ {vy}

3 Cube Representation and Coloring

I Lemma 3. Let G be a k-degenerate graph. Let χ = {χ1, χ2, . . . χa} be a set of colors and
let C = {C1, C2, . . . Cb} be a family of colorings (need not be proper) of V (G), where each Ci
uses colors from the set χ. If the strong support set Txy of every non-edge (vx, vy) /∈ E(G),
vx <D vy, is favorably colored in some Ci, where i ∈ [b], then cub(G) ≤ ab.

Proof. We prove this by constructing ab unit interval graphs Ii,j on the vertex set V (G),
where i ∈ [a] and j ∈ [b], such that G =

⋂a
i=1
⋂b
j=1 Ii,j . Then the statement will follow from

Lemma 2. Let fi,j denote an interval representation of Ii,j . Let us partition the vertices
of Ii,j into two parts, namely Aij and Bij , where Aij = {v ∈ V (G) | Ci(v) = χj} and
Bij = V (G) \ Aij . For every i ∈ [a] and j ∈ [b], an interval representation fi,j of Ii,j is
constructed from the coloring Ci in the following way. For every vy ∈ V (G),

FSTTCS 2011

180 Cubicity, Degeneracy, and Crossing Number

If vy ∈ Aij , then
fi,j(vy) = [y + n, y + 2n]

else
fi,j(vy) = [gijmax(vy), gijmax(vy) + n], where
gijmax(vy) = max({g | (vy, vg) ∈ E(G),
vg ∈ Aij} ∪ {0}).

Since the length of fi,j(vy) is n, for every vy ∈ V (G), Ii,j is a unit interval graph. It
is easy to see that, ∀vx, vy ∈ Aij , 2n ∈ fi,j(vx) ∩ fi,j(vy) and therefore Aij forms a clique
in Ii,j . Since n ∈ fi,j(vx) ∩ fi,j(vy), ∀vx, vy ∈ Bi,j , Bi,j too forms a clique in Ii,j . For
every (vx, vy) ∈ E(G), with vx ∈ Aij and vy ∈ Bij , we have L(fi,j(vy)) = gijmax(vy) ≤
n ≤ L(fi,j(vx)) = n + x ≤ n + gijmax(vy), where the last inequality is inferred from the
fact that (vx, vy) ∈ E(G) and vx ∈ Aij . But n + gijmax(vy) = R(fi,j(vy)). Therefore, we
get L(fi,j(vy)) ≤ L(fi,j(vx)) ≤ R(fi,j(vy)) and hence (vx, vy) ∈ E(Ii,j). Hence Ii,j is a
supergraph of G.

Let vx <D vy and (vx, vy) /∈ E(G). We now have to show that there exists some
unit interval graph Ii,j such that (vx, vy) /∈ E(Ii,j). We know that, by assumption, there
exists a coloring, say Ci (where i ∈ [a]), such that the strong support set Txy is favorably
colored in Ci. Let χj = Ci(vy). Let g = gijmax(vx). We claim that g < y. Assume, for
contradiction, that g > y. Then g 6= 0 and vg ∈ Aij . Since y > x, we get g > x. Therefore,
vg ∈ Nf

G(vx) and g > y. This implies that vg ∈ Txy. Since Txy is favorably colored in Ci,
Ci(vg) 6= χj . This contradicts the fact that vg ∈ Aij . Thus we prove the claim. Therefore,
R(fi,j(vx)) = n + g < n + y = L(fi,j(vy)) and hence (vx, vy) /∈ E(Ii,j). We infer that
G =

⋂a
i=1
⋂b
j=1 Ii,j . J

4 Cubicity and Degeneracy

4.1 An Upper Bound – Probabilistic Approach
I Theorem 4. For every k-degenerate graph G, cub(G) ≤ (k + 2) · d2e logne

Proof. Let χ = {χ1, χ2, . . . χk+2} be a set of k + 2 colors. Generate a random coloring
C1 (need not be a proper coloring) of vertices of G in the following way: For each vertex
vx ∈ V (G), pick a color χj , where j ∈ [k + 2], uniformly at random from χ and set
C1(vx) = χj . In a similar way, independently generate random colorings C2, C3, . . . Cb, where
b = d2e logne.

For every (vx, vy) /∈ E(G) and vx <D vy, since G is k-degenerate we have |Txy| =

t ≤ k + 2. Pr[Txy is favorably colored in Ci] = (k+2)(k+1)t−1

(k+2)t−1 =
(
k+1
k+2

)t−1
≥
(
k+1
k+2

)k+1
.

Therefore, Pr[Txy is not favorably colored in Ci] ≤ 1−
(
k+1
k+2

)k+1
≤ e−(k+1

k+2)k+1
. Now taking

b = d2e logne,

Pr[
⋃

x,y:(vx<Dvy),((vx,vy)/∈E(G))

b⋂
i=1

(Txy is not favorably colored in Ci)]

≤ n2e−b(
k+1
k+2)k+1

< 1.

A. Adiga, L.S. Chandran, and R. Mathew 181

Hence, Pr[C1, C2, . . . Cb satisfy the condition of Lemma 3] > 0. Therefore, there exists a
coloring C1, . . . Cb, with b = d2e logne, of V (G) using colors from the set {χ1, χ2, . . . χk+2}
such that the condition of Lemma 3 is satisfied. Hence by Lemma 3, cub(G) ≤ (k + 2) ·
d2e logne. J

4.2 Deterministic Algorithm
DET_ALGO(G) is a deterministic algorithm which takes a simple, finite k-degenerate graph
G as input and outputs a cube representation in 8kα dimensional space i.e., 8kα unit interval
graphs I1,1, . . . , I1,8k, . . . , Iα,1, . . . , Iα,8k such that G =

⋂α
i=1
⋂8k
j=1 Ii,j . In order to achieve

this, DET_ALGO(G) invokes the procedure CONSTRUCT_COLORING (for a detailed
version of this procedure , see Appendix A.5) α times and thereby generates α colorings
C1, . . . , Cα, where each coloring uses colors from the set {χ1, . . . , χ8k}. Then from each color-
ing Ci, it constructs 8k unit interval graphs Ii,1, . . . , Ii,8k using the construction described in
Lemma 3, which is implemented in procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS
(See Appendix A.1).

Note that in order for G to be equal to
⋂α
i=1
⋂8k
j=1 Ii,j , Lemma 3 requires that the

colorings C1, . . . , Cα satisfy the following property: for every (vx, vy) /∈ E(G), where vx <D
vy, there exists an i ∈ [α] such that the strong support set Txy of this non-edge is favorably
colored in Ci. The colorings C1, . . . , Cα are generated one by one keeping this objective in
mind. At the stage when we have just generated the (i− 1)-th coloring Ci−1, if a non-edge
(vx, vy) is such that its strong support set Txy is already favorably colored in some Cj , where
j < i, then we say that the non-edge (vx, vy) is already DONE. Naturally at each stage we
have to keep track of the non-edges that are not yet DONE. In order to do this, we introduce
two data structures BNN i and FNN i, for all i ∈ [α] 1. For each vy ∈ V (G),

BNN i[vy] = {vx ∈ V (G) | vx is a backward non-neighbor of vy, and (vx, vy)
is not yet DONE with respect to C1, . . . , Ci−1.}

FNN i[vy] = {vz ∈ V (G) | vz is a forward non-neighbor of vy, and (vy, vz)
is not yet DONE with respect to C1, . . . , Ci−1.}

It is easy to see that,
⋃
vy∈V (G) BNN i[vy] =

⋃
vy∈V (G) FNN i[vy] and therefore,(⋃

vy∈V (G) BNN i[vy] = ∅
)
⇐⇒

(⋃
vy∈V (G) FNN i[vy] = ∅

)
. In Theorem 7, we show that if

we select α to be at least (d2.42 logne+ 1), then FNNα+1[vy] = ∅, ∀vy ∈ V (G). This clearly
would mean that all non-edges are DONE with respect to C1, . . . , Cα. In other words, the
condition of Lemma 3 will be satisfied for C1, . . . , Cα.

The only thing that remains to be discussed now is how our coloring strategy (i.e. the pro-
cedure CONSTRUCT_COLORING) achieves the above objective, namely BNNα+1[vy] = ∅
and FNNα+1[vy] = ∅, ∀vy ∈ V (G), if α ≥ (d2.42 logne + 1). To start with BNN 1[vy] (re-
spectively FNN 1[vy]) contains all the backward (respectively forward) non-neighbors of vy.
The procedure CONSTRUCT_COLORING(i) generates the i-th coloring Ci as follows. It
colors vertices in the reverse degeneracy order starting from vertex vn. The partial color-
ing at the stage when we have colored the vertices vn to vz is denoted by Cvz

i . Note that
Cv1
i = Ci. Consider the stage at which the algorithm has already colored the vertices from
vn upto vy+1 and is about to color vy. That is, we have the partial coloring Cvy+1

i and are

1 BNN – Backward Non-Neighbor, FNN – Forward Non-Neighbor

FSTTCS 2011

182 Cubicity, Degeneracy, and Crossing Number

about to extend it to the partial coloring Cvy

i by assigning one of the 8k possible colors to
vertex vy. Let C

vy=χc

i denote the partial coloring that results if we extend Cvy+1
i by assign-

ing color χc to vy. The coloring Ci and the partial colorings Cvz
i , ∀vz ∈ V (G) and Cvz=χc

i ,
∀vz ∈ V (G), χc ∈ {χ1, . . . , χ8k}, will be generically called the colorings associated with the
i-th stage (i.e. the i-th invocation of CONSTRUCT_COLORING).

With respect to colorings C1, . . . , Ci−1 and some coloring C′i associated with the i-th stage,
we define the following sets:

W (vw, C′i) = {vx ∈ BNN i[vw] | the strong support set Txw of non-edge (1)
(vx, vw) is favorably colored in C′i}

X(vw, C′i) = {vx ∈ BNN i[vw] | the weak support set Sxw of non-edge (2)
(vx, vw) is favorably colored in C′i}

Y (vw, C′i) = {vz ∈ FNN i[vw] | the strong support set Twz of non-edge (3)
(vw, vz) is favorably colored in C′i}

Z(vw, C′i) = {vz ∈ FNN i[vw] | the weak support set Swz of non-edge (4)
(vw, vz) is favorably colored in C′i}

Naturally, we want to give a color χc to vy such that a large number of (not yet DONE)
non-edges incident on vy get DONE. With respect to the colorings C1, . . . , Ci−1 and the
partial coloring Cvy=χc

i , we define the status of a non-edge incident on vy as follows: A non-
edge (vy, vz) ∈ FNN i[vy] is DONE2 if Tyz is favorably colored in Cvy=χc

i and is NOT-DONE
if Tyz is not favorably colored in Cvy=χc

i . A non-edge (vx, vy) ∈ BNN i[vy] is HOPELESS3
if Sxy (which happens to be a proper subset of Txy) is not favorably colored in Cvy=χc

i and
is HOPEFUL if Sxy is favorably colored in Cvy=χc

i . So when we decide a color for vy, our
intention is to make a large fraction of the HOPEFUL non-edges of FNNi[vy] (i.e. the set
Z(vy, C

vy=χc

i)), DONE and to make a large fraction of BNN i[vy], HOPEFUL. More formally,
we want the algorithm to assign a color χc to vy such that the following two conditions are
satisfied.
(i) |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]|, and

(ii)|Y (vy, C
vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)|.
The obvious question then is, whether such a color χc always exists, for each vy ∈ V (G).
Lemma 5 answers this question in the affirmative. It follows that, the number of non-edges
that are not yet DONE with respect to colorings C1, . . . Ci is at most a constant fraction of
the number of non-edges that were not DONE with respect to colorings C1, . . . Ci−1. This is
formally proved in Lemma 6. That BNNα+1[vy] = ∅ and FNNα+1[vy] = ∅, ∀vy ∈ V (G), is
a consequence of this and is formally proved in Theorem 7.

I Lemma 5. For every i ∈ [α], vy ∈ V (G), (i) |X(vy, Ci)| ≥ 3
4 |BNN i[vy]|, and (ii)|Y (vy, Ci)| ≥

3
4 |Z(vy, Ci)|.

Proof. See Appendix A.2. J

I Lemma 6. Let mi = Σy∈[n]|FNN i[vy]|. Then mi+1 ≤ 7
16mi.

2 Recall that we had defined earlier that a non-edge (vx, vy) is DONE with respect to a list of colorings
C1, . . . , Ci−1 if Txy was favorably colored in some Cj , where j < i. Here we extend this notion, by
allowing the partial coloring Cvy=χc

i also in the list.
3 A HOPELESS non-edge (vx, vy) will not be DONE with respect to C1, . . . , Ci if we set Ci(vy) = χc,
irrespective of the color given to vy−1, . . . , v1.

A. Adiga, L.S. Chandran, and R. Mathew 183

Algorithm 4.1 DET_ALGO(G)
for y = n to 1 do
1. Initialize BNN 1[vy]← {vx ∈ V (G) | vx <D vy, (vx, vy) /∈ E(G)}.
2. Initialize FNN 1[vy]← {vz ∈ V (G) | vy <D vz, (vy, vz) /∈ E(G)}.

end for
3. SET FLAG ← TRUE.
4. SET i ← 0.
while FLAG = TRUE do
5. i++.
6. Ci = CONSTRUCT_COLORING(i).
for y = 1 to n do
7. SET BNN i+1[vy]← BNNi[vy] \W (vy, Ci)
8. SET FNN i+1[vy]← FNNi[vy] \ Y (vy, Ci)

end for
9. If FNN i+1[vy] = ∅, ∀vy ∈ V (G), then FLAG = FALSE.

end while
10. SET α← i

11. CONSTRUCT_UNIT_INTERVAL_GRAPHS()

Proof. See Appendix A.3. J

I Theorem 7. Let G be a k-degenerate graph. Algorithm DET_ALGO(G) constructs a
valid 8k(d2.42 logne+ 1) dimensional cube representation for G.

Proof. The algorithm constructs α colorings C1, C2, . . . , Cα of V (G), where each coloring uses
colors from the set {χ1, χ2, . . . χ8k}. From Lemma 6, we have mi+1 ≤ 7

16mi. Also, m1 =
|Σy∈[n]FNN1[vy]| ≤ n2. Putting α = (d2.42 logne+1), we getmα ≤ 1. That is, for every y ∈
[n], FNNα+1[vy] = EMPTY . This means that, for every (vx, vy) /∈ E(G), where vx <D vy,
there exists an i ∈ [α] such that Txy is favorably colored in Ci. Then by Lemma 3 , cub(G) ≤
8k(d2.42 logne + 1). The procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS con-
structs 8k(d2.42 logne+ 1) unit interval graphs whose intersection gives G, as described in
Lemma 3. Thus we prove the theorem. J

4.2.1 Running Time Analysis
I Lemma 8. The procedure CONSTRUCT_COLORING(i) can be implemented to run in
O(kmi + kn) time, where mi = Σy∈[n]|FNNi[vy]|.

Proof. See Appendix A.4. J

I Theorem 9. DET_ALGO(G) runs in O(n2k) time.

Proof. The algorithm invokes the function CONSTRUCT_COLORING(i) α
times to construct colorings C1, C2, . . . Cα of V (G). By Lemma 8, to construct these α color-
ings it requires O(Σαi=1(mik) + αkn) time. From Lemma 6, we get that Σαi=1(mi) is O(m).
Since α = (d2.42 logne+1), the running time of the while loop in DET_ALGO(G) is O(mk+
nk logn). It is easy to see that the procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()
runs in O(nk logn) time. Since m ≤ n2, DET_ALGO(G) runs in O(n2k) time. J

FSTTCS 2011

184 Cubicity, Degeneracy, and Crossing Number

Algorithm 4.2 CONSTRUCT_COLORING(i)
/*For a detailed version of this procedure, see Appendix A.5.
All data structures are assumed to be global.
Notational Note:
Let Cvz

i denote the partial coloring at the stage when we have colored the vertices vn to vz.
Let Cvz=χc

i denote the partial coloring that results if we extend Cvz+1
i by assigning color χc

to vz.*/
for y = n to 1 do

for each χc ∈ {χ1, . . . , χ8k } do
1. Compute |X(vy, C

vy=χc

i)|, |Y (vy, C
vy=χc

i)|, and |Z(vy, C
vy=χc

i)| as per equations
(2),(3), and (4) respectively.
if |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)| then
2. SET Cvy

i ← C
vy=χc

i (i.e. SET Ci(vy)← χc).
3. SET Y (vy, C

vy

i)← Y (vy, C
vy=χc

i)
4. BREAK.

end if
end for

end for
for y = 1 to n do
5. Compute W (vy, Ci) as per equation (1)
6. SET Y (vy, Ci)← Y (vy, Cv1

i)
end for
7. Return Ci.

5 Boxicity and Crossing Number

5.1 A Useful Lemma
For a graph H, let VA, VB ⊆ V (H) such that V (H) = VA]VB . Let SB(H) be the graph with
V (SB(H)) = V (H) and E(SB(H)) = E(H) \ {(u, v) | u, v ∈ VB}. In other words, SB(H) is
obtained from H by making VB a stable set. Let HB be the subgraph of H induced on VB .

I Lemma 10. box(H) ≤ 2box(SB(H)) + box(HB).

Proof. See Appendix A.6. J

5.2 Crossing Number
Crossing number of a graph G, denoted as CR(G), is the minimum number of crossing pairs
of edges, over all drawings of G in the plane. A graph G is planar if and only if CR(G) = 0.
Determination of the crossing number is an NP-complete problem.

The following theorem is due to Pach and Tóth [14]

I Theorem 11. For a graph G with n vertices and m ≥ 7.5n edges, CR(G) ≥ 1
33.75

m3

n2 , and
this estimate is tight upto a constant factor.

The following claim directly follows from the above theorem.
I Claim 12. For a graph G, if CR(G) ≤ t, then dav(G) ≤ 2(33.75t

n)1/3 + 15.

Proof. If m < 7.5n, then dav < 15. Otherwise, we have m ≤ (33.75n2t)1/3 implying that
dav ≤ 2(33.75t

n)1/3. J

A. Adiga, L.S. Chandran, and R. Mathew 185

We now prove the main theorem of this section.

I Theorem 13. For a graph G with CR(G) = t, box(G) ≤ 66 · t 1
4 dlog 4te

3
4 + 6.

Proof. Consider a drawing P of G with t crossings. We say a vertex v participates in a
given crossing in P , if at least one of the edges of the given crossing is incident on v.

Partition the vertices of G into two parts, namely VA and VB , such that VB = {v ∈
V (G) | v participates in some crossing in P} and VA = V (G) \VB . Let SB(G) be the graph
with V (SB(G)) = V (G) and E(SB(G)) = E(G)\{(u, v) | u, v ∈ VB}. In other words, SB(G)
is obtained from G by making VB a stable set. Let GB be the subgraph of G induced on
VB . Then by Lemma 10,

box(G) ≤ 2box(SB(G)) + box(GB).

Observe that SB(G) is a planar graph and hence its boxicity is at most 3 (see [17]). Therefore,
box(G) ≤ 6 + box(GB). For ease of notation, let H ≡ GB . Then,

box(G) ≤ 6 + box(H). (5)

We have CR(H) = CR(G) = t. Let n = |V (H)| and m = |E(H)|. At most 4 vertices
participate in a given crossing. Since each vertex in H participates in some crossing in P ,
we get

n ≤ 4t.

Let V (H) = {v1, v2, . . . , vn}. Let v1, v2, . . . , vn be an ordering of the vertices of H, such
that for each i ∈ [n], degHi(vi) ≤ degHi(v),∀v ∈ V (Hi), where Hi denotes the subgraph of

H induced on vertex set {vi, vi+1, . . . , vn}. Let k =
(33.75

3
) 1

4
(

t
dlog 4te

) 1
4 . Let x = min({i ∈

[n] | degHi
(vi) > k}). Partition V (H) into two parts, namely VC = {v1, v2, . . . , vx−1}

and VD = {vx, vx+1, . . . , vn}. Let SD(H) be the graph with V (SD(H)) = V (H) and
E(SD(H)) = E(H) \ {(u, v) | u, v ∈ VD}. In other words, SD(H) is obtained from H

by making VD a stable set. Let HD be the subgraph of H induced on VD. Then by Lemma
10,

box(H) ≤ 2box(SD(H)) + box(HD).

Note that SD(H) is k-degenerate. If k = 1, then SD(H) is a forest and hence its boxicity
is at most 2. Suppose k > 1. Then by Theorem 4, box(SD(H)) ≤ cub(SD(H)) ≤ (k +
2)d2e logne ≤ 12kdlog(4t)e ≤ 12

(33.75
3
) 1

4 t
1
4 dlog 4te

3
4 . Thus we have,

box(H) ≤ 24
(

33.75
3

) 1
4

t
1
4 dlog 4te

3
4 + box(HD). (6)

Since HD ≡ Hx, vx is a minimum degree vertex of HD. Therefore, dav(HD) > degHD
(vx) >

k. Then by Claim 12, we have

k =
(

33.75
3

) 1
4
(

t

dlog 4te

) 1
4

< dav(HD) ≤ 2
(

33.75t
|V (HD)|

)1/3
+ 15.

From this, we get |V (HD)| ≤ 48 3
4 (33.75t) 1

4 dlog 4te
3
4 . Since boxicity of a graph is at most

half the number of its vertices[15] , we get box(HD) ≤ 48
3
4 (33.75t)

1
4 dlog 4te

3
4

2 . Substituting this
in Inequality 6, we get

box(H) ≤ 66t 1
4 dlog 4te

3
4

FSTTCS 2011

186 Cubicity, Degeneracy, and Crossing Number

Therefore from Inequality 5 ,we get

box(G) ≤ 66t 1
4 dlog 4te

3
4 + 6.

J

5.2.1 Tightness of Theorem 13:
We know that, for any graph G on n vertices andm edges, CR(G) ≤ m(m−1)/2 ≤ m2 ≤ n4.
Let G ≡ K2,2,...,2 denote the complete n

2 -partite graph with 2 vertices in each part and let
t = CR(G). From [15], we know that box(G) = bn2 c ≥ b

t1/4

2 c. Therefore, the bound given
by Theorem 13 is tight upto a factor of O((log t) 3

4).

References
1 Abhijin Adiga, Diptendu Bhowmick, and L. Sunil Chandran. Boxicity and poset dimension.

In COCOON, pages 3–12, 2010.
2 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Representing graphs as the

intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at
CoRR, abs/cs/0607092, 2006.

3 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Boxicity and maximum
degree. Journal of Combinatorial Theory, Series B, 98(2):443–445, March 2008.

4 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Geometric representation
of graphs in low dimension using axis parallel boxes. Algorithmica, 56(2):129–140, 2010.

5 L. Sunil Chandran and K. Ashik Mathew. An upper bound for cubicity in terms of boxicity.
Discrete Mathematics, In Press, Corrected Proof, doi:10.1016/j.disc.2008.04.011, 2008.

6 L. Sunil Chandran, Rogers Mathew, and Naveen Sivadasan. Boxicity of line graphs. CoRR,
abs/1009.4471, 2010.

7 L. Sunil Chandran and Naveen Sivadasan. Boxicity and treewidth. Journal of Combinat-
orial Theory, Series B, 97(5):733–744, September 2007.

8 M. B. Cozzens. Higher and multidimensional analogues of interval graphs. Ph. D. thesis,
Rutgers University, New Brunswick, NJ, 1981.

9 M. B. Cozzens and F. S. Roberts. Computing the boxicity of a graph by covering its
complement by cointerval graphs. Discrete Applied Mathematics, 6:217–228, 1983.

10 Louis Esperet. Boxicity of graphs with bounded degree. European Journal of Combinator-
ics, doi:10.1016/j.ejc.2008.10.003, 2008.

11 J. Kratochvil. A special planar satisfiability problem and a consequence of its NP–
completeness. Discrete Applied Mathematics, 52:233–252, 1994.

12 H. Maehara. Sphericity exceeds cubicity for almost all complete bipartite graphs. Journal
of Combinatorial Theory, Series B, 40(2):231–235, April 1986.

13 T.S. Michael and Thomas Quint. Sphericity, cubicity, and edge clique covers of graphs.
Discrete Applied Mathematics, 154(8):1309–1313, May 2006.

14 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997.

15 F. S. Roberts. Recent Progresses in Combinatorics, chapter On the boxicity and cubicity
of a graph, pages 301–310. Academic Press, New York, 1969.

16 E. R. Scheinerman. Intersection classes and multiple intersection parameters. Ph. D. thesis,
Princeton University, 1984.

17 C. Thomassen. Interval representations of planar graphs. Journal of Combinatorial Theory,
Series B, 40:9–20, 1986.

A. Adiga, L.S. Chandran, and R. Mathew 187

18 W.T. Trotter. Combinatorics and partially ordered sets: Dimension theory. Johns Hopkins
Univ Pr, 2001.

19 Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic Discrete Methods, 3:351–358, 1982.

20 Z. Füredi and J. Kahn. On the dimensions of ordered sets of bounded degree. Order,
3(1):15–20, 1986.

A Appendix

A.1 Procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()

Algorithm A.1 CONSTRUCT_UNIT_INTERVAL_GRAPHS()
/*All data structures are assumed to be global. */
1. INITIALIZE L(fi,j(vy))← 0, R(fi,j(vy))← n, ∀y ∈ [n], i ∈ α, j ∈ [8k]
for i = 1 to α do

for y = n to 1 do
2. SET j ← c, such that Ci(vy) = χc
3. SET L(fi,j(vy))← y + n

4. SET R(fi,j(vy))← y + 2n
for each v ∈ N b

G(vy) do
if (Ci(v) 6= j) ∩ (L(fi,j(v)) = 0) then
5. SET L(fi,j(v))← y

6. SET R(fi,j(v))← y + n

end if
end for

end for
end for
7. Output fi,j(vy),∀y ∈ [n], i ∈ α, j ∈ [8k]

A.2 The proof of Lemma 5
Proof. The statement of the lemma is obvious if the BREAK statement in Step 4 of
CONSTRUCT_COLORING(i) is executed, for every i ∈ [α] and vy ∈ V (G). In order to
prove that the BREAK statement will be executed, it is sufficient to show that there exists
a color χc ∈ {χ1, . . . , χ8k} such that |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥
3
4 |Z(vy, C

vy=χc

i)|. Since the vertices in Z(vy, C
vy=χc

i) or Z(vy, Ci) do not depend on the colors
given to v1, . . . vy, we have Z(vy, C

vy=χc

i) = Z(vy, Ci) . Hence, Z(vy, C
vy=χc

i) and Z(vy, Ci)
can be used interchangeably.

Let A = BNN i[vy]× Z(vy, Ci). Let < vx, vz > be an element of A. We say a color χc is
good for < vx, vz >, if vx ∈ X(vy, C

vy=χc

i) and vz ∈ Y (vy, C
vy=χc

i). In other words, χc is good
for < vx, vz >, if both Sxy and Tyz are favorably colored in Cvy=χc

i . Sxy is favorably colored
in Cvy=χc

i , if χc /∈ P , where P = {Cvy=χc

i (vw) | vw ∈ Nf
G(vx), vy <D vw}. Since |Nf

G(vx)| ≤ k,
|P | ≤ k. Therefore, there are at least 8k − k = 7k possible values that χc can take such
that Sxy is favorably colored in Cvy=χc

i . For Tyz also to be favorably colored in Cvy=χc

i , the
only thing required is that χc 6= C

vy=χc

i (vz), since vz ∈ Z(vy, Ci) and therefore Syz is already
favorably colored. This implies that there are at least 7k−1 possible values that χc can take

FSTTCS 2011

188 Cubicity, Degeneracy, and Crossing Number

such that both Sxy and Tyz are favorably colored in Cvy=χc

i . In other words, there are at least
7k−1 good colors for < vx, vz >. Thus for each element in A, there are at least 7k−1 colors
good for it. For each color χj ∈ {χ1, . . . , χ8k}, let Sj = {< vx, vz >∈ A | χj is good for <

vx, vz >} = X(vy, C
vy=χj

i)× Y (vy, C
vy=χj

i). Since there are at least (7k − 1) colors good for
each element in A, Σj∈[8k]|Sj | ≥ (7k − 1)|A|. Then by pigeonhole principle, there exists a
c ∈ [8k] such that |Sc| = |X(vy, C

vy=χc

i)| · |Y (vy, C
vy=χc

i)| ≥ (7k−1)
8k |A| = 7k−1

8k |BNN i[vy]| ·
|Z(vy, Ci)| ≥ 3

4 |BNN i[vy]| · |Z(vy, Ci)| elements of A. In other words, |X(vy, C
vy=χc

i)| ≥
3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)|. J

A.3 The proof of Lemma 6

Proof. From step 8 of DET_ALGO(G), we have |FNNi+1[vy]| = |FNNi[vy]|−|Y (vy, Ci)| ≤
|FNNi[vy]| − 3

4 |Z(vy, Ci)| (using Lemma 5). Taking summation over all y ∈ [n], we get
mi+1 ≤ mi− 3

4 Σy∈[n]|Z(vy, Ci)| = mi− 3
4 Σy∈[n]|X(vy, Ci)|. The last equality comes from the

fact that both Σy∈[n]|X(vy, Ci)| and Σy∈[n]|Z(vy, Ci)| represent the number of HOPEFUL
non-edges in G with respect to colorings C1, . . . , Ci. From Lemma 5, we have |X(vy, Ci)| ≥
3
4 |BNN i[vy]|. Therefore, mi+1 ≤ mi − (3

4)2Σy∈[n]|BNN i[vy]|. Since Σy∈[n]|BNN i[vy]| =
Σy∈[n]|FNN i[vy]|, we get mi+1 ≤ mi − (3

4)2Σy∈[n]|FNN i[vy]| = mi − 9
16mi = 7

16mi. J

A.4 The proof of Lemma 8

Proof. A detailed description of the procedure is given in Section A.5. To implement
the procedure efficiently, we make use of an (n × 8k) 0 − 1 matrix, hereafter called FNC
(Forward Neighbor Color), and two (n × n) 0 − 1 matrices named HOPE_MATRIX and
DONE_MATRIX respectively. At the beginning of the procedure each of these matrices
have all entries set to 0. As the procedure progresses, we change some of the entries to 1 in
such a way that,
∀w ∈ [n], j ∈ [8k],FNC [w][j] = 1 ⇐⇒ ∃vz ∈ Nf

G(vw) such that vz is already
colored by the procedure with color χj .
∀w, z ∈ [n], vw ∈ BNN i[vz],HOPE_MATRIX [w][z] = 1 ⇐⇒ Swz is already
favorably colored by the procedure.
∀w, z ∈ [n], vw ∈ BNN i[vz],DONE_MATRIX [w][z] = 1 ⇐⇒ Twz is already
favorably colored by the procedure.

In order for the above matrices to satisfy their respective properties, the only thing that
needs to be done is to update these matrices at each stage of the procedure. Consider the
stage at which the procedure is extending partial coloring Cvy+1

i to Cvy

i by assigning color
χc to vy. At this stage, the matrices FNC , HOPE_MATRIX and DONE_MATRIX are
updated as described in steps 11(a), 12(a) and 13(a) respectively. Note that this can be
done in O(|BNN i[vy]| + |FNNi[vy]| + |N b

G(vy)|) time. Steps 4(a)-(b), 5(a)-(b) and 6(a)-
(b) compute X(vy, C

vy=χc

i), Y (vy, C
vy=χc

i) and Z(vy, C
vy=χc

i) respectively in O(|BNN i[vy]|+
|FNN i[vy]|) time. Computing W (vy, Ci) is done in step 15 (a)–(b) in O(|BNN i[vy]|) time.

Since steps 4 to 14, in the worst case, are run for each vy ∈ V (G), χc ∈ {χ1, . . . , χ8k},
the procedure runs in O(k(Σy∈[n](|BNN i[vy]| + |FNN i[vy]|) + Σy∈[n]|N b

G(vy)|)) time. We
know that Σy∈[n](|BNN i[vy]| + |FNN i[vy]|) = 2mi and Σy∈[n]|N b

G(vy)| = m ≤ kn. Hence
the Lemma. J

A. Adiga, L.S. Chandran, and R. Mathew 189

A.5 A Detailed version of procedure CONSTRUCT_COLORING(i)

Algorithm A.2 CONSTRUCT_COLORING(i) /* detailed */
/*All data structures are assumed to be global.
Notational Note:
Let Cvz

i denote the partial coloring at the stage when we have colored the vertices vn to vz.
Let Cvz=χc

i denote the partial coloring that results if we extend Cvz+1
i by assigning color χc

to vz. */
1. Initialize FNC [w][j]← 0,∀w ∈ [n], j ∈ [8k]
2. Initialize HOPE_MATRIX [w][z]← 0,∀w, z ∈ [n]
3. Initialize DONE_MATRIX [w][z]← 0,∀w, z ∈ [n]
for y = n to 1 do

for each χc ∈ {χ1, . . . , χ8k } do
4. Compute X(vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize X(vy, C

vy=χc

i)← ∅
(b) ∀vx ∈ BNN i[vy], if FNC[x][c] = 0, then
SET X(vy, C

vy=χc

i)← X(vy, C
vy=χc

i) ∪ {vx}
5. Compute Y (vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize Y (vy, C

vy=χc

i)← ∅
(b) ∀vz ∈ FNN i[vy], if (HOPE_MATRIX [y][z] = 1) and(
Cvy=χc

i (vz) 6= χc
)
, then SET Y (vy, C

vy=χc

i)← Y (vy, C
vy=χc

i) ∪ {vz}
6. Compute Z(vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize Z(vy, C

vy=χc

i)← ∅
(b) ∀vz ∈ FNN i[vy], if HOPE_MATRIX [y][z] = 1,
then SET Z(vy, C

vy=χc

i)← Z(vy, C
vy=χc

i) ∪ {vz}
if |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)| then
7. SET Cvy

i ← C
vy=χc

i (i.e. SET Ci(vy)← χc).
8. SET X(vy, C

vy

i)← X(vy, C
vy=χc

i)
9. SET Y (vy, C

vy

i)← Y (vy, C
vy=χc

i)
10. SET Z(vy, C

vy

i)← Z(vy, C
vy=χc

i)
11. Update FNC matrix. /* as described in step (a) below */

(a) ∀vx ∈ N b
G(vy), SET FNC [x][c]← 1

12. Update HOPE_MATRIX /* as described in step (a) below */
(a) ∀vx ∈ X(vy, C

vy

i), SET HOPE_MATRIX [x][y]← 1
13. Update DONE_MATRIX /* as described in step (a) below */

(a) ∀vz ∈ Y (vy, C
vy

i), SET DONE_MATRIX [y][z]← 1
14. BREAK.

end if
end for

end for
for y = 1 to n do
15. Compute W (vy, Ci) /*as described in steps (a) and (b) below */

(a) Initialize W (vy, Ci)← ∅
(b) ∀vx ∈ BNN i[vy], if DONE_MATRIX [x][y] = 1, then
SET W (vy, Ci)←W (vy, Ci) ∪ {vx}

16. SET Y (vy, Ci)← Y (vy, Cv1
i)

end for
17. Return Ci.

FSTTCS 2011

190 Cubicity, Degeneracy, and Crossing Number

A.6 The proof of Lemma 10
Proof. Let CB(H) be the graph with V (CB(H)) = V (H) and E(CB(H)) = E(H) ∪
{(u, v) | u, v ∈ VB}. In other words, CB(H) is obtained from H by making VB a clique. Let
H ′ be the graph with V (H ′) = V (H) and E(H ′) = E(H) ∪ {(u, v) | u ∈ VA}. Observe that

H = CB(H) ∩H ′.

In conjunction with Lemma 1, this implies that

box(H) ≤ box(CB(H)) + box(H ′). (7)

I Claim 14. box(CB(H)) ≤ 2box(SB(H)).
Proof of this claim is very similar to the proof of Lemma 3 in [6] and hence we only give a
brief outline of it here. Assume box(SB(H)) = r. Then by Lemma 1, there exist r interval
graphs I1, . . . , Ir such that SB(H) = I1 ∩ I2 ∩ · · · ∩ Ir. For each i ∈ [r], let fi denote an
interval representation of Ii. From these r interval graphs we construct 2r interval graphs
I ′1, I

′
2, . . . , I

′
r, I
′′
1 , I
′′
2 , . . . , I

′′
r as outlined below. Let f ′i , f ′′i denote interval representations of

I ′i and I ′′i respectively, where i ∈ [r].

Construction of f ′i :
∀u ∈ VA, f ′i(u) = fi(u).
∀u ∈ VB , f ′i(u) = [min

v∈VB

(L(fi(v))), R(fi(u))].

Construction of f ′′i :
∀u ∈ A, f ′′i (u) = fi(u).
∀u ∈ B, f ′′i (u) = [L(fi(u)), max

v∈VB

(R(fi(v)))].

We leave it to the reader to verify that CB(H) =
⋂r
i=1(I ′i ∩ I ′′i).

I Claim 15. box(H ′) ≤ box(HB).
Clearly, H ′ is obtained from HB by adding universal vertices one after the other. Since
adding a universal vertex to a graph does not increase its boxicity, box(H ′) ≤ box(HB).

Combining Inequality 7, Claim 14 and Claim 15, we get box(H) ≤ 2box(SB(H)) +
box(HB). J

	Introduction
	Previous Results on Boxicity and Cubicity
	Equivalent Definitions for Boxicity and Cubicity
	Our Results

	Preliminaries
	Definitions, Notations and Assumptions used in Sections 3 and 4:

	Cube Representation and Coloring
	Cubicity and Degeneracy
	An Upper Bound – Probabilistic Approach
	Deterministic Algorithm
	Running Time Analysis

	Boxicity and Crossing Number
	A Useful Lemma
	Crossing Number
	Tightness of Theorem 13:

	Appendix
	Procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()
	The proof of Lemma 5
	The proof of Lemma 6
	The proof of Lemma 8
	A Detailed version of procedure CONSTRUCT_COLORING(i)
	The proof of Lemma 10

